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Identifying the Combination of Genetic Factors That
Determine Susceptibility to Cervical Cancer

Jorng-Tzong Horng, K. C. Hu, Li-Cheng Wu, Hsien-Da Huang, Feng-Mao Lin, S. L. Huang, H. C. Lai, and T. Y. Chu

Abstract—Cervical cancer is common among women all over the
world. Although infection with high-risk types of human papillo-
mavirus (HPV) has been identified as the primary cause of cer-
vical cancer, only some of those infected go on to develop cervical
cancer. Obviously, the progression from HPV infection to cancer
involves other environmental and host factors. Recent population-
based twin and family studies have demonstrated the importance
of the hereditary component of cervical cancer, associated with ge-
netic susceptibility. Consequently, single-nucleotide polymorphism
(SNP) markers and microsatellites should be considered genetic
factors for determining what combinations of genetic factors are
involved in precancerous changes to cervical cancer. This study
employs a Bayesian network and four different decision tree al-
gorithms, and compares the performance of these learning algo-
rithms. The results of this study raise the possibility of investiga-
tions that could identify combinations of genetic factors, such as
SNPs and microsatellites, that influence the risk associated with
common complex multifactorial diseases, such as cervical cancer.
The web site associated with this study is http://140.115.155.8/Fac-
torAnalysis/.

Index Terms—Bayesian network, cervical cancer, decision tree,
genetic factors.

1. INTRODUCTION

ERVICAL cancer kills more than 1000 women in Taiwan
C and 200 000 worldwide each year [1], [2]. Epidemiolog-
ical studies demonstrate that a positive human papillomavirus
(HPV) test is the most significant independent risk factor for the
development of both cervical dysplasia and invasive cancer [3].
Compared to HPV status, the relative risk associated with tra-
ditional factors such as sexual behavior becomes insignificant
[3]. Although researchers have identified HPV as the primary
cause of cervical cancer, only some infected individuals actu-
ally develop cervical cancer [4], [5]. Other environmental and
host factors are involved in the progression of HPV infection to
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high-grade squamous intraepithelial lesions (HSIL) and cervical
cancer [6]. Although most low-grade and many high-grade dys-
plastic lesions appear to resolve without intervention, women
are still advised to have follow-up examinations and treatments
to ensure that the significant subset of women at high risk for de-
veloping cancer are treated [7]. Identifying host determinants of
viral persistence may help better understand the mechanisms of
tolerance, and also may lead to the development of tests permit-
ting more focused follow-up of high-risk individuals [7]. Fol-
lowing the completion of the human genome project and the
exploration of gene polymorphisms, individual susceptibility to
cervical cancer can be explored at the genetic level.

The focus of genetics research is on associating sequence
variations with inheritable phenotypes. The most common se-
quence variation involves SNPs and microsatellites. SNP stands
for single-nucleotide polymorphism, which describes a point
mutation carried by some individuals within a population. Most
SNPs, approximately two out of three, have nucleotide cytosine
(C) replaced with thymine (T). The human genome is thought to
include over 200 000 SNPs in genes, and probably ten times this
number, possibly more, in nongenic DNA [8]. Some research [9]
has implicated the proline/argine polymorphism of the codon 72
of the tumor-suppressor gene p53 in the development of cervical
cancer, based on the observation that the p53 protein is more ef-
ficiently inactivated by the E6 oncoprotein of HPV in p53 argi-
nine than by its proline isoform [10]. However, other research
presents evidence refuting this relation [11]—[13]. Other SNPs,
such as those on genes MCP, IL4, IL10, Smad 2, Smad 4, MMP,
and CAV-1, also may be related to cervical cancer [14]-[18].

Microsatellites are also known as short tandem repeats (STR),
because a repeated unit comprises only 1 to 6 bps while the
complete repeated region spans less than 150 bps. Microsatel-
lites have proven useful to geneticists not only because of their
value as physical markers in genome mapping, but also be-
cause of their applications in linkage analyses in the association
with disease susceptibility genes [19]. Microsatellite DNA al-
terations are an integral part of neoplastic progression and are
valuable clonal markers for detecting human cancers [20]. Cer-
vical carcinoma is linked to HPV infection, but microsatellite in-
stability could also be involved in cervical tumorigenesis [21].
Research demonstrates that genomic instability occurs during
the late stages of the carcinogenesis of cervical cancer, and is
associated with the conversion of cervical intraepithelial neo-
plasia to an invasive phenotype [22].

