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Abstract

This paper presents a novel two-dimensional split-vector-radix fast-Fourier-transform (2D svr-FFT) algorithm. The mod-
ularizing feature of the 2D svr-FFT structure enables us to explore its characteristics by identifying the local structural
property. Each local module is designated as a DFT (non-DFT) block if its output corresponds to DFT (non-DFT) values.
The block attribute (DFT or non-DFT) directs the algorithm to construct the local module. We will show that the distribution
of DFT blocks can be illustrated by the Sierpinski triangle—a class of fractals generated by IFS (iterated function system).
The ;nding of the Sierpinski-triangle structural property enables us to actually implement the 2D svr-FFT algorithm. To the
best of our knowledge, the 2D svr-FFT has never been realized in software. The computational e<ciency of the proposed
algorithm is considerably improved in comparison with that provided by Matlab.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Data analysis based on Fourier transform has
been widely used in a large variety of ;elds. The
rapid progress of digital technologies, including both
hardware and software methodologies, gives rise to
the ;eld of digital signal processing (DSP). One
of the major development in the DSP ;eld is the
discrete Fourier transform (DFT) that provides a
frequency-domain representation of a ;nite extent
sequence. Cooley and Tukey [8] disclosed an e<-
cient algorithm for DFT computation, the radix-2
fast-Fourier-transform (FFT) algorithm. Since then,
a variety of the FFT algorithms have been rapidly
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developed and implemented with software and
hardware approaches [1,2,4,6,9,10,13,16–19,22–24,
26–32,34]. The 1D split-radix FFT (sr-FFT) algo-
rithm derived by Duhamel and Hollmann [9,10]
was shown to have a simple structure with better
computational e<ciency. Algorithms for 1D im-
plementation of sr-FFT have been well developed
[9,10,16,17,23,26,28].
The MD (multi-dimensional) FFT becomes

more important as more researches are focused on
higher-dimensional signal processing, analysis and
interpretation. The most popular 2D FFT algorithm
is the row-column decomposition, actually, using
1D FFT algorithm [24]. An alternative approach,
the vector-radix FFT, extends the 1D concept of
decimation-in-time or decimation-in-frequency di-
rectly to the 2D case [12,14]. Nevertheless, both
approaches are roughly equivalent in many respects.
A few papers reported the mathematical concept,
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computational e<ciency and Iexibility of the 2D
svr-FFT structure [5,7,20,25,33]. Nevertheless, to our
knowledge none of them brought out the algorithm
for implementing the svr-FFT directly in 2D. It is
the ;rst attempt to explore the structural property
of the 2D svr-FFT. In this paper, we name a local
module “a DFT (non-DFT) block” if its output corre-
sponds to the DFT (non-DFT) values. By identifying
the attribute of each local module, we disclose the
phenomenon that the distribution of the DFT blocks
forms a fractal-like structure—the Sierpinski triangle.
This structural property enables us to actually imple-
ment the svr-FFT algorithm in 2D and fully utilize its
advantage of computational e<ciency.
In the following section, we introduce the math-

ematical basis of 2D svr-FFT. In Section 3, we de-
rive the structural geometry revealing the modular
attributes. Aspects of the algorithm are discussed in
Section 4.

2. The 2D split-vector-radix FFT—mathematical
basis

In this paper, we investigate the 2D decimation-in-
space (DIS) svr-FFT structure, which can be di-
rectly extended to the development of the 2D DIF
(decimation-in-frequency) svr-FFT. To optimize the
advantage of svr-FFT, size of each dimension is se-
lected to be the integer power of 2. This gives signif-
icant reduction in both additions and multiplications
[32]. Let x[m; n] be a 2D data array of size N × N ,
where N = 2r is an integer power of 2. Its N ×N 2D
DFT, X [k; l], is de;ned as [15]

X [k; l] =
N−1∑
n=0

N−1∑
m=0

x[m; n]Wkm
N W ln

N ; (1)

where WN = e−j(2�=N ). In the vector-radix FFT, an
N×N 2D DFT can be computed by four (N=2)×(N=2)
2D DFTs. We obtain

