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In recent years, latent class models have proven useful for analyzing relationships between mea- 
sured multiple indicators and covariates of interest. Such models summarize shared features of the mul- 
tiple indicators as an underlying categorical variable, and the indicators' substantive associations with 
predictors axe built directly and indirectly in unique model parameters. In this paper, we provide a de- 
tailed study on the theory and application of building models that allow mediated relationships between 
primary predictors and latent class membership, but that also allow direct effects of secondary covariates 
on the indicators themselves. Theory for model identification is developed. We detail an Expectation- 
Maximization algorithm for parameter estimation, standard error calculation, and convergent properties. 
Comparison of the proposed model with models underlying existing latent class modeling software is pro- 
vided. A detailed analysis of how visual impairments affect older persons' functioning requiring distance 
vision is used for illustration. 
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1. Introduction 

In many studies, the conceptually or clinically most meaningful outcome is inaccessible 
due to cost, time, and difficulty of measurement. A set of multiple indicators is then measured 
in place of this outcome. For example, psychiatric disorders are often assessed by applying stan- 
dardized criteria to patients' report of symptoms (Eaton, Dryman, Sorenson, & McCutcheon, 
1989). Biomarkers are used very often as substitutes for observing new cases of cancer in test- 
ing treatments for cancer prevention, where event rates are low and a long time may be needed 
to obtain cancer cases (Piantadosi, 1997). Functional disability is commonly quantified as self- 
reported categorical responses to a series of questions about difficulty performing tasks of routine 
living (e.g., Katz et al., 1963), because no obvious single measure of disability exists. Statistical 
methods for analyzing these measured indicators should have the capability to model the rela- 
tionship between indicators and conceptual outcomes, and to describe the underlying mechanism 
of the condition under investigation. The present paper investigates an increasingly widespread 
strategy for analyzing data collected in situations where investigators use multiple discrete indi- 
cators to measure the conceptually defined outcome. 

Particularly in psychosocial research, latent variable models are recognized as an effective 
tool for analyzing measured indicators. There are two primary latent variable approaches for situ- 
ations where multiple categorical indicators are used: latent trait models and latent class models. 
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Latent trait models express the unobservable conceptual outcome as a continuous score and de- 
termine the association with risk factors in a single modeling step (Rasch, 1960; Hambleton, 
Swaminathan, & Rogers, 1991; Muth6n, 1983, 1984; Sammel, Ryan, & Legler, 1997; Legler 
& Ryan, 1997). Latent class models differ from latent trait models in that the continuous score 
is replaced by a variable identifying several "classes" that define homogeneous groups of indi- 
viduals (Green, 1951; Lazarsfeld & Henry, 1968; Goodman, 1974; Haberman, 1974, 1979). An 
underlying categorical variable is arguably most robust for summarizing data whose basic struc- 
ture is patterns of categorical responses. It also does not require modeling according to a specific 
distribution, as does the continuous score. In recent years, latent class modeling has been receiv- 
ing increasing attention in both psychosocial (e.g., Neuman et al., 2001; Garrett & Zeger 2000; 
Hudziak et al., 1998) and medical research (e.g., Moustaki, 1996; Sullivan, Kessler, & Kendler, 
1998; Bandeen-Roche, Huang, Munoz, & Rubin, 1999). 

In this paper, we extend the latent class model to allow both the distribution of the under- 
lying class variable and the within-class distributions of measured indicators to be functionally 
related to individual-level independent variables (henceforth, regression extension of latent class 
analysis will be called RLCA). This idea is not new in and of itself. Quite general regression mod- 
els have been developed to describe the relation between covariates and the underlying variable 
(Dayton & Macready, 1988; Van der Heijden, Dessens,& B/3ckenholt, 1996; Bandeen-Roche, 
Miglioreti, Zeger, & Rathouz, 1997), or the relation between covariates and the measured indi- 
cators themselves (Melton, Liang, & Pulver, 1994). The former seeks to estimate the effects of 
independent variables on the conceptual outcome, whereas the latter aims to adjust for charac- 
teristics associated with measurement, hence preventing possible misclassification of underlying 
variable categories. Models incorporating covariates to predict both the underlying and mea- 
sured outcomes date to the mid-1980's (Clogg and Goodman, 1984, 1985; Formann, 1985, 1992; 
Hagenaars, 1993), but these were highly constrained in applying to categorical covariates. Re- 
cent methodology and software have very generally incorporated covariates for predicting both 
underlying variables and measured indicators (Muth6n and Shedden, 1999; Roeder, Lynch, & 
Nagin, 1999; LEM: Vermunt, 1996; Mplus: Muthdn and Muth6n 1998; Latent GOLD: Vermunt 
and Magidson, 2000). 

Despite this body of modeling research, we believe that at least two important issues remain 
unresolved by the prior literature. First, simultaneously regressing the latent class variable and 
measured indicators on covariates raises substantial identification questions. The issue is distinct 
from identification challenges in models that regress either the latent class variable or their mea- 
sured indicators, but not both, on covariates. Second, while maximum likelihood procedures have 
been reported and implemented for models that allow simultaneous regressions, their inferential 
and convergence properties have not been detailed. It is known that implementing the maximum 
likelihood procedure to estimate RLCA parameters is time-consuming, does not result in direct 
variance estimation, and carries no guarantee of finding a (global or local) maximum. A detailed 
discussion of these issues is extremely valuable. 

To address the important issues just identified, this paper: (a) formulates sufficient condi- 
tions for model identifiability of RLCA with two types of covariate effects; (b) proposes model- 
ing that guarantees identifiability and confers meaningful parameter interpretation; and (c) details 
full maximum likelihood inference and convergence properties of the estimating procedure. Our 
model can be viewed as a latent class analogy of "MIMIC" models (JOreskog and Goldberger, 
1975), and the developed theorem for model identifiability is the analogy of identification find- 
ings for MIMIC models with direct effects (Bollen, 1989, p. 328). To outline the remainder of 
the paper: section 2 proposes our model. Sufficient conditions for the identifiability of the pro- 
posed model are provided in section 3. In section 4, we develop an EM algorithm for estimating 
parameters and calculating their standard errors. We also justify convergent properties of this 
estimating procedure. Section 5 provides a comparison of our model with models underlying ex- 
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isting latent class software• In section 6, visual functioning data are used to illustrate the model• 
We also offer a comparison of our results with a published analysis obtained by a closely related 
model. Discussion is provided in section 7. 