Identifying and characterizing the genetic factors deter-
mining susceptibility to common complex multifactorial
human diseases such as cervical cancer remains statistically
and computationally challenging. This study adopts SNPs and
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TABLE 1
TYPES OF SNP POLYMORPHISMS IN THE PRESENT DATASET
SNP Type of polymorphism
MCP1_G-2518A A/G
IL10_G-592T T/G
IL10_C-819T C/T
IL10_G-1082A A/IG
P53_R72P C/G
1L4_C-590T C/T
IL4_C-34T C/T
MMP1_G-1607GG Insertion/deletion

Fas_A-670T A/G
IL4ARA_C-3223T C/T
IL12B_A+1188C A/C

microsatellites as the genetic factors affecting cervical cancer.
The decision tree algorithm [23]-[26] and Bayesian network
theory [27] are applied in this work to identify the genetic
factors governing susceptibility to cervical cancer.

II. MATERIAL

A retrospective hospital-based case-control study was per-
formed. The study cases included 224 patients with normal
status, 106 patients with low-grade squamous intraepithelial
lesions (LSIL), 152 patients with high-grade squamous in-
traepithelial lesions (HSIL), and 238 patients with invasive
cervical cancer, all diagnosed and treated at the Tri-Service
General Hospital, Taipei, Taiwan, R.O.C. The dataset included
720 records, most with missing values. Each record contained
11 SNP markers, four microsatellites, age, HPV type, and
diagnosis. These SNP markers and microsatellites were chosen
based on the research in Lai’s work [15]. Table I lists the types
of SNP polymorphisms considered in this investigation. The
four microsatellites include MMP9, IFNG, IL10G, and IL10R.
HPV types are grouped according to their phylogenic similarity
[15]. Group 16 includes HPV 16, 31, 33, and 35; group 18
includes HPV 18, 39, 45, 51, 53, 59, 68, 69, MM4, and MMT7;
and group 58 includes HPV 33, 52, 53, and 58. The values of
the diagnosis are 1, 2, 3, or 4, referring to normal status, LSIL,
HSIL, and squamous cell carcinomata (SCC), respectively.

Each record in the hybrid dataset contains various features,
including SNP markers, four microsatellites, HPV group, age,
and diagnosis. The hybrid dataset comprises two parts. One part,
denoted as the SNP’s dataset, consists of 11 SNP markers, HPV
group, age, and diagnosis. The other part, denoted as the mi-
crosatellite dataset, consists of four microsatellites, HPV group,
age, and diagnosis. Table 1II lists the diagnosis distribution for
each dataset after removing records with missing values. The
SNP dataset contains 256 records. Seventy of these records are
diagnosed as normal; 75 are diagnosed as high squamous in-
traepithelial lesions, and 111 are diagnosed as squamous cell
carcinomata. The hybrid dataset includes both microsatellite
and SNP’s data, but records with missing values in any SNP
markers or microsatellites in the dataset are excluded. Thus, the

TABLE 11
AMOUNT OF DATA AND DIAGNOSIS DISTRIBUTION OF EACH DATA SET AFTER
REMOVING RECORDS WITH MISSING VALUES. THE HYBRID DATASET HAS
MISSING VALUES AND SO IT CONTAINS FEWER RECORDS THAN THE
OTHER TWO DATASETS

Number of Diagnosis
Dataset records Normal HSIL SCC
Hybrid dataset 238 60 74 104
SNPs dataset 256 70 75 111
Microsatellite 340 93 102 145
dataset

hybrid dataset includes only 238 records, which is less than the
256 records in the SNP dataset and the 340 records in the mi-
crosatellite dataset. Since most of the data with the diagnosis
of low squamous intraepithelial lesions (LSIL) have missing
values, Table IT does not display data with LSIL diagnosis, and
such data is not used in this investigation.