X [k; l] =
N=2−1∑
n=0

N=2−1∑
m=0

{x[2m; 2n]W 2km
N W 2ln

N

+ x[2m+ 1; 2n]W 2km+k
N W 2ln

N

+ x[2m; 2n+ 1]W 2km
N W 2ln+l

N

+ x[2m+ 1; 2n+ 1]W 2km+k
N W 2ln+l

N }; (2)
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Fig. 1. Flow graph of the 2D svr-FFT algorithm.

which can be expressed as

X [k; l] = DFTN=2×N=2{x[2m; 2n]}
+Wk

N DFTN=2×N=2{x[2m+ 1; 2n]}
+Wl

N DFTN=2×N=2{x[2m; 2n+ 1]}
+Wk+l

N DFTN=2×N=2{x[2m+ 1; 2n+ 1]};

06 n; m6
(
N
2
− 1

)
: (3)

In the svr-FFT, the last three terms are further decom-
posed into (N=4) × (N=4) DFTs. The result can be
expressed as

X [k; l] = DFTN=2×N=2(x[2m; 2n]) + nonDFTN=2×N=2;1;0

+ nonDFTN=2×N=2;0;1 + nonDFTN=2×N=2;1;1;
(4)

where

nonDFTN=2×N=2; i; j

=Wik+jl
N DFTN=4×N=4{x[4m+ i; 4n+ j]}

+W (i+2)k+jl
N

×DFTN=4×N=4{x[4m+ (i + 2); 4n+ j]}

+Wik+( j+2)l
N

×DFTN=4×N=4{x[4m+ i; 4n+ (j + 2)]}
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Fig. 2. Flow graph for computing the nonDFT samples from the (N=4)× (N=4)-point DFTs.

+W (i+2)k+( j+2)l
N

×DFTN=4×N=4{x[4m+ (i + 2); 4n+ (j + 2)]}:
(5)

Derivation of (5) is straightforward. For example, to
derive an expression for the second term in (4), we
further decompose the second term in (2) and obtain

nonDFTN=2×N=2;1;0

=
N=2−1∑
n=0

N=2−1∑
m=0

x[2m+ 1; 2n]Wk(2m+1)
N W l(2n)

N

=
N=4−1∑
n=0

N=4−1∑
m=0

{x[4m+ 1; 4n]Wk(4m+1)
N W l(4n)

N

+ x[4m+ 3; 4n]Wk(4m+3)
N W l(4n)

N

+ x[4m+ 1; 4n+ 2]Wk(4m+1)
N W l(4n+2)

N

+ x[4m+ 3; 4n+ 2]Wk(4m+3)
N W l(4n+2)

N }

=Wk
N DFTN=4×N=4{x[4m+ 1; 4n]}

+W 3k
N DFTN=4×N=4{x[4m+ 3; 4n]}

+Wk+2l
N DFTN=4×N=4{x[4m+ 1; 4n+ 2]}

+W 3k+2l
N DFTN=4×N=4{x[4m+ 3; 4n+ 2]}: (6)

To express theN×N array X [k; l] by using the (N=2)×
(N=2)-point and (N=4) × (N=4)-point DFT values,
Eq. (4) is modi;ed and illustrated in Fig. 1. The 2D
array A[∗; ∗] represents the (N=2)× (N=2)-point DFT
samples. The other 2D arrays, B0;1[∗; ∗], B1;0[∗; ∗],
and B1;1[∗; ∗], correspond to the (N=2)× (N=2)-point
nonDFT samples. Fig. 2 shows the signal Iow
graph for obtaining the nonDFT samples from the
(N=4) × (N=4)-point DFT samples. Apparently, one
DFT block and three nonDFT blocks constitute a
DFT block. On the other hand, a nonDFT block is
constructed from four DFT blocks.
Fig. 3 displays the distribution of DFT (dark) and

nonDFT (light) blocks at the last four stages. The
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rth stage (r−1)th stage

(r−2)th stage (r−3)th stage

DFT block nonDFT block
a

b

a,b

c,d

aD,bD

aN1,bN1 aN3,bN3

aN2,bN2

cD1,dD1

cD2,dD2 cD4,dD4

cD3,dD3

Fig. 3. Distribution of DFT (dark) and nonDFT (light) blocks at
the last four stages.

variables a and b denote, respectively, the vertical and
horizontal coordinates of a DFT/nonDFT block with
respect to the origin which is located at the upper-left
corner.