2• Regression Extension of Latent Class Models 

Latent class analysis (LCA) aims to classify subjects based on their responses to a set of 
categorical items• To introduce the methodology, let Yi = (Y i l  . . . . .  Y i M )  T denote a set of M 
observable polytomous indicators for the ith individual in a study sample of N persons• Yim,  

m = 1 , . . . ,  M can take values {1, . . . ,  Kin},  where K m >  2. The basic model postulates an 
underlying categorical latent variable Si = 1 , . . . ,  J for individual i; within any category of the 
latent variable, the measured indicators are assumed to be independent of one another. Therefore, 
the distribution for Yi can be expressed as 

J M Km 

P r ( Y i l  = Y l  . . . . .  YiM = YM) = ) - - , {Pr(S i  = j )  l [  l [  {pr(Yim ---- klS~ = j)]Ymk}, 
H H 

j = l  m = l  k = l  

(1) 

where Ymk = 1 if Ym = k; 0 otherwise• The LCA model assumes that 

Pr(Y~m = k l &  = j )  = p m k j ,  P r ( &  = j )  = rld, (2) 

i = 1, . . . ,  N ;  m = 1, . . .  M ;  k = 1, . . . ,  Kin;  j = 1, . . . ,  J .  Thus, the model treats class 
membership probabilities, rlj ,  and item response probabilities conditional on class membership, 
Pink j ,  as homogeneous over individuals• Heuristically, rlj is the population prevalence of class j ,  
and Pmkj  is the probabili ty of an individual in class j being at level k of Yim.  Goodman (1974) 
provided an excellent overview of the LCA model, including a maximum likelihood strategy for 
estimating model  parameters, conditions to determine local model identifiability, a strategy to 
test overall model fit, and the use of constraints to identify models• 

The present goal is to extend latent class analysis to allow both the probabilities of latent 
class membership and the distribution of observed responses given latent class membership to 
be functionally related to concomitant variables, while preserving model identifiability. By al- 
lowing covariate effects on latent class probabilities, we can summarize the effect of risk factors 
on the underlying mechanism• In the case of incorporating covariates into conditional probabil-  
ities, we can adjust for characteristics that determine responses other than underlying classes, 
hence hopefully improving the accuracy of classifying individuals• For example, in evaluating 
functional disability, some data have suggested that women tend to rate tasks as "difficult" more 
readily than men independently of ability (Bandeen-Roche, Huang, Munoz, & Rubin, 1999). 
Without adjusting for a gender effect, the model  might well classify some men and women with 
identical underlying functioning differently (men as "able", women as "disabled"). 

Let (xi, zi) be the concomitant covariates of the ith person, where xi = (1, Xil  . . . . .  x i f )  T 

are primary covariates hypothesized to be associated with latent class membership, Si,  and 
Z i : ( Z i l  . . . . .  Z i M  ) with Zim : ( 1 ,  Z i m l  . . . . .  ZimL) T, m = 1 . . . . .  M ,  are secondary covariates 
used to build direct effects on measured indicators• The covariates may include any combination 
of continuous and discrete measures, and two sets of covariates may be mutually exclusive or 
overlap• When common covariates are used to predict both underlying and measured variables, 
our following proposed model can still be identifiable (see section 3 for details)• 

The regression extension of LCA may then be stated as follows: 

•. , pYmk 
P r ( Y i l  = Y l ,  . , Y i M  = YMIXi  Zi) = ~ t]j(x/T~) E E mkj (Tmj  -]- ZTmOlm) 

j = l  m=lk=l  
(3) 
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with t]j (Xf~) and Pmkj (Ymj ~- ZfmOlm) defined as in the generalized linear framework (McCul- 
lagh and Nelder, 1989). Various link functions (e.g., probit, ordinal) could be used easily. We 
specifically propose to use the generalized logit link function (Agresti, 1984): 

[ ~j (xf g)- l°gL  
and 

: flOj ~- f l l jXi l  ~- "'" ~- f lpjXip for i = 1 . . . . .  N; j = 1 . . . . .  J - 1, (4) 

log [_PmKj ('Ymj + Zfm OZm) = Vmkj + almkZiml + " "" + aLmkZimL 

for i  = 1 . . . . .  N ; m  = 1 . . . . .  M ; k  = 1 . . . . .  (Kin - 1); j = 1 . . . . .  J. 

Three assumptions complete the model (3): 

(5) 

1. Class membership probabilities are associated with xi only: 

Pr(Si = j l x i ,  zi) = Pr(Si  = jlxi).  (6) 

2. Conditioning on class membership, responses are only associated with zi: 

Pr(Yil = Yl . . . . .  YiM = y M I S i ,  x i ,  zi) = P r ( Y i l  = Y l  . . . . .  Y iM = y M I S i ,  zi). (7) 

3. The multiple measurements are independent given class membership and zi: 

M 
Pr(Yil = Yl . . . . .  YiM = yMISi,  zi) = I - I  Pr(Yim = ymlSi '  Zim). (8) 

m=l 

Some key features of the proposed regression extension of latent class model (3) are: First, by 
incorporating covariates (xi, zi) into class prevalences and conditional probabilities, we relax 
the homogeneous probability assumption (2) in the sense that the probabilities vary with some 
individual characteristics. Second, there are several useful sub-models of the proposed model. 
By fixing Vmkj in (5) at positive or negative infinity, we can fit a constrained RLCA with the 
corresponding conditional probabilities being 1 or 0. If  the regression coefficients in (4) or (5) are 
set as 0, our proposed model (3) reduces to models studied by Melton, Liang, and Pulver (1994), 
Dayton and Macready (1988) or an ordinary latent class analysis. Third, we allow unrestricted 
intercepts and level- and item-specific covariate coefficients in the conditional probability model 
(5), but we do not allow the coefficients to vary across latent classes. This constraint is logical if 
the primary purpose of modeling conditional probabilities is to prevent possible misclassification 
by adjusting for characteristics associated with item measurements. As we now discuss, it is also 
necessary to unambiguously distinguish covariate effects on measured responses from covariate 
effects on class membership itself. 

3. Identifiability 

In some statistical models, different parameterizations determine identical distributions. 
This is referred to as nonidentifiability. Before estimation of RLCA (3) can be meaningfully 
attempted, model identifiability must be verified. 

The latent class analysis literature has focused on checking "local" identifiability (McHugh 
1956; Goodman 1974; Formann 1992). By definition, a distribution Fy is locally identifiable at 
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the parameter ~bo if there exists some neighborhood X of ~bo such that 

F v ( y ; ~ b o ) = F v ( y ; ~ b )  for all y ~  U v ~ 4 ~ = ~ b o  for all ~b c X C O ,  

where • denotes the parameter space of the model and Uv denotes the support of Y. McHugh 
(1956) proposed sufficient conditions for the local identifiability of the LCA model with dichoto- 
mous observed variables and Goodman (1974) extended the conditions to polytomous variables. 
We here modify them for models with prefixed parameters (constrained model) and propose a 
condition equivalent to the full column rank of  the Jacobian matrix (for proof, see Appendix A): 

M Proposition 1. For j = 1, . . . ,  J ,  let I]tj be a ((1-Im=l Kin) - 1) x 1 vector with hth element 

M 

~hj = P r ( Y i  = yhlS) = j) = 1--[ Pmyh,~,j, 
m = l  

where Yh = (Yhl . . . . .  YhM) is the hth possible among ((I-IM=I Kin) - 1) distinct response 
patterns, excluding a reference pattern. C is the number of  pre-fixed conditional probabilities 
Pmkj = 0 o r  1. Suppose that 

( M M K (i) l ~ m = l K m ) - l - >  J ( ~ m = l (  m - 1 ) ) + J - l - C ;  
(ii) Pmkj > 0 and rlj > 0 for all free parameters (i.e., parameters that are not prefixed); and 

(iii) 01 . . . . .  O :  are linearly independent. 

Then, the constrained latent class analysis model (1, 2) is locally identifiable at free parameters 
of{ (Pmkj ,  t/j); 'v'm, k, j}. 

