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Density of states of the interacting two-dimensional electron gas
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We study the influence of electron-electron interactions on the density of states~DOS! of a clean two-
dimensional electron gas. We find that the linear cusp in the DOS around the Fermi level, which was obtained
previously, has an additional logarithmic factor. The cusp crosses over to a pure logarithmic dependence further
away from the Fermi surface.
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It was established more than 20 years ago by Altshu
and Aronov1 and Altshuler, Aronov, and Lee2 that in low-
dimensional diffusive systems the electron-electron inter
tion leads to the suppression of the single-particle densit
states~DOS! at the Fermi level. In two dimensions the
theory predicted a logarithmic cusp at the Fermi level due
the diffusion pole divergences in the vertex renormalizai
The theory was later extended by Rudin, Aleiner a
Glazman3 to larger values of the energy measured from
Fermi surface.

Recently it was shown by Khveshchenko and Reizer4 and
by Mishchenko and Andreev5 using the diagrammatic ap
proach with the random phase approximation~RPA! dynami-
cal susceptibility, that large electron-electron interaction
duced correction to the DOS exists even in the absenc
disorder. Both groups obtained a linear cusp at the Fe
level dn(e)/n0;ueu/EF ~with the slope differing by a facto
of 2!, independent of the strength of the electron-elect
interactionr s . More recently Rollbuhler and Grabert6 using
a path integral technique~applied for relatively small cou-
plings r s,1) found numerically that the slope does depe
on the coupling and flattens away from the Fermi surfac

Due to the apparent discrepancy between the two
proaches we reconsider the problem in the framework of
diagrammatic method. Our aim is to spell explicitly and
clarify all the approximations which are made to obtain t
transparent analytical formulas for the DOS correction.
also obtain the results which are partially different fro
those of Refs. 4 and 5.

The Hamiltonian of the two-dimensional electron gas

H5(
ps

«paps
† aps1

1

2 (
pp8ss8q

ap1qs
† ap82qs8

†

3V~q!ap8s8aps, ~1!

where

«p5
p2

2m
, V~q!5

2pe2

q
. ~2!

The Green’s functionG(p,E) is given by the equation

G21~p,E!5G0
21~p,E!2S~p,E!, ~3!
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where G0(p,E) is the Green’s function in the absence
electron-electron interaction:

G0
21~p,E!5E2

p2

2m
; ~4!

the self-energyS(p,E) in this paper will be calculated in the
RPA atT50:

S~p,E!5E d2q
(2p)2E dv

2p
G0~p1q, E1v!

V~q!

«~q,v!
. ~5!

The DOS is

n~E!52
2

p
ImE d2p

(2p)2 G~p, E1 i0!. ~6!

Expanding the Green’s function with respect to the se
energy and reversing the order of integrations, one obta
the electron-electron interaction induced correction to
DOS ~Ref. 1!:

dn~E!52
2

p
ImE d2p

(2p)2 dG~p,E1 i0![Im X~E1 i0!.

~7!

We will work in the Matrubara formalism, calculateX for the
imaginary frequency,

X~ iV!52
2

pE d2q
(2p)2E

2`

` dv

2p

V~q!

«~q,iv!

3E d2p
(2p)2 G0

2~p,iV!G0@p1q,i ~V1v!#, ~8!

and, at the end, will make an analytical continuation.
Using the fact thatG0

2(p,iV)5 i ]G0(p,iV)/]V, we can
write the integral overp of the three Green’s functions as

E d2p
(2p)2 G0

2~p,iV!G0@p1q,i ~V1v!#

52 i S ]

]V
2

]

]v DP~q,iv,iV!, ~9!
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where the polarization functionP(V,q,v) is given by the
equation

P~q, iv, iV!5E d2p
(2p)2 G0~p, iV!G0@p1q, i ~V1v!#.

~10!

The last equation in polar coordinates takes the form

P~q,iv,iV!

5
1

~2p!2E0

2p

duE
0

`

pdp
1

iV1m2
p2

2m

3
1

i ~V1v!1m2
p2

2m
2

pq cos~u!

m
2

q2

2m

.

~11!

Since the main contributions come from fermionic mome
close to Fermi momentum, one can make the first appr
mation by replacingp in the term pq cos(u)/m by A2mm
5mvF and ignoring the termq2/2m. After that the integra-
tion overp can be easily performed:

P~q, iv, iV!5
m

~2p!2E0

2p du

iv2vFq cos~u!
L~v,V,q!,

~12!

where

L~v,V,q!5 log
~V1v!2 im1 ivFq cos~u!

V2 im
. ~13!

Explicitly, presenting the logarithm as

L~v,V,q!5
1

2
log

~V1v!21@m2vFq cos~u!#2

V21m2

1 i F tan21
m

V
2tan21

m2vFq cos~u!