III. METHODS

This study implements a web-based system that predicts com-
binations of sSNPs and microsatellites as possible cofactors of
cervical cancer. Fig. 1 gives the system flow of the method de-
veloped here for identifying the combination of genetic factors
that determine susceptibility to cervical cancer.

First, the Data Browser and Converter allows users to ignore
the quotes, delete all spaces in the dataset, replace all keywords
“or” with commas, and ignore the rows with missing values. The
system can automatically detect data that needs to be converted.
If the converted data file is detected, users can ignore the con-
version process. The statistics page in the data browser displays
the statistics of each variable, and users can specify that each
variable can be treated as a continuous variable or merged with
other variables. The variable can have many different values,
and most values that appear once are automatically pre-assigned
as continuous variables.

The Data Splitter is used to divide the dataset into training
and testing datasets. The Bayesian network model and decision
tree can be established by learning from the training dataset and
testing using the testing dataset. Users can specify either the
fraction or number of cases to be assigned to the training set.
The default fraction of splitting is 70% for training and 30% for
testing.

Third, the Plan Editor establishes a plan file that contains the
information required for creating the Bayesian network. Par-
ticularly, the role of each variable should be specified in this
step. Each variable can be an input variable (used to predict
other variables), an output variable (predicted by other vari-
ables), an input—output variable (both predicted by other vari-
ables and used to predict other variables), or ignored (not used).
A variable within the network can be chosen as “input” variable
if the content of the variable only affects other variables and
will not be affected by other variables. For example, the vari-
able “age” is defined as an input variable. Similarly, a variable
can be selected as an “output” variable if it is assumed to be af-
fected by other variables; for example, the variable “diagnosis”
is an output variable. Most variables in the network examined
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Fig. 1. System flow for identifying susceptible genotypes for cervical cancer.

here are defined as input—output variables, meaning they might
affect other variables and also might be affected by other vari-
ables.

Next, Bayesian belief network analysis is performed. The
Bayesian belief network specifies the joint conditional prob-
ability distributions between variables [27]. The Bayesian be-
lief network allows class conditional independencies to be de-
fined between subsets of variables, and also provides graph-
ical models of causal relationships, on which learning can be
performed. These networks are also known as belief networks,
Bayesian networks, and probabilistic networks. Each variable
in the network is treated as a node. Each edge in the Bayesian
belief network represents the joint conditional probability dis-
tributions between variables. An edge connecting two nodes
means that stronger causal relationships exist between these two
variables than between variables without such edge connection.
Restated, two nodes without an edge connection demonstrate
the existence of independence between these two variables. The
Bayesian belief network might contain more than one output
variable. Inference algorithms for learning can be applied to the
Bayesian belief network which contains multiple output vari-
ables. Rather than returning a single class label variable, the
Bayesian inference algorithm can return a probability distribu-
tion for the class label variables. For the present dataset, the di-
agnosis is selected as the only output variable, and the infer-
ence algorithm is not used in the present method. The level of
complexity of the Bayesian belief network and the dataset for
the network should be specified before showing the network.
The Bayesian belief network complexity level is the threshold
for showing the network and avoiding displaying a fully con-
nected graph. The complexity level is represented as a value be-
tween zero and one. The default complexity level value is one,
which indicates a most simplified network. The input data for
thee Bayesian belief network could be the whole dataset, the
training dataset, or the testing dataset. Users can select variables
with connected edges to build decision trees rather then using all
variables.