The LCA is constrained by fixing specific conditional probabilities. The proposition aims to 
determine whether the unknown (i.e., free) parameters in a constrained model are identifiable. 
Condition (i) states that the number of unique model parameters cannot exceed the number of 
independent pieces of observed information. Condition (ii) is to ensure that the probability of 
each possible response pattern is positive, which is (iii) in Theorem 1 of McHugh (1956). Con- 
dition (iii) is equivalent to requiring that the Jacobian of the LCA model has full column rank 
and has the meaning that the probability distributions for possible response patterns are linearly 
independent across latent classes. 

For RLCA models, the Jacobian grows to an unreasonably large row-dimension in continu- 
ous covariate applications. In the following, we develop a method for checking the identifiability 
of the RLCA model (3) by separating out the covariate effects and then applying Proposition 1 
to each subject. 

1heorem 1. For j = 1, . . . ,  J ,  let r j  be a ((lqM=l Kin) -- 1) x 1 vector with hth element 

M { eVmyhm j }.  
T,,j = m=ll--[ 1 + ' eYmk, ' YmKj = o, 

with Yh = (Yhl . . . . .  YhM) as defined in Proposition 1 and Ymkj as in (5). C is the number of 
gmkj 'S that tend to 4-oo. Suppose that 

( M M 
(() l~m=l Kin) - 1 >_ J ( ~ m = l ( K m  - 1)) + J - 1 - C; 

(ii t) free model parameters Ymkj, c~q,zk, tip j, and covariate values Xip, gimq are all finite; 
(iii t) rl . . . . .  r ]  are linearly independent; and 
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(iv') the design matrix of the primary predictors 

1 Xll  " ' "  X I p  

X = (x 1 . . . . .  X N )  T = " " 

1 XN1 " "  XNp 

and the design matrices of the i tems'  predictors 

Zm = (Zlm . . . . .  Z N m )  T = " " 

l Z N m  1 " " " Z N m L  

have full column rank. 

1 
, m =  l , . . . , M ,  

Then, the constrained regression extension of latent class model  (3, 4, 5) is locally identifiable at 
free parameters of {(Vmkj, c~qmk, ~pj); Ym, k, j ,  p, q}. 

For proof, see Appendix A. Conditions (i'), (ii '), and (iii ') provide sufficient conditions for the 
local identifiability of all LCA's that result by applying (3) to a population whose members have 
identical covariate values. Condition (iv') requires covariates not to be perfectly collinear. Model  
(3) formulates each subject 's probabili ty components as a combination of an LCA model plus 
variations across individual characteristics (Xi, Z i). By requiring that ( i ' ) - ( i i i ' )  and (iv') hold, the 
LCA model, and the parameters that determine how the model  varies with individual characteris- 
tics, are both locally identifiable; hence, their combination is also locally identifiable. Notice that 
condition (iv') only requires individual X and Zm to have full column rank, not joint ly to have full 
rank. Therefore, in the case where common covariates are used to predict both underlying and 
measured variables, model (3) can still be identifiable as long as the above conditions are met. 
The Jacobian matrix of the RLCA (3) can be partit ioned into sub-matrices where each sub-matrix 
is represented as either a combination of X and the Jacobian of LCA (1) with respect to latent 
prevalences, or as Zm and the Jacobian of LCA (1) with respect to the ruth i tem's conditional 
probabilities. If  the LCA model is identifiable, then only full column rank for each individual X 
and Zm is needed to obtain an identifiable RLCA (3). 

Importantly, model identifiability may fail if covariate effects on the conditional probabil i-  
ties are not constrained to be equal across classes. To illustrate this, consider a two-class RLCA 
with five two-level measured indicators and "gender" associated with both the class membership 
and measured indicators themselves (i.e., J = 2, M = 5, K1 . . . . .  K5 = 2, P = L = 1). 
Under the RLCA model with unconstrained covariate effects on the conditional probabilities, 

[ log Pmlj ( 'Ymj  -[- Z i m O l m j )  (gender)ira Vi, m, j ,  (9) T = Y m j  -[-O~mj 
[_ P m 2  j ( 'Ymj  -[- Z im Olmj ) 

where (gender)ira = 1 if  female (F), 0 if male (M). Suppose that gin1 ~= gin2 for m = 1 . . . . .  5, so 
that for males, the conditional probabilit ies of responding positively differ across the two classes, 
for all five items (i.e., pml l (M)  # pm12(M), m = 1 . . . . .  5). Suppose further that am1 = 0 
and C~m2 = '/ml - '/m2 for m = 2 , . . . ,  5, so that for females, the conditional probabilities 
of responding positively are identical across the two classes, for all items except the first (i.e., 
Pro11 (F) = Pm12(F) = P m  (F), m = 2 . . . . .  5). Then, the l ikelihood of measured item responses 
is 

L ( Y )  = I - I  t l l ( M )  I - I  [ ( P m l l ( M ) ) Y i m ( 1  - P m l l ( M ) ) l - y i m ]  

icmale m=l  
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where 

5 / 
+ (1 - t/l (M)) 17 [(Pml2(M))Yim(1 - Pml2(M))l-yim] 

m=l 

G i  = T t l ( F ) ( P l l l ( F ) )  yil (1 - P l l l ( F ) )  1-yil  -k (1 - r / l ( P ) ) ( P l l 2 ( F ) )  y/I (1 - P l l 2 ( F ) )  1-yi l  . ( 1 0 )  

Notice that (10) imposes two restrictions on parameters (i.e., for Yil = 1 or 0), and there are three 
parameters that we need to consider (i.e., Cql, ce12 and the gender coefficient in rll). Because the 
number of restrictions is less than the number of parameters of interest, equation (10), thus the 
RLCA model with the conditional probability regression (9), is not locally identifiable at o~ 11, oq2 
and the gender coefficient in r~. This example can be generalized to the J-class model with M 
dichotomous items, where females have the same conditional probabilities in latent classes, say, 
1 and 2 for the last MI(<  M) items. The sort of nonidenfifiability that we have highlighted can 
occur in practice. Our identifiability finding in class-independent covariate effects on conditional 
probabilities is particularly important for complex examples (many predictors) and provides pro- 
tection for this general case. 

Another way of evaluating the local model idenfifiability of LCA models is to examine 
whether or not the Fisher information matrix (i.e., the negative expected matrix of the second- 
order partial derivatives of the log likelihood) possesses eigenvalues greater than 0. Formann 
(1985, 1992) showed that this approach is equivalent to examining the rank of the Jacobian 
matrix. Under the RLCA model (3), the Fisher information matrix can be expressed as 

I ( O  l o g L )  ( 0  10gl, '~r I [ 1 (O~ih~O~ih~T 1 , (11) 

N where logL = ~ i=1  log Pr(Yilxi, zi) is the log likelihood function, D~ is the Hessian operator 

with respect to 4, = (Ymj, Oem, j6), and 7rih = P r ( Y i  = Yh; 4 , )  is the probability that ith subject 
has Yh response pattern. Notice that the Fisher information matrix (11) is equal to DTGD, where 
D is the Jacobian matrix of RLCA model (3) with elements described in Appendix (A.7), (A.8) 
and (A.9), and G is a diagonal matrix with elements equal to (1/rcih). Therefore, if D is of full 
column rank, the Fisher information matrix (11) has all eigenvalues greater than 0 (Graybill, 
1969, p. 318). Theorem 1 (iii ~) and the Nsher information matrix provide equivalent information 
for identifiability. A standard practice for checking identifiability is using multiple sets of initial 
values for parameter estimation. Different sets of initial values that yield the same likelihood 
maximum should result in the same final parameter estimates. If  not, the model is not identifiable. 

