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Density of states of the interacting two-dimensional electron gas
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We study the influence of electron-electron interactions on the density of $@S of a clean two-
dimensional electron gas. We find that the linear cusp in the DOS around the Fermi level, which was obtained
previously, has an additional logarithmic factor. The cusp crosses over to a pure logarithmic dependence further
away from the Fermi surface.

DOI: 10.1103/PhysRevB.69.113105 PACS nunider71.10.Ca

It was established more than 20 years ago by Altshulewhere Gy(p,E) is the Green’s function in the absence of
and Aronov and Altshuler, Aronov, and Léehat in low-  electron-electron interaction:
dimensional diffusive systems the electron-electron interac-
tion leads to the suppression of the single-particle density of
states(DOS) at the Fermi level. In two dimensions their
theory predicted a logarithmic cusp at the Fermi level due to o ) )
the diffusion pole divergences in the vertex renormalizaionthe self-energ (p,E) in this paper will be calculated in the
The theory was later extended by Rudin, Aleiner andRPA atT=0:
Glazman to larger values of the energy measured from the

. 2

Fermi surface. ([ d°q [ dw V(q)

Recently it was shown by Khveshchenko and Réizgd E(p,E)—f @n?) 2w ColPHa, E+w)s(q,w)'
by Mishchenko and Andreéwsing the diagrammatic ap-
proach with the random phase approximatiR®A) dynami-  The DOS is
cal susceptibility, that large electron-electron interaction in-
duced correction to the DOS exists even in the absence of 2
disorder. Both groups obtained a linear cusp at the Fermi v(B)=— ;Imj
level 5v(e)/vy~|€|/Er (with the slope differing by a factor
of 2), independent of the strength of the electron-electrorExpanding the Green’s function with respect to the self-
interactionr. More recently Rollbuhler and Grab®using  energy and reversing the order of integrations, one obtains
a path integral techniquépplied for relatively small cou- the electron-electron interaction induced correction to the
plingsrs<1) found numerically that the slope does dependDOS (Ref. 1):
on the coupling and flattens away from the Fermi surface.

Due to the apparent discrepancy between the two ap- 2 f d’p

p2
Go '(p.E)=E— 5 @

®

d’p .
WG(D, E+IO). (6)

proaches we reconsider the problem in the framework of the ¥(E)=——Im | =5 6G(p,E+i0)=ImX(E+i0).
diagrammatic method. Our aim is to spell explicitly and to @
clarify all the approximations which are made to obtain the

transparent analytical formulas for the DOS correction. Wene will work in the Matrubara formalism, calcula¥efor the
also obtain the results which are partially different fromimaginary frequency,

those of Refs. 4 and 5.

The Hamiltonian of the two-dimensional electron gas is _ 2 ( d?q (= de V(Q)
XiQ)=——=| =—=| ———
1 m) @m°)_.27 e(q,iw)
_ T t i
H—% €papaap, T > ’2’ Ap+qofp' —qo d2p
e XJ Z2Co(Pi )G p+a,i(Q+w)], (8)
XV(Q)ay . apo, (1)
h and, at the end, will make an analytical continuation.
where Using the fact thaG2(p,iQ)=idGe(p,iQ)/Q, we can
) P write the integral ovep of the three Green'’s functions as
B p B me
ep=gm: V(D= 2 e |
f 2m2 Co(Pi )G p+0,i (Q+w)]
The Green's functiorG(p,E) is given by the equation
| d d -
G (p,E)=Gq (p.E)~2(p,E), 3 :—'(a—g—a)mq"wi'ﬂ% ©
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where the polarization functiofl((),q, ) is given by the d2p
equation f WGg(p,iQ)Go[erq,i(Qer)]
(g, i iQ)=J @G (p, iIN)Ge[p+7, i (Q+w)] —m|wli
P (2m?2 Z0tH 0 ’ ' = o2y 2g27ae 07O Fw)
The last equation in polar coordinates takes the form —60(0)0(-0-w)]. 17
I1(q,iw,iQ) The dielectric constant(q,) is related to the polariza-
tion operator
1 fZﬂd o q 1
= pap 2
(2m)2Jo . p _ dQ o
|Q+,u,—% P(q,lw)z—zf ZH(q,Iw,IQ) (18
y 1 by the equation
2 cog ¢ 2
i(Q+w)+ _p__pq—s()_q_ ) . .
2m m 2m e(q, ilw)=1-V(q)P(q, iw). (29