3. Derivation of structural geometry

As mentioned previously, main aim of this paper is
to develop the algorithm for implementing the svr-FFT
directly in 2D, that has never been realized before.
Development of the svr-FFT algorithm based on (4)
and (5) requires the knowledge of block attributes
(DFT or nonDFT) at each stage. It is the ;rst attempt
to explore the structural geometry that characterizes
the local block attributes. Let (a; b) denote the spatial
position of a local block. The coordinates a and b are
expressed in binary form. As illustrated in Fig. 3, the
ith stage contains 2r−i × 2r−i splitting blocks. Hence,
(r−i) binary digits are required to represent all the a’s
and b’s at the ith stage. For example, at the (r − 3)th
stage, the svr-FFT structure splits into 8× 8=23× 23

blocks, that is, 06 a, b¡ 8. Then coordinates (a; b)=
(110; 011) points to the block located at the 6th row
and the 3rd column at the (r − 3)th stage.
The DIS svr-FFT structure reveals some evidence

that can be used to develop the criteria for identify-
ing the block attributes at a given stage. Let sym-
bol ‘∨’ represent the binary OR operation between
two binary-coded variables. We de;ne the following
terms:

LSBl(�): the ;rst (lower-signi;cant) l bits of �;
(7a)

HSBk(�): a binary value derived from the last

(higher-signi;cant) k bits of �: (7b)

That is, LSB3(1011) = 011 and HSB3(1011) = 101
(in binary code). The following lists a few relations
between the block attributes and the block coordinates
a and b.
R1: The last stage involves only one DFT block

with (a; b) = (0; 0). Thus,

a ∨ b= 0: (8a)

R2: A DFT block (a; b) at the ith stage splits into
one DFT block (aD; bD) and three nonDFT blocks:
(aN1; bN1), (aN2; bN2), and (aN3; bN3), at the (i − 1)th
stage (refer to Fig. 3). It is apparent that

HSBr−i(aD) =HSBr−i(aN1) = HSBr−i(aN2)

= HSBr−i(aN3) = a; (8b)

HSBr−i(bD) =HSBr−i(bN1) = HSBr−i(bN2)

= HSBr−i(bN3) = b: (8c)

That is, the higher-signi;cant (r − i) bits of the four
blocks used to construct the succeeding block (a; b)
are the same as the binary-coded coordinates (a; b).
And it could be found that

LSB1(aD) = LSB1(bD) = 0; (8d)

LSB1(aN1) = 1; LSB1(bN1) = 0; (8e)

LSB1(aN2) = 0; LSB1(bN2) = 1; (8f)

LSB1(aN3) = 1; LSB1(bN3) = 1; (8g)
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given that (aN1; bN1), (aN2; bN2), and (aN3; bN3) are,
respectively, the lower-left, upper-right, and lower-right
block (Fig. 3). Results in (8d) to (8g) imply

LSB1(aD) ∨ LSB1(bD) = LSB1(aD ∨ bD) = 0; (8h)

LSB1(aN1 ∨ bN1) = LSB1(aN2 ∨ bN2)

= LSB1(aN3 ∨ bN3) = 1: (8i)

R3: A nonDFT block (c; d) at the ith stage splits
into four DFT blocks (cDi ; dDi), i = 1; : : : ; 4, at the
(i − 1)th stage (Fig. 3). Similarly,

HSBr−i(cDi) = c; (8j)

HSBr−i(dDi) = d; (8k)

for i = 1; : : : ; 4. However, the least-signi;cant bits of
cDi and dDi do not correlate with the block attributes
since

LSB1(cD1 ∨ dD1) = 0; (8l)

LSB1(cD2 ∨ dD2) = LSB1(cD3 ∨ dD3)

= LSB1(cD4 ∨ dD4) = 1: (8m)

We cannot obtain straightforward relations by observ-
ing only the least-signi;cant bits of the four (DFT)
blocks. Yet, the observation in R1, R2, and R3 may
be extended. We then obtain two lemmas discussed as
follows.

Lemma 1. Consider a block (a; b) at any stage. If a
and b are both even numbers, the block must be a
DFT block. It can be expressed as

{(a; b) |LSB1(a ∨ b) = 0}
⊂ the set of DFT blocks: (9a)

It is because that nonDFT blocks must have coordi-
nates satisfying (8i) according to the relation R2. For
the case of LSB1(a ∨ b) = 1, (a; b) may be a DFT or
a nonDFT block. Lemmas 2 and 3 provide the criteria
of identifying the block attributes for this case.