Complications often arise from applying Proposition 1, Theorem 1, and the Fisher informa- 
tion matrix to a given analysis. Ideally, one would want to determine those regions of the param- 
eter space in which a given model is locally identifiable. Because this is typically computation- 
ally difficult, these methods are often evaluated with respect to estimated parameters to establish 
local model identifiability at estimated values (Goodman, 1974). When using the Fisher informa- 
tion matrix, there is one more complication. Since the observed Fisher information, - D ~  logL, 
is typically used to estimate the standard errors of maximum likelihood estimators (Efron and 
Hinkley, 1978; Louis, 1982), the Fisher information (11) is not always obtained and the observed 
Fisher information is used for empirical checNng. Empirical identifiability checking through the 
observed Fisher information might cause errors because we use the "single" observation in place 
of the averaged effect. It needs to be implemented cautiously. 
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4. Estimation 

4.1. Parameter Estimation 

We use maximum likelihood (ML) to estimate the parameters in (3) for a fixed number of 
classes, J .  The problem of selecting J empirically is beyond the scope of this paper; rather we 
proceed as if the number of classes can be selected based on prior knowledge and the scien- 
tific objective. Viewing the class membership Si as unobservable, the RLCA model (3) becomes 
a typical incomplete-data problem. The Expectation-Maximization (EM) algorithm (Dempster, 
Laird, & Rubin, 1977) is an iterative approach to computing ML estimates when a model can 
be formulated in terms of quantities that may be viewed as missing data. The EM algorithm 
maximizes the likelihood by iterating between imputation of missing data from a model param- 
eterized at the most recent estimates and maximization of the "complete-data" likelihood (joint 
with respect to observable and missing data). Formally, imputation is carried out through an E 
(expectation) step that calculates the expected complete-data likelihood given observed data, and 
an M (maximization) step that maximizes the likelihood calculated from the E-step. 

Let Sij indicate whether subject i belongs to latent class j ,  Yimk indicate whether subject 
i 's  ruth measurement belongs to level k, and 4~ = ('}'m j ,  Olin, ~) be the parameter in (3). If  Sij 
were directly observable, the complete-data log likelihood of (3) would be 

N J 

log Lc(~b; Y, S) = ~ ~_,{Sij  {log rlj (xT~)]} 
i=1 j = l  

N J M Km 
q- ~_. ~_. ~_. ~_.{SijYimk[log flmkj('}'mj q-ZTmffm)]} • ( 1 2 )  

i=1 j = l m = l k = l  

We introduce a new function 

Q(~bl~b') = E[logLc(~b; Y, S)IY = y, ~b', x, z], (13) 

which is the expected log likelihood function conditional on the observed data y, x, z and provi- 
sional estimates 4) I. Then, the EM algorithm taking ~b(P) to ~b(p+l) is: 

E-step: Compute Q ( ~ I ~ ( P ) ) .  

M-step: Find 4) which maximizes Q ( ~ I ~ ( P ) ) .  

Since there is no closed form solution for above maximization process, we use the one itera- 
tion Newton-Raphson method (Lange, 1995) to approximate the maximum values in the M-step 
(Appendix B). This single step approximation has been shown to have a convergence rate that is 
almost identical to the EM algorithm rate and hence saves time over repeatedly performing New- 
ton's method. The E- and M-steps are alternated repeatedly until the difference in log likelihood 
log L(~b; Y) = ~/N__ 1 log Pr(Yi Ix/, zi) between ~b(p+l) and ~b(P) is arbitrarily small (McLachlan 
and Krishnan, 1996). 

To ensure reasonable convergence properties in practice, values to initialize the EM proce- 
dure for estimating latent class model parameters must be chosen with some care. One reasonable 
set of initial estimates for the "}'mj and Oem may be obtained by fitting M separate polytomous 
logistic regressions for (Yil ,  zii) . . . . .  (YiM, ZiM). TO obtain initial estimates for II, we first fit 
an LCA whose initial parameters are determined by dividing subjects into J groups according 
to the most common response patterns in the population. Then, we randomly assign each person 
i to a class Ci c {1 . . . . .  J} with posterior probabilities of class membership {Oil . . . . .  Oij} of 
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the fitted LCA, w h e r e  Oij = E(Si j  IYi, ~). The coefficient estimates in the polytomous logistic 
regression of Ci versus xi then give reasonable initial estimates of/3. 

4.2. Variance Estimation 

Since the EM algorithm is a method for ML estimation in incomplete-data problems, the ob- 
served Fisher information matrix based on the incomplete-data likelihood L(4~; Y) can be used 
to estimate standard errors of the parameter estimates conditioning on the number of classes. 
However, analytically evaluating the second-order derivatives of the incomplete-data log likeli- 
hood may be difficult, or at least tedious. Here, we consider methods that calculate the observed 
Fisher information of incomplete data within the EM framework. Louis (1982) showed that the 
observed information matrix of incomplete data can be computed in terms of the conditional 
moments of the first- and second-order partial derivatives of the complete-data log likelihood 
function introduced within the EM framework. We therefore implement Louis '  approach for cal- 
culating the variance-covariance matrix of the parameter estimates. Details of variance estimation 
can be found in Appendix B. 

4.3. Convergence of the Estimating Procedure 

Implementing the EM algorithm to estimate parameters in finite-mixture models is typically 
time-consuming. In this section, we aim to investigate the convergence properties of the EM 
sequence under the proposed RLCA (3). 

Let • = {(~mj, Olin, /3 ) ;  j = 1 . . . . .  J ;  m = 1 . . . . .  M} be the parameter space of model 
(3). We assume that it is a finite subset of r-dimensional Euclidean space 7~ r, where r is the 
number of parameters in (3). Consider settings in which the incomplete-data log likelihood, 
logL(4~; Y), is bounded above for all 4~ in ~ ,  and Q(4~14~ I) is continuous in both 4~, 4 ~I • ~ .  
Then, it has been shown (Wu, 1983) that, for any EM sequence {4~(P)}p_>o, logL(4~(P); Y) con- 
verges to logL* = logL(4~*; Y) for some stationary point 4~*, i.e., a point 4~* • ~ such that 
D~  log L(4~; Y)14,=4,* = 0, where D~  is the gradient operator with respect to 4~. In our RLCA 
model (3), it is easy to verify that logL(4~; Y) < 0 for all 4~ • ~ and that Q in (13) satisfies 
the continuity condition for all 4~, 4 ~ • ~ .  Therefore, any EM sequence of parameter estimates 
of RLCA (3) ends in a stationary point under the stopping criterion of log L(4~; Y) convergence. 
Since the purpose of the EM algorithm is to provide iterative computation of the maximum like- 
lihood estimates of log L(4~; Y), convergence of log L(4~; Y) to stationary values is all we need. 
We therefore use the convergence of the incomplete-data log likelihood as a stopping criterion in 
section 4.2. The same criterion is also suggested by McLachlan and Krishnan (1996, pp. 22-23). 