V1v G ,
~14!

and taking into account thatV,v,vFq!m, we make the sec
ond approximation:

L5p i @Q~2V!Q~V1v!2Q~V!Q~2V2v!#. ~15!

After that, the integral overu in Eq. ~12! can be easily cal-
culated, and the polarization function takes a form

P~q, iv, iV!5
m

2

sgn~v!

Av21vF
2q2

@Q~2V!Q~V1v!

2Q~V!Q~2V2v!#. ~16!

Taking appropriate derivatives one obtains
11310
a
i-

E d2p
(2p)2 G0

2~p,iV!G0@p1q,i ~V1v!#

5
2muvu i

2@v21vF
2q2#3/2

@Q~2V!Q~V1v!

2Q~V!Q~2V2v!#. ~17!

The dielectric constant«(q,v) is related to the polariza
tion operator

P~q,iv!522E dV

2p
P~q,iv,iV! ~18!

by the equation

«~q, iv!512V~q!P~q, iv!. ~19!

It is easier, however, not to use the approximate equat
~16! for the polarization function, but to insert in Eq.~18!
exact Eq.~10! and~as it is traditionally done! integrate over
V first, to obtain

P~q,iv!52(
p

np2np1q

«p1q2«p2 iv
, ~20!

wherenp is the Fermi distribution function. Obvious algeb
gives

P~q,iv!5
1

p2
ReE

p,pF

pdpE du
1

pq cosu

m
1

q2

2m
2 iv

5
2

p
ReE

p,pF

pdp
1

AS q2

2m
2 iv D 2

2
p2q2

m2

~21!

Integrating overp,

P~q, iv!5
2m2

pq2
ReF q2

2m
2 iv2AS q2

2m
2 iv D 2

2vF
2q2G ,

~22!

and expanding the radical in smallq, one obtains

«~q,iv!511
2e2m

q F12
uvu

Av21vF
2q2G . ~23!

Now we are ready to return to the calculation of the DO
Substituting Eqs.~17! and ~23! into Eq. ~8!, consideringV
.0 for definiteness, and subtracting an ‘‘inessential’’ co
stant, one has
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X~ iV!5
e2mi

2p2 E2V

0

vdvE
0

`

qdq

3
1

q12e2mF12
v

Av21vF
2q2G

3
1

@v21vF
2q2#3/2

. ~24!

Equation.~24! coincides with those obtained in Refs.
and 5~apart from the fact that we are considering imagina
energy!. But we have noticed that the double integral can
calculated in a more rigorous way than it was done the
After we introduce the dimensionless variableq̄5vFq/uvu,
and change the order of integrations, the integral take
form

X~ iV!52
i

4p2vF
2
E

0

` q̄dq̄

@11q̄2#3/2
E

0

V

3
dv

q̄

2e2mvF

v112
1

A11q̄2

. ~25!

The integral overv can be easily calculated and we obta
the following ‘‘scaling’’ form:

X~ iV!52
in0r S

23/2p
f S V

2A2r SEF
D , ~26!

wherer s5A2e2/vF , n05m/p is the DOS of the noninter
acting two dimensional electron gas and the functionf is

f ~x!5E
0

` dq̄

@11q̄2#3/2
logF 11

xq̄

12
1

A11q̄2

G . ~27!
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For x@1,

f ~x!5 logx. ~28!

To obtain the density of states we should substituteV→ i e,
wheree5E2m is the energy measured from the Fermi su
face, and take the imaginary part. Thus we obtain, forueu
@r sEF ,

dn~e!

n0
5

r S

23/2p
logS ueu

r SEF
D . ~29!

To obtain asymptotic off (x) for x!1 we can chose ar
bitrary h satisfyingx!h!1 and present the integral in Eq
~27! as some of two integrals: from 0 toh and fromh to `.
In the first integral we can expand the integrand with resp
to q and in the second we can expand the logarithm in w
respect tox. Thus we obtain

f ~x!5E
0

h
dq̄ logF11

2x

q̄
G1xE

h

` dq̄

@11q̄2#3/2

q̄

12
q

A11q̄2

.

~30!

After a simple algebra in a leading approximation with r
spect tox we obtain

f ~x!522xlogx. ~31!

Thus, forueu!r sEF ,

dn~e!

n0
52

ueu
4pEF

logS ueu
r SEF

D . ~32!

Equations~29! and~32! are our main results. The correc
tion is smaller thann0, consistent with the perturbative as
sumption. At smallueu the DOS has a linear downward cus
modified by a logarithmic factor. This factor also gives
weak dependence of the cusp upon the strength of the
pling. The quasilinear segment crosses over to the loga
mic one at the energy scaleueu5r sEF . This last statement is
in good agreement with numerical results of Ref. 6.
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