Lemma 2. Consider a block (a0; b0) at the ith stage,
and !=a0∨b0.Let nbit1 be the number of consecutive
bit 1’s counted from the least-signi8cant (rightmost)
bit position of !. If nbit1 is even, (a0; b0) is a DFT
block, otherwise, a nonDFT block.

DFT
(a0,b0)

LSB1(a1∨ b1)

split
(a1,b1)

stage-i

stage-(i−1)

1 DFT 3 nonDFTs
0 1

(a2,b2)

1 DFT
3nonDFTs

00 01

split

3 DFTs 9 DFTs
10 11

stage-(i−2)

nonDFT
(a0,b0)

LSB1(a1∨ b1)

split
(a1,b1)

stage-i

stage-(i−1)

1 DFT 3 DFTs
0 1

(a2,b2)

4 DFTs
12 nonDFTs

00 or 10 01 or 11

split
stage-(i−2)

LSB2(a2∨ b2) LSB2(a2∨ b2)

(a) (b)

Fig. 4. Evolution of the lower-signi;cant bits after two-stage split
from a DFT (a) and a nonDFT (b) block.

Lemma 2 can be explained by observing three con-
secutive splitting stages, following the concepts intro-
duced in relations R2 and R3. As shown in Fig. 4(a),
a DFT block (a0; b0) at the ith stage splits into 16
blocks (a2; b2) at the (i − 2)th stage with block at-
tributes determined by

LSB2(a2 ∨ b2) =

{
00 or 10 or 11 : DFT;

01 : nonDFT:
(9b)

On the other hand, a nonDFT block (a0; b0) at the
ith stage splits into 16 blocks (a2; b2) at the (i− 2)th
stage with block attributes determined by

LSB2(a2 ∨ b2) =

{
00 or 10 : DFT;

01 or 11 : nonDFT:
(9c)

Eqs. (9b) and (9c) support Lemma 1 since LSB1(a2∨
b2) = 0 occurs only when (a2; b2) is a DFT block.
Note that (a2; b2) must be a nonDFT block given
LSB2(a2 ∨ b2) = 01. Moreover, after the two-stage
splitting, blocks with LSB2(a2∨b2)=11 must be the
DFT (nonDFT) ones given that (a2; b2) is split from
a DFT (nonDFT) block (a0; b0) at the ith stage. The
above can be summarized by

(1) (a0; b0): DFT=nonDFT → (a2; b2): DFT;

if LSB1(a2 ∨ b2) = 0; (10a)

(2) (a0; b0): DFT=nonDFT → (a2; b2): nonDFT;

if LSB2(a2 ∨ b2) = 01; (10b)
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(3) (a0; b0): DFT → (a2; b2): DFT;

if LSB2(a2 ∨ b2) = 11; (10c)

(4) (a0; b0): nonDFT → (a2; b2): nonDFT;

if LSB2(a2 ∨ b2) = 11; (10d)

given (a2; b2): a block at the (i−2)th stage split from
the block (a0; b0) at the ith stage. According to (10a),
(10c) and the initial condition given in R1, recursive
operation (repeated use) of the signal Iow graph in
Fig. 4(a) comes to a result that nbit1 is even for a
DFT block. Similarly, we ;nd that nbit1 is odd for a
nonDFT block, according to (10b) and (10d) as well
as the recursive operation of the signal-Iow graph in
Fig. 4(b).
Based on Lemmas 1 and 2, we de;ne two mutually

complementary sets of blocks:

BD: {(a; b) |LSB1(a ∨ b) = 0

or nbit1∈ even integers}; (11a)

BN: {(a; b) | nbit1∈ odd integers}; (11b)

where nbit1 represents the number of consecutive bit
1’s counted from the least-signi;cant (rightmost) bit
position of (a ∨ b). Then we come to a conclusion
given below

Theorem.