There is no guarantee that log L* is a (global or local) maximum of log L(4~; Y) over ~ .  
To decide whether the stationary value log L* is a local maximum, we can examine the observed 
Fisher information of the incomplete data, I(4~*) = - D ~  log L(4~; Y)14,=4,*, where D~  is the 
Hessian operator with respect to 4~. If  I(4~*) is positive definite, then log L* corresponds to a 
local maximum of logL(4~; Y). If  I(4~*) is positive semi-definite, there is a probable lack of 
local identifiability or a boundary solution for Vmkj at 4~* (Formann, 1992). The parameters 
involved in the lack of local identifiability can be empirically identified from their extremely 
large asymptotic standard errors (Formann, 1992). The estimators ~),nkj, which are the boundary 
solutions, tend to -4-oc; as a consequence, one or more conditional probabilities tend to 1 or 0. 
Constraining conditional response probabilities appropriately can solve both identifiability and 
boundary problems. If  I(4~*) is indefinite or negative (semi-) definite, the solution corresponds 
to a saddle point or a (local) minimum of the incomplete data likelihood. 

To establish global maxima, Wu (1983) proved that if the incomplete data likelihood 
log L(4~; Y) is unimodal, then {4~(P)}p_>o converges to the unique MLE of log L(4~; Y). The uni- 
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modality condition on log L(4~; Y) generally does not hold in LCA and RLCA models. Rather, 
the log likelihood log L(4~; Y) often has several (local or global) maxima and stationary values, 
and the convergence to either type of value depends on the choice of starting point. We there- 
fore recommend that several EM iterations be performed using different sets of starting points 
representative of the parameter space. If there appear to be multiple maxima, known scientific 
theory of the investigated questions may guide the choice between solutions with similar likeli- 
hoods. To obtain unimodality, one can also adjust the number of classes to prevent partitioning 
ambiguously major response patterns into distinct classes, or impose theoretically reasonable 
constraints on ~ .  

5. Latent Class Modeling Software 

A computer module to implement the proposed latent class model (3) is created using 
statistical package S-PLUS (Statistical Sciences, Inc., 1995) and programming language C. 
The module needs to be operated under the S-PLUS environment. It provides initial val- 
ues for the estimation, parameter and variance estimates, model identifiability checking us- 
ing both the proposed method (section 3) and the observed Fisher information matrix, the 
number of latent classes selection (ttuang, 2004: in press), and graphical displays for model 
diagnosis. 

Several computer programs are also available for estimating various types of latent class 
models. A web page created by John Uebersax (http://ourworld.compuserve.com/homepages/ 
jsuebersax/index.htm) provides much useN1 information about currently available programs, 
which we will not repeat. Instead we will explicitly compare our model with the models un- 
derlying these existing statistical programs to help the reader to position the role of our proposed 
model as a latent variable modeling tool. We will describe eight existing programs for estimating 
latent class models. They fall into three categories, which we will detail in ascending order of 
capability. 

The two programs in the first category are LLCA, a program for located latent class analysis 
(Uebersax, 1993) and WINMIRA, which can estimate latent class models, Rasch models, and 
Rasch mixture models (Rost, 1990, 1991). LLCA requires ordinal observed variables, while 
WINMIRA can analyze any kind of categorical measured variable. Neither of the programs in 
this first category is able to model covariate effects or perform identifiability checking. Both 
calculate Akaike's and Bayesian Information Criteria (AIC and BIC) (Akaike, 1987; Schwartz, 
1978). 

The second category of software includes MLLSA, LCAR and LCAG, which formulate the 
latent class model in terms of loglinear modeling and use the modified LISREL approach to in- 
clude categorical covariates (Clogg and Goodman, 1984; McCutcheon, 1987; Hagenaars, 1993). 
All three programs analyze the effect of categorical covariates on latent class and observed vari- 
ables. MLLSA evaluates the Jacobian matrix at estimated parameters for checking identifiability, 
but does not calculate the AIC or BIC, while LCAP does not do identifiability checking but does 
provide the information criteria. 

The third and most powerful category of software is made up of LEM, Latent GOLD, and 
Mplus. These programs are very flexible in the specification of model structure and can model 
latent class models, latent trait models, and a mixture of continuous and categorical observed- 
variables. For Mplus, categorical data must be scaled ordinally. All three programs model the 
effect of categorical or continuous covariates on latent class and observed variables. The pro- 
grams in this category use the observed Fisher information matrix to do identifiability checking 
and all provide the AIC and BIC. 
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6. Example 

To illustrate our model, we use data from the Salisbury Eye Evaluation project (SEE), a 
population-based, prospective study (N = 2520) of how vision affects older adults' functioning 
ability (West et at., 1997). Several studies have demonstrated that people aged more than 65 years 
report difficulty in performing their daily activities, and visual impairment is associated with 
difficulty in these activities (Rubin et at., 2001; Jette and Branch, 1985). The analysis reported 
here aims to describe the associations between ability in activities requiring distance vision and 
various visual impairment. 

Several studies have analyzed the SEE data, using different statistical methods (Rubin et at., 
2001; Huang et at., 2002). Particularly relevant here, B andeen-Roche et at. (1999) fit a regression 
extension of latent class model that did not allow direct effects of covariates on item responses 
(henceforth, B-R). This paper fits a model (3) for self-reported visual disability that includes 
direct covariate effects on item responses. In the following analysis, we highlight the comparison 
of our model via the B-R model, which provides a unique opportunity to look at what insight 
gains from our approach. 

6.1. Data 

In the SEE project, vision-related disability was assessed using the Activities of Daily Vision 
Scale (ADVS), a standardized instrument that has been described elsewhere (Mangione et at., 
1992; Vatbuena et at., 1999). Disability related to distance vision was determined via self-reports 
of difficulty in five tasks comprising the "far vision" subscate of the ADVS: reading street signs 
at night (signs-night), reading street signs in daylight (signs-day), walking down steps during 
daylight (steps-day), walking down steps in dim light (steps-dim), and watching TV (watch TV). 
Here, we measured difficulty as a binary indicator (1 = having difficulty; 2 = no difficulty) on 
signs-day, steps-day, steps-dim and watch TV, and as a three-level categorical indicator (1 = 
extreme or moderate difficulty; 2 = a little difficulty; 3 = no difficulty) on signs-night. The 
frequency distributions of far vision subscate items of the whole study population are shown in 
Figure 1 (N = 2520); all are severely skewed, with most participants reporting no difficulty. 

The variables we used to measure visual impairment have been described elsewhere (Rubin 
et at., 1997). In brief, these include: (a) visual acuity, which measures the ability to resolve images 
clearly; (b) contrast sensitivity of better eye, which measures the ability to distinguish shading; 
(c) glare sensitivity, which measures the ability to cope with glare in distinguishing shading; 
(d) stereoacuity, which measures depth perception; and (e) central visual field, which measures 
range of peripheral vision as well as the presence of blind spots. In this analysis, all the measures 
were re-scaled so that a higher score indicated worse vision. 