(1D It is easier, however, not to use the approximate equation.
Since the main contributions come from fermionic momenta(16) for the polarization function, but to insert in E(L8)
close to Fermi momentum, one can make the first approxiexact Eq.(10) and(as it is traditionally dongintegrate over
mation by replacingp in the termpgcos@)/m by 2my € first, to obtain
=mug and ignoring the terng?/2m. After that the integra-
tion overp can be easily performed:

N,—n
P(g,iw)=23 —F—FP— (20)
m o d0 p 8p+q_8p_|w
(g, o, 10)= (Zw)zjo iw—0vpqcog f) L(w,0.0), wheren,, is the Fermi distribution function. Obvious algebra
(12 gives
where
1 1
s ; P(q,iw)=—Ref pdpf de
L(0,0,0)~log - HTIVEACOR0) g e peee Pacoss @
Q—-iu + i
m 2m
Explicitly, presenting the logarithm as 5 1
1 (Q+w)?+[pu—veqcog 6)]? =;Rejp<prdp 2 2 2.2 @Y
L(w,Q,9)==log a= . pq
2 02+ 2 ——iw| -
2m m2
| M M UEqCOg6)
i tan Q tan QO+ w ’ Integrating overp,
(14) 2 2 q2 q2 2
and taking into account th&,w,v-q< u, we make the sec- P(Q, iw)= —ZR%ﬁ—iw— \/(ﬁ—iw) —vig?|,
ond approximation: mq
(22)
L=7i[0(-Q)0(Q+w)—0(Q)0(-0—w)]. (15 . S .
m[o( )0( @) ()6( @)l (19 and expanding the radical in small one obtains
After that, the integral ove# in Eq. (12) can be easily cal-
culated, and the polarization function takes a form 2
. 2e‘m ||
e(qiw)=1+ 1- s (23
o m sgno) @™ UEd
I(q, i, |Q):Eﬁ[(—ﬂ)®(ﬂ+w)
@+ UEq Now we are ready to return to the calculation of the DOS.
—0(0)O(—Q—w)]. (16) Substituting Egs(17) and (23) into Eq. (8), considering(}
>0 for definiteness, and subtracting an “inessential” con-
Taking appropriate derivatives one obtains stant, one has
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e2mi (o o Forx>1,
X(iQ)= f wdw d
(%) w? o 14 f(x)=logx. (29
1 To obtain the density of states we should substifdte i e,
X wheree=E— u is the energy measured from the Fermi sur-
q+2e2m|1- @ face, and take the imaginary part. Thus we obtain, |&r
\/a)2+v,2:q2 >reEr,
1 ) ov(e) Tg | €] 29)
X[a)2+v|2:q2]3/2' 29 vo 232 °d rsEe/” (

Equation.(24) coincides with those obtained in Refs. 4  To obtain asymptotic of (x) for x<1 we can chose ar-
and 5(apart from the fact that we are considering imaginarybitrary » satisfyingx<<n<1 and present the integral in Eq.
energy. But we have noticed that the double integral can bg27) as some of two integrals: from 0 t@ and from# to .
calculated in a more rigorous way than it was done thereln the first integral we can expand the integrand with respect

After we introduce the dimensionless varialjevrq/|w|, 10 dand in the second we can expand the logarithm in with
and change the order of integrations, the integral takes EesSpect tax. Thus we obtain
form _ —
T f(%) f"d_l il Y R :
i oo d 0 X)= glog 1+ —| X f =
X(i0)=— zf % /J 0 q ” [1+qz]3’21 q
47%p2lo [1+¢g?]¥%/0 - —
F [1+97] /1+q2
dw (30
X—— 1 25 After a simple algebra in a leading approximation with re-

w+1— spect tox we obtain
2e’mu V1+9?
F 1+q f(x)= — 2xlogXx. 31)
The integral overw can be easily calculated and we obtain
the following “scaling” form: Thus, for|e|<rsEr,
. Sv(e) | €] €
) i vor Q =— lo . 32
X(i0)=——"f , (26) 70 47Er O\ rEr (32)
2% 2\/§rsE|:
wheer,= 2y, uy i s the DOS of e roniner. SAUAOTE9 0132 e ot il et he e
acting two dimensional electron gas and the funcfids . 0 . P
sumption. At small e| the DOS has a linear downward cusp
- - modified by a logarithmic factor. This factor also gives a
= dq xq
f(x :f ——log| 1+ ———|. (27 weak dependence of the cusp upon the strength of the cou-
0 [1+q?]%? 1 pling. The quasilinear segment crosses over to the logarith-
- — mic one at the energy scdlgl=r Er. This last statement is
V1+g? in good agreement with numerical results of Ref. 6.
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