(a; b) is a DFT block if and only if (a; b)∈BD;

(a; b) is a nonDFT block if and only if (a; b)∈BN:

Note that BD ∩ BN = #, BD ∪ BN = B: a set con-
taining all the possible r-bit binary values. The above
theorem provides a guideline to direct the 2D svr-FFT
algorithm to correctly ;nd and construct each local
DFT block when proceeding stage by stage.
The above theorem holds, with a slight modi;ca-

tion, for the higher dimensional svr-FFT’s. Consider
the case of 3D svr-FFT. A local block at a given stage
is indexed by (a; b; c). Then, the set BD containing
DFT blocks is de;ned by

BD: {(a; b; c) |LSB1(a ∨ b ∨ c) = 0

or nbit1∈ even integers} (12a)

Fig. 5. (a) The complete DFT image (S) at the (r − 6)th stage.
Partial DFT images with DFT blocks de;ned by the set: S1∪S2∪S3
(b), S2 ∪ S3 (c), and S3 (d).

and the set BN containing nonDFT blocks is

BN: {(a; b; c) | nbit1∈ odd integers}: (12b)

Based on the theorem derived above, we can easily
expand Fig. 3 and obtain an “image” of DFT blocks
at any given stage. Fig. 5 plots the images of DFT
blocks (the black boxes) at the (r−6)th stage. The plot
will be called the “DFT image” later. As addressed
previously, the (r−6)th stage contains 64×64 splitting
blocks. The complete DFT image (Fig. 5(a)) displays
all the DFT blocks to be constructed at this stage.
These blocks locate at (a; b)’s satisfying

S = S0: {(a0; b0) | a0 ∨ b0 = 0}
∪ S1: {(a1; b1) | a1 ∨ b1 = 011}
∪ S2: {(a2; b2) | a2 ∨ b2 = 01111}
∪ S3: {(a3; b3) | a3 ∨ b3 = 111111}: (13)

Note that ‘ ’ represents the “don’t-care” bit. It is
because the nbit1 only counts the number of consecu-
tive bit 1’s. The set S0 contains 32×32 blocks located
at the positions where both a0 and b0 are even num-
bers. In the next section, we will demonstrate that the
set S1 (S2;S3) contains 4×4×4×9 (4×9×9; 9×9×9)
blocks. Fig. 5(b) shows the leftover DFT blocks in
S1 ∪ S2 ∪ S3 after constructing the DFT blocks in
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S0. Figs. 5(c) and (d) display, respectively, the DFT
blocks in S2∪S3 and S3. It is of great interest that the
DFT images exhibit fractal structure—the well-known
Sierpinski triangle [3,21]. This ;nding is not unique,
Peitgen observed that the logistic NAND operation led
to a fractal pattern [21].

4. The algorithm

Next, we propose an algorithm to directly imple-
ment the 2D svr-FFT based on the theorem derived in
Section 3. One important task of the algorithm is to
correctly and rapidly ;nd out all the locations of DFT
blocks at each stage. We develop a dynamic loop pro-
gramming strategy of which the number of “for-loop”
operations is variable and determined by the stage of
svr-FFT structure.
Note that the logistic (binary) OR operation

requires signi;cant amount of computer time. Ac-
cording to our test run on the DX100-486PC, it
requires approximately 0:17 s to search for all the
block locations (a; b)’s satisfying {(a; b) | a ∨ b =
1111111111 (or nbit1 = 10)} by direct computation.
In fact, by exploring some regularity in (a; b), we may
greatly reduce the computational ePort on performing
the task. A scheme that results in a computational sav-
ing of at least two-thirds is ;rst introduced as follows.
Let Si denote a set containing the DFT blocks with

block locations (ai; bi)’s speci;ed by

Si:

{ {(a0; b0) |LSB1(a0 ∨ b0) = 0}; i = 0;

{(ai; bi) | nbit1 = 2i}; i 
= 0
(14)

or de;ned more precisely as

S0: {(a0; b0) | a0 ∨ b0 = : : : 0}
Si: {(ai; bi) | ai ∨ bi = : : : 011 : : : 11}; i 
= 0;

(15)

where the symbol ‘ ’ represents the “don’t-care” bit,
that is, ‘ ’ may be either bit 0 or 1. In this case, all
the four possible conditions: (0; 0), (0; 1), (1; 0), and
(1; 1) are allowed at the corresponding bit position of
ai and bi. The notation “11 : : : 11” represents 2i con-
secutive bit 1’s. It is obvious that, once the DFT-block
set S1: {(a1; b1) | nbit1=2 (or : a1∨b1= : : : 011)}
is obtained, one would be able to obtain the sets
S2;S3; : : : without exhaustedly evaluating the logistic

Fig. 6. The complete DFT image of S1 at the (r− 6)th stage can
be obtained by periodical repetition of the fundamental subset S0

1 .