6.2. Model Fitting, Model Identifiability, and Diagnosis 

Because there was no one adequate measure of ability in far vision functioning, the SEE 
project used five self-reported visual disability measurements as quantities that imperfectly de- 
termined this unobserved, theoretical object. Analyzing these data posed two challenges: First, 
five measurements were designed to jointly describe far vision functioning. These measurements 
needed to be combined appropriately to derive summary statements about far vision functioning. 
Second, a self-reported questionnaire was used to quantify visual disability. This method was 
advantageous because the questionnaire was easy to administer; however, a potential drawback 
was that individual variation in defining levels of difficulty may yield a response with substantial 
error. 
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FIGURE 1. 
Frequency distributions of far vision difficulty items: SEE project. 

To overcome these challenges, we proposed to use the regression extension of latent class 
model (3) for self-reported visual disability. We modeled latent class memberships as depend- 
ing on visual impairment and the number of reported comorbid diseases. Comorbidities included 
arthritis, broken hip, cardiovascular disease, hypertension, diabetes, emphysema, asthma, Parkin- 
son's disease, cancer, and stroke. This would help us obtain the effect of visual impairment on 
the underlying far vision functioning. The following personal characteristics were identified or 
hypothesized as extraneous influences (other than the underlying far vision functioning) that 
could affect individual's reporting in the questionnaire: age at clinic exam, cognitive status as- 
sessed with the MMSE score (Folstein, Folstein, & McHugh, 1975), years of education, gender, 
race, and General Health Questionnaire (GHQ) depression subscale score (Goldberg, 1972). We 
modeled reporting of the measured indicators themselves as varying with these personal charac- 
teristics and hopefully could yield a more accurate latent class. It is arguable that age, MMSE, 
and GHQ score seem good predictors of the underlying latent class. Further analyses that al- 
low these variables to affect both class membership and measured indicators themselves will be 
performed to judge the possibility. 

The B-R model did not allow direct covariate effects on measured variables, but included 
all personal characteristics, vision and disease variables in predicting latent class memberships. 
Bandeen-Roche et al. (1999) justified that four classes were adequate to describe the SEE far 
vision data in their model, although they opted for a five-class solution for hypothesis-based 
reasons. For the proposed RLCA (3), AIC's  under three, four, and five latent classes are 6153.87, 
6061.47, and 6064.29, respectively; BIC's are 6521.28, 6499.11, and 6572.18, respectively. 
Based on above model selection and B-R's results, our analysis assumed four classes. 

In our analysis, LCA and RLCA (3) models were fit to the sub-sample of participants who 
rated each far vision item and also had no missing covariates (N = 1641). To check the local 
identifiability of the two models at estimated values, we first saw that the number of unique 
parameters in the saturated LCA (=  47) is greater than the number of unique model parameters in 
LCA (=  2 7 - 3 ) .  Conditions (ii) and (ii I) in Proposition 1 and Theorem 1 are clearly satisfied. The 
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FIGURE 2. 
Observed and fitted task difficulty prevalences, by gender and visual acuity: SEE project. In each plot, the solid line 
represents the predicted curve based on the RLCA model  (3), the dashed line represents the observed curve, and dotted 
lines are 95% confidence bands of  the observed curve. 

matrices ~ = [~1 . . . . .  ~ j ]  and ~- = [~'1 . . . . .  ~-j] both have full column ranks: The eigenvalues 
of  (t~rt~) are 0.283, 0.122, 0.07, 0.031; and the eigenvalues of  (~.r~.) are 0.236, 0.16, 0.055, 
0.031. Also,  all the design matrices have full column ranks. Therefore, the RLCA (3) are locally 
identifiable at the corresponding estimates. 

To compare the fit of  our chosen RLCA model  with the fit of  the B-R analysis, we  repro- 
duced Figure 4 of  Bandeen-Roche et al. (1999) for our analysis (Figure 2). The resulting display 
plots the proportions reporting difficulty in each of the five self-reported vision activities and 
those predicted by the RLCA model (3) as a function of  gender and visual impairment. The 
observed (dashed line) and predicted (solid line) proportions agreed closely for most items. Al- 
though our RLCA model under-predicted the proportions reporting difficulty in watching TV 
among men with substantial acuity loss, it has greatly improved upon the under-prediction that 
resulted in the B-R fit. 

6.3. Analysis Results 

Table 1 displays the estimated LCA conditional probabilities Pmkj and latent prevalences 
~j. Class 1 was an able group who rarely reported any difficulty; class 2 appeared to represent a 
group who frequently reported difficulties reading signs in both daylight and at night but rarely 
reported other difficulties; class 3 was a group who frequently reported problems reading signs 
at night and difficulties in descending steps, but less often reported difficulty reading signs in 
daylight or watching TV; and class 4 was a severely far vision disabled population. The estimated 
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TABLE 1. 
Estimated conditional probabilities and la|enl pre~,alences flom LCA (1, 2) and RLCA (3) for far vision difficulty: SEE 
project 

Self-Reported 

Difficulty 

Class 1 Class 2 Class 3 Class 4 
(none) (signs) (steps) (severe) 

Level LCA RLCA LCA RLCA LCA RLCA LCA RLCA 

signs-night extreme diff. 0.030 0.012 0.508 0.424 0.168 0,260 1 * 1 * 
a little diff. 0.197 0.166 0.474 0.519 0,606 0.517 0* 0* 
no diff. 0.773 0.822 0.018 0.056 0,226 0,223 0* 0* 

signs-day have diff. 0.007 0,002 0.648 0.496 0,240 0,293 1" 1" 
no diff. 0.993 0,998 0.352 0,504 0,760 0,707 0* 0* 

steps-day have diff. 0.001 0,002 0.001 0.001 0,596 0.743 0.780 0.860 

no diff. 0.999 0,998 0.999 0.999 0,404 0.257 0.220 0.140 

steps-dim have diff. 0.021 0,021 0.276 0.235 0.836 0.830 0.912 0.877 
no diff. 0.979 0,979 0.724 0.765 0.164 0.170 0.088 0.123 

watch TV have diff. 0,011 0,007 0,184 0.136 0.171 0.158 0.573 0.808 
no diff. 0,989 0,993 0.816 0.864 0.829 0.842 0.427 0.192 

latent prevalence 0,736 0,700 0,120 0.177 0.095 0.090 0.049 0.033 

*Values equal to 1 or 0 were pre-set to uniquely identify the model. 

latent prevalences show that 73% of participants rarely reported any difficulty (class 1), roughly 
10% of participants were in each class 2 and 3, and only 5% of participants reported severe far 
vision difficulty (class 4). 