The final process is to create a decision tree. A decision tree
is a flowchart with a structure shaped like a tree, in which each

internal node denotes a test on a variable, each branch repre-
sents a test outcome, and leaf nodes represent classes or class
distributions. This study applies four decision tree algorithms,
namely, the J48 [23], PART [26], ID3 [24], and PRISM [25] al-
gorithms. ID3 is a divide-and-conquer decision tree algorithm
[24]. J48 and ID3 are the practical learning schemes used in the
well-known C4.5 decision tree program [23], [24]. PRISM is a
covering algorithm for rule generation and is a variation of ID3
algorithm [25]. The variables used to run decision trees can be
specified, and users can use all variables in the dataset or can
specify the variables with edge connected with output node in
the Bayesian network. Expert knowledge, such as halpotype or
pathway relation, can be specified by selecting variables indi-
vidually. The option “use reduced error pruning” is the default
value in the J48 and PART decision trees. Moreover, the option
“use reduced error pruning” can shrink a J4.8 decision tree or
reduce the number of rules produced by PART, and moreover
has the side effect of reducing run time because the complexity
depends on the number of rules generated. However, “reduced
error pruning” often reduces the accuracy of the resulting de-
cision trees and rules, because it reduces the amount of data
that can be used for training. This disadvantage vanishes given
sufficiently large datasets. The default confidence threshold for
pruning of the PART algorithm is set to 0.25, and the minimum
number of instances per leaf is set to two. Increasing the confi-
dence threshold for pruning may also reduce the accuracy of the
result and may result in a smaller tree. The minimum number of
instances per leaf is used to avoid creating a huge tree with only
one instance per leaf.

IV. RESULTS

This study implemented a web-based system for predicting
combinations of SNPs and microsatellites as genetic factors
for cervical cancer. System performance was compared under
various learning conditions, using different decision tree
algorithms and different parameters for constructing decision
trees. The batched processing mode is useful for making
comparisons, because several decision trees can be constructed
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Fig. 2. Performance comparison for the hybrid dataset using the PART algorithm. Sixfold cross-validation and two seeds were adopted as the appropriate

comparison conditions because this parameter setting maximizes the F measure.

TABLE III
PRECISION, RECALL, F MEASURE, AND SPECIFICITY FOR THE HYBRID DATASET
USING DIFFERENT DECISION TREE ALGORITHMS. THE PART ALGORITHM
OUTPERFORMED THE OTHER ALGORITHMS

Real Predicted as
diagnosis in - ™ Ppogitive (Predicted as  Negative (Predicted as
records Q) Not C)
Diagnosis is True positive (zp) False negative (fin)
C
Diagnosis is False positive (fp) True negative (tn)
not C

simultaneously. Batch processing was adopted to achieve
this goal. After completing the batch processing, the system
automatically selects the optimal model from several decision
tree models, according to the F measure derived from the
contingency matrix [28]. Table III lists the elements of the
contingency matrix for a given diagnosis C, which may be
normal status, HSIL, or SCC. For example, tp of diagnosis
SCC indicates the number of records with diagnosis of SCC
and correctly predicted as being SCC. F'n of diagnosis SCC
represents the number of records with diagnosis of SCC and
incorrectly predicted as not being SCC (HSIL or normal). Some
definitions are used for performance measurement. Precision
(P) [29], recall (R) [29], and specificity (S) [30] are defined
by
ip

pP=—="_ 1
tpjfp M
_1p
R_tp—l—fn @
tn
T @

Precision and recall are widely used in various information
systems [29]. Recall is also called sensitivity. Sensitivity and
specificity are frequently used in clinical analysis applications
[30]. Dissatisfaction with previous methods of measuring effec-
tiveness using a pair of numbers (such as precision and recall)
that may co-vary in a loosely specified way has stimulated at-
tempts to devise composite measures. Such composite measures
are based on the contingency matrix, but combine different parts

TABLE IV
PRECISION, RECALL, F MEASURE, AND SPECIFICITY FOR THE HYBRID DATASET
USING DIFFERENT DECISION TREE ALGORITHMS. THE PART ALGORITHM
OUTPERFORMED THE OTHER ALGORITHMS

Algorithm Precision (%) Recall F measure (%) Specificity (%)
(%)
J48 58.40 59.66 59.02 78.53
PART 59.73 60.50 60.11 79.55
1d3 53.34 53.19 53.26 73.76
PRISM 56.18 53.81 54.97 77.89
hpv_group = 0: 1 (62.0/26.0)
ILIOR=109+109
| age<=39
| | IFNG=117+121:3 (7.0/1.0)
IL10R = 109+109: 4 (33.0/26.0)
Fig. 3. PART decision tree result for the hybrid dataset.

of this matrix into a single numeric measure, such as the F mea-
sure [28]. The F measure (F’) is derived from the contingency
matrix, and defined as
2PR
~ P+R

where P and R represent precision and recall, respectively.