OR operations. Two strategies are to be applied in
the searching task: (1) given that the fundamental
subset of Si (denoted by S0

i ): {(a0i ; b0i ) | a0i ∨ b0i =
0 : : : 0011 : : : 11} is determined, the complete set Si
can be obtained by periodic repetition of the funda-
mental subset, and (2) once the fundamental subset
S0
1 : {(a01; b01) | a01 ∨ b01 = 0 : : : 0011} is determined,

the others (S0
i ; i ¿ 1) can be obtained straightfor-

ward. To illustrate these two strategies in details, we
consider the problem of ;nding the DFT-block set
S2: {(a2; b2) | a2 ∨ b2 = 01111 (nbit1 = 4)} at the
(r − 6)th stage. As addressed in Section 3, six bits
are required to code the block indexes a2 and b2. The
complete DFT set at this stage is de;ned in (13) and
plotted in Fig. 5(a). We ;rst determine the funda-
mental subset S0

1 : {(a01; b01) | a01 ∨ b01 = 000011}. As
shown in Fig. 6, S0

1 contains 9 elements:

{(000000; 000011) (000001; 000010)
(000001; 000011) (000010; 000001)

(000010; 000011) (000011; 000000)
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(000011; 000001) (000011; 000010)

(000011; 000011)}binary
= {(0; 3) (1; 2) (1; 3) (2; 1) (2; 3)

(3; 0) (3; 1) (3; 2) (3; 3)}decimal: (16)

According to the ;rst strategy, the complete set S1
can be obtained by periodically reproducing the 8× 8
fundamental pattern all over the 64× 64 region. That
is

S1: {(a1; b1) | a1 = 8i + a01; b1 = 8j + b01}; (17)

where 06 i, j6 7 and (a01; b
0
1)∈S0

1 . Fig. 6 shows that
the resulting DFT image includes 64 periods. Next,
the second strategy allows us to deduce the funda-
mental subset S0

i (i¿ 1) from S0
1 without explicitly

evaluating the logistic OR operation. It is based on
the fact that “001111” can be viewed as “001100 +
000011”. Moreover, the code “001100” is obtained
by rotating “000011” leftwards by two bit positions
(or, by multiplying the number 3 × 4). Let %k be the
set of nine (�; &)’s satisfying the condition “� ∨ & =
0 : : : 0110 : : : 0”, where the code “0 : : : 0110 : : : 0” is ob-
tained by rotating “0 : : : 011” leftwards by 2k bit po-
sitions. Thus, a set %1 with nine elements (�; &)’s sat-
isfying the condition “� ∨ &= 001100” is ready to be
obtained from (16) as

%1: {(0; 12) (4; 8) (4; 12) (8; 4) (8; 12) (12; 0)
(12; 4) (12; 8) (12; 12)}decimal: (18)

Hence, the set S0
2 can be derived straightforward from

S0
1 as

S0
2 : {(a02; b02) | a02 ∨ b02 = 001111}
= {(a02; b02) | a02 = �+ a01; b

0
2 = & + b01}; (19)

where (a01; b
0
1)∈S0

1 and (�; &)∈ %1. Apparently, S0
2

contains 9 × 9 elements. The size of the fundamen-
tal period is 32 × 32 since the lower-signi;cant ;ve
bits are used to address a02 and b

0
2. Then, the complete

set S2: {(a2; b2) | a2 ∨ b2 = 01111} can be obtained
following the ;rst strategy as below

S2: {(a2; b2) | a2 = 32i + a02; b2 = 32j + b02}; (20)

where 06 i, j6 1 and (a02; b
0
2)∈S0

2 . Accordingly, S2
contains 4× 9× 9 elements (DFT blocks).

Table 1
Computational time required by the proposed algorithm and Matlab
for diPerent FFT sizes

FFT size 2D svr-FFT Matlab (Pt2)

32× 32 1:3 ms 3:8 ms
64× 64 7:6 ms 16 ms
128× 128 28 ms 75 ms
256× 256 0:11 s 0:32 s
512× 512 0:77 s 1:27 s
1024× 1024 2:86 s 5:11 s
2048× 2048 12:9 s —

According to the above strategies, dynamic-loop
programming is implemented to determine the lo-
cations of DFT blocks [11]. For example, two
(three) for-loop’s are required to determine S0

2 (S0
3 ).