The likelihood ratio test (LRT) comparing RLCA (3) with LCA indicated that the addition 
of covariates significantly improved the model fit (LRT = 448.122, df = 54). Table 1 displays 
the RLCA conditional probabilities evaluated at the sample means of the incorporated covariates 

i=1 Zim, and the sample averages of the RLCA preva- 

~* = ~ i=1  ~U(xf~) • tlere, we evahlated the conditional probabilities at the sample lences rtj ~ N 
averages of covariates to reflect the underlying latent structure adjusting for possible confound- 
ing. As expected, the latent class prevalence estimates were quite similar across approaches. LCA 
and RLCA estimates of conditional probabilities were similar in class 1; they were different but 
"nested" in classes 2, 3, and 4. RLCA analysis estimated a more modest percentage of reporting 
difficulty in reading signs in daylight for class 2 members, a higher percentage of reporting dif- 
ficulty in walking down steps during daylight for class 3 members, and a higher percentage of 
reporting difficulty in watching TV for class 4 members. The difference in conditional probabil- 
ities comparing LCA and RLCA suggests differential reporting by personal characteristics. 

The B-R analysis fit a five-class model. Its class compositions (Table 4 of Bandeen-Roche 
et al., 1999) had a basic structure similar to the class compositions of LCA, with a new class 
that included participants who had dil~iculty in reading signs at night but rarely reported other 
difficulties and were originally classified into class 1 or 2 under the LCA model. 

Table 2 contains the association estimation between latent class membership and risk fac- 
tors. The odds ratios are obtained by exponential transformation of regression coefficients in 
equation (4) [i.e., exp(/~pj)]. Summarizing, we derived several important findings: (a) Differ- 
ent impairments independently predicted ~hr vision disability. (b) Visual acuity was not signif- 
icantly associated with steps disability but stereoacuity was only significantly associated with 
steps disability. This is consistent with our previous findings and the theory underlying the vi- 
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TABLE 2. 
Latent prevalence regression from RLCA (3) for the relationship between underlying visual ability and risk factors: SEE 
project 

Disease and 
Vision Variables Comparison OR *? 95% CI 

number of comorbid 
diseases (1 disease) 

visual acuity 
(0.3 logMAR) 

contrast sensitivity 
(6 letters) 

glare sensitivity 
(6 letters) 

stereoacuity 
(0.3 log axcsec) 

visual field 

( v ~  letters) 

signs vs. none 
steps vs. none 
severe vs. none 

signs vs. none 
steps vs. none 
severe vs. none 

signs vs. none 
steps vs. none 
severe vs. none 

signs vs. none 
steps vs. none 
severe vs. none 

signs vs. none 
steps vs. none 
severe vs. none 

signs vs. none 

steps vs. none 
severe vs. none 

1.064 0.986, 1.148 
1.153 1.047, 1.269 
1.422 1.197, 1.690 

3.055 2.335, 3.997 
1.063 0.715, 1.580 
4.534 2.921, 7.039 

1.302 1.005, 1.687 
1.597 1.135, 2.246 
1.855 1.132, 3.040 

1.696 1.279, 2.248 
1.645 1.116, 2.426 
2.130 1.142, 3.972 

1.010 0.935, 1.091 
1.110 1.003, 1.228 
1.173 0.976, 1.411 

1.162 1.034, 1.305 

1.183 1.016, 1.378 
1.620 1.255, 2.090 

*Values in bold are significantly different from 1 at the 0.05 level. 
?Interpretation = odds ratios with unit identified in parentheses, and "odds" specific to the two classes under comparison 
category. 

sion measures  (Bandeen-Roche  et al., 1999; Rubin  et al., 2001; Valbuena et al., 1999). (c) In the 

B-R  analysis, various visual  impairments  were  shown to be  significantly associated with signs 

or steps disabili t ies (Bandeen-Roche  et al., 1999, Table 5). However ,  none  of  the impairments  

were  significantly associated with the severe visual  disability, because  of  large variances of  es- 

t imators.  R L C A  (3) showed not only significant associat ions with signs or steps disabilit ies,  but 

also a significant associat ion with the severe disability. A more  "accura te"  ("consis tent")  under- 

lying disabil i ty was created after adjusting for characterist ics that de termine  responses other than 

under lying classes. 

The  direct relat ionships be tween  self-reported difficulty and confounding  variables (i.e., 

exponent ia l  t ransformation of  o~qmk's in the equat ion (5)) are shown in Table 3. Results  can be  

summar ized  as: 

1. People  who  had higher  G H Q  depression scores were  more  l ikely to report  difficulty in each 

far vis ion activity. 

2. W o m e n  and highly  educated peop le  were  more  l ikely to report  difficulty in per forming each 

far vis ion activity except  watching TV. 

3. Less cogni t ively  intact people  ( lower M M S E  scores) were  less l ikely to report  difficulty read- 

ing signs. 

4. Older  persons were  more  l ikely to report  steps and reading signs at night  difficulty. 

5. Race  was not significantly associated with differential-report ing.  



20 PSYCHOMETRIKA 

TABLE 3. 
Conditional probability regression from RLCA (3) for the direct relationship between self-reported fax vision difficulty 
and confounding variables: SEE project 

Confounding Self-Reported 

Variables Difficulty Difficulty Level OR *? 95% CI 

age s igns-mght  

M M S E  score 

years of  education 

female 

Afr ican-American 

GHQ score 

signs-day 
steps-day 
steps-dim 
watch TV 

s igns-mght  

signs-day 
steps-day 
steps-dim 
watch TV 

s igns-mght  

signs-day 
steps-day 
steps-dim 
watch TV 

signs-night  

signs-day 
steps-day 
steps-dim 
watch TV 

s igns-mght  

s igns-day 
steps-day 
steps-dim 
watch TV 

s igns-mght  

signs-day 
steps-day 
steps-dim 
watch TV 

extreme diff. vs no diff. 1.058 1.015, 1.102 

a little diff. vs no diff. 1.020 0.992, 1.049 
have diff. vs no diff. 1.006 0.966, 1.047 
have diff. vs no diff. 1.142 1.070, 1.220 
have diff. vs no diff. 1.072 1.033, 1.113 

have diff. vs no diff. 0.987 0.941, 1.035 

extreme diff. vs no diff. 1.117 1.014, 1.232 
a little diff. vs no diff. 1.101 1.031, 1.175 
have diff. vs no diff. 1.109 1.007, 1.220 

have diff. vs no diff. 1.015 0.890, 1.159 
have diff. vs no diff. 0.996 0.915, 1.085 
have diff. vs no diff. 0.944 0.853, 1.044 

extreme diff. vs no diff. 1.139 1.065, 1.218 

a little diff. vs no diff. 1.047 1.001, 1.094 
have diff. vs no diff. 1.096 1.026, 1.171 
have diff. vs no diff. 1.101 1.000, 1.213 

have diff. vs no diff. 1.086 1.021, 1.155 
have diff. vs no diff. 1.031 0.958, 1.111 

extreme diff. vs no diff. 5.344 3.520, 8.112 
a little diff. vs no diff. 3.450 2.614, 4.554 
have diff. vs no diff. 4.054 2.716, 6.051 
have diff. vs no diff. 8o401 4.477, 15.763 
have diff. vs no diff. 4.055 2.738, 6.005 
have diff. vs no diff. 1.154 0.731, 1.821 

extreme diff. vs no diff. 0.972 0.587, 1.609 
a little diff. vs no diff. 1.376 0.999, 1.880 
have diff. vs no diff. 0.818 0.500, 1.336 

have diff. vs no diff. 0.927 0.456, 1.887 
have diff. vs no diff. 0.752 0.476, 1.187 
have diff. vs no diff. 1.700 0.990, 2.919 

extreme diff. vs no diff. 1.891 1.492, 2.397 
a little diff. vs no diff. 1.322 1.089, 1.605 
have diff. vs no diff. 2.217 1.709, 2.875 
have diff. vs no diff. 2.439 1.851, 3.213 
have diff. vs no diff. 2.012 1.647, 2.458 
have diff. vs no cliff. 1.622 1.322, 1.989 

*Values in bold are significantly different from 1 at the 0.05 level. 
?Interpretation = odds ratios with unit equal to one, and "odds" specific two levels under difficulty level category. 