The system learns and outputs the decision tree model during
training. The model is evaluated with data which were not used
in training. This study follows an approach called n-fold cross-
validation [31]. First, the total dataset is split into n equal parts.
Next, n training/test cycles are performed. For each cycle k of
n, part k is used for testing and the other n — 1 parts are used
for training. The final assessment of the decision tree is based
on the average of the scores obtained during all of these cycles.
As described previously, the F measure is obtained as the final
assessment score. In this approach, each record in the dataset is
used to train n — 1 cycles and test one cycle. Sometimes, the
cross-validation is repeated several times, each time with the
data reshuffled, and consequently, the random number seed can
be set in these algorithms.

Individual algorithm performances were compared under var-
ious conditions to choose the most appropriate for applying all

“)
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Fig. 4. Comparison of the performance for the SNP’s dataset using the J48 algorithm. Tenfold cross-validation and one seed were selected as the appropriate

conditions for the SNP’s dataset.

TABLE V
PRECISION, RECALL, F MEASURE, AND SPECIFICITY FOR THE HYBRID DATASET
USING DIFFERENT DECISION TREE ALGORITHMS. THE PART ALGORITHM
OUTPERFORMED THE OTHER ALGORITHMS

Algorithm  Precision Recall F measure Specificity
(%) (%) (%) (%)

J48 56.76 60.27 58.46 77.66
PART 53.13 56.57 54.80 76.17
1d3 55.84 55.43 55.63 75.35
PRISM 54.65 53.49 54.06 76.48

learning algorithms. Only 239 records in the hybrid dataset had
no missing values, limiting the learning conditions to a small
and reasonable value range. Thus, the range of fold number in
cross-validation is constrained between 5 and 15, and the seed
range is constrained between one and three. This study chooses
the option “use reduced error pruning” in J48 and the PART
decision tree, and did not choose other optimization options
while comparing algorithms. Every algorithm is built with a dif-
ferent number of folds in cross-validation and also with a dif-
ferent number of seeds. Moreover, the F measure is calculated
for every algorithm. Table IV compares the performance of the
hybrid dataset. The percentages of precision, recall, specificity,
and F measure of the four algorithms are compared. Table IV
reveals that the PART algorithm outperformed the other algo-
rithms. Consequently, the PART decision tree algorithm was ap-
plied to a hybrid dataset. Since every record in a cross-valida-
tion cycle will be in the test set once, the F measure of every test
can be summed to produce a single value. Different numbers of
folds in cross-validation and different numbers of seeds are also
compared using the summed value of the F measure in Fig. 2.
Sixfold cross-validation and two seeds are adopted as the appro-
priate conditions based on the F measure. Fig. 3 illustrates the
PART decision tree in our result. In the tree structure, a colon
introduces the class label that has been assigned to a particular
leaf, the label of which is followed by the number of instances
of records that reach the leaf, expressed as a decimal number.
The decision tree in Fig. 3 involves four variables, namely, age,
HPYV, and two microsatellites, i.e., ILIOR and IFNG.The deci-
sion tree clearly indicates that, if the values of both alleles of

hpv_group=0:1 81.0380)

hpv_group =16

MMP1_G-1607GG =GR2G: 4 (280/13.0)
MMP1_G-1607GG =2G

| IL4RA_C-3223T=C

| | IL12B_A+1188C=A:4(3.041.0)

| | IL12B_A+1188C=A/C: 3(2.0/1.0)
| | IL12B_A+1188C=C:4(10)

| IL4RA_C-3223T=C/T:4(11.0)

| IL4RA_C-3223T=T:4(80/30)
MMP1_G-1607GG =GG

| P53_R72P(G/C) = C/G

| | MCPI_G-2518A=G/A: 4(6.0)

| | MCPI_G-2518A=A:4(3.0)

| | MCPI_G-2518A=G:3(2.0/1.0)

| | MCPI_G-2518A=:4(00)

|  P53_R72M(G/C)=C:420)

|  P53_R72P(G/C)=G:3(20)
hpv_group =18:4 (10.0/3.0)

hpv_group = 58:4 (39.0/17.0)

Fig. 5. J48 decision tree result for the SNP’s dataset.
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Fig. 6. Bayesian network for the SNP’s dataset. The HPV_group is directly
connected to diagnosis.