In the algorithm, the “for-loop” is implemented
by the “if-then-else” and “go to” instruction. The
pseudo-code program (Appendix) was developed ac-
cording to the “dynamic-loop programming” code
and the svr-FFT structure. In addition to the com-
mon 2D-DFT subroutine, the core of the computer
program includes the dynamic-loop programming
structure and the sr table[][] tabulating the sequence
of accomplishing DFT blocks in consideration of
saving of time.
For comparison of computational e<ciency, we ex-

perimented with the proposed 2D DIS svr-FFT algo-
rithm run on a Pentium MMX-233 PC and compared
with the Matlab. Note that the 2D-FFT function (Pt2)
in Matlab is based on the row-column decomposition
scheme and 1D-FFT algorithm. The Pt2 function in
Matlab 5 oPers a moderate and competitive reference
for demonstrating the computational e<ciency since,
to the best of our knowledge, it provides the most
e<cient computation for 2D-DFT especially for an N
that can be factorized as a product of small primes. As
listed in Table 1, the computational time spent on the
same task is signi;cantly reduced in comparison with
the time required by the Matlab 5. Apparently, com-
putational time improves more for a smaller array di-
mension N since structural complexity increases with
N , which requires extra computational loading. A
speedup of approximately 1.75 times is obtained for a
1024× 1024 2D-DFT.
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5. Conclusion

In this paper, we have explored the realizable
and programmable structure of 2D split-vector-radix
FFT. A theorem was derived to identify the DFT
blocks at a given stage. The distribution of DFT
blocks (DFT image) was shown to exhibit fractal
structure—the well-known Sierpinski triangle. The
result enables us to develop an e<cient algorithm
that actually implements the concept of 2D svr-FFT.
As addressed previously, the mathematical aspects
and computational complexity (number of arithmetic
operations) of 2D svr-FFT have been discussed pre-
viously [5,7,20,25,33]. Nonetheless, it is the ;rst
attempt, to the best of our knowledge, to realize
and implement the svr-FFT computational structure
actually in 2D to thoroughly utilize the arithmetic
e<ciency of 2D svr-FFT algorithm. The resulting
2D-FFT program provides a signi;cant reduction in
computational time in comparison with that required
by the well-developed function provided by Matlab.
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Appendix

Pseudo Code of the 2D dis-svr-FFT Algorithm

struct sr table
{
int a; int b;
}; // de;ne 2D array s[.][.] as sr table type
...

// initialize sr table[k][0 : : : 8]: tabulate the %k array
s[0][0]:a = 0; s[0][0]:b = 3;
s[0][1]:a = 1; s[0][1]:b = 2;

...
s[0][8]:a = 3; s[0][8]:b = 3;
s[1][0]:a = 0; s[1][0]:b = 12;

...

sr FFT(: : : : : :)
{
...
// bit reversal
...
size = 2;

for (stage = 1; stage¡= r;stage++) // 2D DFT
size: N × N, where N = 2r

{
grid size = size * 2;
// implement {(a; b) | a ∨ b = : : : 0}
DFT(0, 0, grid size, size);
grid size *=4;
loop limit = (int)((r − stage)=2);
for(loop = 0; loop¡ loop limit; loop + +)

{
// dynamic loop programming
k = loop;
index[k] = 0;
block position[k] = sr table[k][0];

O1:
if (index[k]¿= 9) goto L1;
// calculate block position
if (k = =loop) block position[k]=

sr table[k][index[k]];
else block position[k] = block
position[k+1]+sr table[k][index[k]];

if (k¿ 0)
{
index[- -k] = 0;
goto O1;
}

DFT(block position[0]:a¡¡stage;
block position[0]:b¡¡stage; grid size,

size);
index[0] + +;

goto O1;
L1:

index[k + +] = 0;
if (k¡= loop)

{
index[k] + +;
goto O1;
}

grid size *=4;
}

size *=2;
}

}
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void DFT(int sx, int sy, int grid size, int size)
{
int a, b;
for(a = sx; a¡N; a + =grid size)

{
for(b = sy; b¡N; b + =grid size)

{
// implement the butterIy structure for
DFT computation
// (a; b): origin; size : DFT block size
...
}

}
}
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