IL10R are 109, the diagnosis is SCC. Meanwhile, if the patients
are not infected with HPV, then the diagnosis will be normal.
This result also reveals that when the values of the two alleles
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of IL10R are both 109, the diagnosis of cervical cancer will be
HSILs if the patient is aged below 39 and the values of the two
alleles of IFNG are 117 and 121.

The same analytical procedure is applied to determine the ap-
propriate conditions and learning scheme using the SNP dataset.
Table V compares the performance of the four algorithms ap-
plied to the SNP’s dataset. Table V shows that the J48 algo-
rithm outperformed the others. Similarly, Fig. 4 shows the per-
formance of different folds and seeds. Tenfold and one seed are
selected as parameters based on the F measure. Fig. 5 shows the
decision tree results for the SNP’s dataset using the J48 deci-
sion tree algorithm. Fig. 5 verifies that HPV is the central cause
of cervical cancer. HPV dominates the root of the decision tree,
which demonstrates that HPV is a major factor in the decision
tree. The decision tree includes five SNPs, namely, MMP1_G-
1607G, ILARA_C-3223T, MCP1_G-2518A,IL12B_A+1188C,
and P53_R72P. If the patients are not infected with HPV, then
the diagnosis in the decision tree is normal. Meanwhile, if the
type of HPV infection is 18 or 58, then the diagnosis in the de-
cision tree is SCC. Furthermore, if the HPV type is 16, then
various combinations of the five SNPs in the decision tree can
predict the diagnosis of cervical cancer. Fig. 6 illustrates the
Bayesian network of the SNP’s dataset. The network reveals
that MMP1_G-1607G, HPV, and ILARA_C-3223T directly sup-
port the diagnosis of cervical cancer. The Bayesian network
and decision tree thus show that MMP1_G-1607G, HPV, and
IL4RA_C-3223T are direct inducing variables in diagnosing
cervical cancer.

Finally, the microsatellite dataset was analyzed. Table VI
compares the performance of different algorithm on mi-
crosatellite dataset. Table VI shows that the PART algorithm
outperforms other algorithms on microsatellite dataset. Thir-
teenfold and one seed are chosen as the appropriate parameters
for testing (see Fig. 7). Fig. 8 presents the decision tree results
obtained using the microsatellite dataset. Notably, HPV also
dominates the decision tree in microsatellite dataset in Fig. 8.
The decision tree in Fig. 8 contained two microsatellites, IFNG
and IL10G. Table VII shows the contingency matrix of the
PART decision tree algorithm using thirteenfold and one seed
cross-validation on a microsatellite dataset. The contingency

Performance comparison for the microsatellite dataset. Thirteenfold cross validation and one seed were chosen as the appropriate parameters.

hpv_group=18:4(21.0/5.0)
hpv_goup =16

| IL10G =132:4(150/43.0)

| IL10G = 132+132

| | IFNG =117+117:4(6.0)
| | age>44:4(10041.0)
hpv_group = 58: 3 (400421 .0)
hpv_group=0:1(90.036.0)

Fig. 8. PART decision tree result for the microsatellite dataset.

hpv_group age

FL I
/ |y ndiag
IL10G o« i{

IFNG‘ \
e

X

MMP9 IL10R

Fig. 9. Bayesian network for the microsatellite dataset.

matrix shows that the decision tree performs better on records
with normal diagnosis and SCC than on records with diagnosis
of HSIL. Only 45 HSILs out of 102 are predicted correctly.
Moreover, 73 cases are correctly predicted as having normal
status from among 93 diagnosis normal status records and 98
cases of SCC are correctly predicted from among 145 diagnosis
SCC. Fig. 9 shows the Bayesian network of the microsatellite
dataset. The MMP9 does not have any edge connections,
meaning MMP9 is more independent of diagnosis than other
variables. The Bayesian network confirms the differences
between the works of Shimajiri and Peters on MMP9 [32], [33].
The Bayesian network reveals that IFNG, HPV, and IL10G
indirectly determine the diagnosis.

V. DISCUSSION

The idea that epistasis or gene—gene interaction is impor-
tant in human biology is not new [34]. In fact, Wright [35]
emphasized that the relationship between genes and biological
endpoints depends on dynamic interactive networks of genes
and environmental factors [34]. Gibson [36] pointed out that
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TABLE VI
PRECISION, RECALL, F MEASURE, AND SPECIFICITY FOR THE MICROSATELLITE
DATASET. THE PART ALGORITHM OUTPERFORMED THE OTHER ALGORITHMS

Algorithm  Precision Recall F measure Specificity

(() 0) (%) (()0) (00)

148 60.14 60.88 60.51 80.20

PART 63.75 65.39 64.56 82.05

1d3 52.80 53.24 53.02 74.01

PRISM 53.33 53.61 53.47 74.58
TABLE VII

CONTINGENCY MATRIX FOR THE MICROSATELLITE DATASET. THE NUMBER IN
THE DIAGONAL ENTRY REPRESENTS THE NUMBER OF CORRECTLY PREDICTED
RECORDS. THE CONTINGENCY MATRIX IS ACHIEVED BY THE DECISION
TREE USING THE PART ALGORITHM WITH THIRTEENFOLD AND ONE
SEED AS PARAMETERS

. . Predict as
Real diagnosis
Normal HSIL SCC
Normal 73 13 7
HSIL 31 45 26
SCC 17 30 98

gene—gene and gene—environment interactions must be ubig-
uitous given the complex intermolecular interactions required
to regulate gene expression and the hierarchical complexity of
metabolic networks [34].

This study analyzed a dataset provided by Tri-Service Gen-
eral Hospital by applying four decision tree algorithms and the
Bayesian network theory to identify the combination of genetic
factors determining susceptibility to cervical cancer. The
dataset included 720 records, each with 18 variables, including
11 SNPs, four microsatellites, age, HPV, and diagnosis. The
hybrid dataset contained 238 records after removing those
with missing values. The performance of various decision
tree algorithms using different parameters is compared by
considering the F measure. The PART decision tree algorithm
and sixfold cross-validation were used to analyze the hybrid
dataset. The decision tree included two microsatellites, i.e.,
IL10R and IFNG. These two microsatellites also appeared in
the decision tree derived from the microsatellite dataset, and
were used to predict precancerous or cancer states.

The top performing J48 algorithm was applied to the
SNP’s dataset. Tenfold cross-validation was used during
cross-validation. Five SNP markers appeared in the deci-
sion tree of the SNP’s dataset, namely: MMP1_G-1607GG,
ILARA_C-3223T, MCP1_G-2518A, IL12B_A+1188C, and
P53_R72P. The Bayesian network of the SNP’s dataset also
showed that MMP1_G-1607G, HPV, and IL4RA_C-3223T
directly affect the diagnosis of cervical cancer. IFNG, IL10R,
MMP1_G-1607G, and IL4RA_C-3223T thus are identified as
the genetic cofactors of cervical cancer.

Identifying and characterizing genetic factors determining
susceptibility to common complex multifactorial human
diseases remains a statistically and computationally chal-
lenging task. This study applied the decision tree algorithm
and Bayesian network theory to data to identify the genetic
factors governing susceptibility to cervical cancer. From the
results presented in this study, the phase of cervical cancer can
be predicted through the decision tree of the genetic factors,

i.e., IFNG, IL10R, MMP1_G-1607GG, and ILARA_C-3223T,
although the total number of records in the dataset remains
insufficient for further analysis. In conclusion, the analytical
results of this study can open the door to identifying the com-
binations of genetic factors, such as SNPs and microsatellites,
which interact in a nonadditive or nonlinear manner to influ-
ence the risk associated with common complex multifactorial
diseases.
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