It is w o r t h  n o t i c i n g  tha t  age  and  M M S E  s c o r e s  w e r e  h i g h l y  a s s o c i a t e d  w i t h  s t eps  and  s igns  

va r i ab les ,  r e spec t i ve ly .  A fu r the r  an a l y s i s  s h o w e d  tha t  p a r t i c i p a n t s  w h o  w e r e  n o t  c l a s s i f i ed  as 

h a v i n g  s t eps  d i s ab i l i t y  b a s e d  on  R L C A  ( 3 ) b u t  w e r e  c l a s s i f i ed  as h a v i n g  s t eps  d i sab i l i t y  b a s e d  on 

L C A  w e r e  o lde r  t han  t h e  g e n e r a l  s t u d y  p o p u l a t i o n  ( m e a n  ages :  74 .9  v e r s u s  72.9 ,  p - v a l u e  = 0 .01) ;  

p a r t i c i p a n t s  w h o  w e r e  no t  c l a s s i f i ed  as t he  ab l e  g r o u p  b a s e d  on  R L C A  (3) bu t  w e r e  c l a s s i f i ed  
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as the able group based on LCA had lower MMSE scores than the general study population 
(mean MMSE scores: 26.5 versus 27.5, p-value < 0.001). An LCA model that did not adjust for 
confounding characteristics might group older people into the steps disability class and group 
people with low MMSE score into the able class too frequently. This plausibly underlies the 
different response patterns for classes 2 and 3 from the LCA and RLCA model. 

The models reported so far only allowed age effects on conditional probabilities. A model 
allowing age to affect both conditional probabilities and class membership probabilities showed 
no significant improvement of the model fit (LRT comparing the model with age in conditional 
probabilities only versus the model with age in both conditional probabilities and class mem- 
bership probabilities = 2.493, df = 3). This result has an important implication: Age is not sig- 
nificantly associated with far vision disability once visual impairments were taken into account. 
Similar analyses for MMSE and GHQ score were also performed. No statistically significant 
improvement was found. 

7. Discussion 

Latent class analysis provides a probabilistic model that links observations to idealized con- 
cepts that cannot be directly measured. It is thereby able to account for association among the 
observed items. This paper has studied a regression extension that incorporates two sets of covari- 
ates: risk factors that are hypothesized to influence the underlying latent classes, and covariates 
that may influence observed items directly, hence possibly causing misclassification of the class 
membership. We provided theoretical justification and systematic methods for model identifia- 
bility and parameter estimation. 

In the example provided in the section 6, five measured indicators can be divided into three 
categories: SIGN activities (reading street signs at night and reading street signs in daylight), 
STEP activities (walking down steps during daylight and walking down steps in dim light), and 
watching TV. In contrast with the proposed latent class (LC) model with one latent variable 
containing four classes, an LC model with three dichotomous latent variables might be more 
appropriate. In fact, an unconstrained LC model with three dichotomous latent variables can be 
reparameterized as a single-latent-variable LC model with 23 = 8 classes (Magidson and Ver- 
munt, 2001). Based on prior knowledge and reasonable model assumptions, we can fix some 
parameters in an LC model with several latent variables to increase the model's degree of free- 
dom, while maintaining the capability of a single-latent-variable model with eight classes. As 
discussed in Hagenaars (1993) and Magidson and Vermunt (2001), constrained LC models with 
several latent variables might provide a more parsimonious model, fit the data better, and give 
results that are easier to interpret than the corresponding single-latent-variable model. An ex- 
tension of the proposed LC model (3) allowing several latent variables and covariates effects on 
them will greatly increase the flexibility of modeling and provide a useful alternative of describ- 
ing the underlying structure. 

Proposition 1 and Theorem 1 demonstrate that local identifiability for regression extension 
of latent class models is determined by the response distribution within each class. The more 
similar the Pmkj 'S (or Ymkj 'S) for different classes, the weaker the local identifiability. This is due 
to approaching violation of conditions (iii) and (iiil). This fact has the important consequence of 
limiting the number of classes that can be fit: If  the number is too large, one risks creating classes 
with similar response distributions. Moreover, this explains why it is desirable to constrain direct 
covariate effects on indicators to be equal across classes; the alternative allows the Pmkj'S to 
telescope toward one another for certain covariate values. 

Incorporating covariates can sometimes make an otherwise nonidentified LCA model iden- 
tified. For example, Goodman (1974) analyzed the data of Table 1 in his paper using a three-class 
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LCA model with four dichotomous indicators. He showed that this was not identifiable because 
the 15 x 14 Jacobian matrix had rank 13. Consider an RLCA model that includes covariate "gen- 
der" in predicting both latent prevalences and conditional probabilities of the above LCA model. 
Notice that this RLCA model has 2 x (24 - 1) distinct response patterns and 20 unknown param- 
eters. If half the participants who have the same response pattern are females and the other half 
are males, the Jacobian matrix of the RLCA model has rank 19. ttowever, if females are more 
likely to give negative answers in items 2 and 3 than males, the Jacobian matrix of the RLCA 
model then has full column rank. The former gender covariate results in nondifferential condi- 
tional probabilities between females and males, while the latter implies differential measurement 
conditions. Detailed characterization of covariate structures that improve model identifiability is 
useful in building identifiable RLCA models. 

The number of classes is usually pre-selected in practice, either theoretically or empiri- 
cally. When prior scientific knowledge does not provide an appropriate choice of the number 
of classes, choosing the number of classes becomes an analytic challenge. Standard practice 
is to fix the number at the lowest number of classes that yields acceptable fit based on ei- 
ther the likelihood ratio goodness of fit test (Goodman, 1974; Formann, 1992), AIC, or BIC. 
One common feature of the above methods is that they all must fit the model repeatedly un- 
der different numbers of classes. Huang (2004: in press) has proposed a new selection process 
that was motivated by an analogous method used in factor analysis and does not require re- 
peated fitting. Summarizing, his proposed method calculates the sample correlation matrix of 
residuals from fitting Yi on zi, then sets the number of classes equal to one plus the number 
of eigenvalues of the sample correlation matrix of residuals that are greater than or equal to 
one. 

Missing item responses are common in medical studies that generate multiple responses. 
The standard practice of restricting analysis to persons with complete data may bias findings. If 
data are missing at random (i.e., the missing mechanism solely depends on subject's observed 
data; Little and Rubin, 1987), the proposed RLCA can be easily modified to describe all complete 
and incomplete item responses without additional modeling (Weiner, 1998: unpublished master 
thesis, Department of Biostatistics, the Johns Hopkins University). When outcomes are subject 
to nonignorable missing (i.e., the nonresponse is related to values of the missing variables), one 
needs to construct a model that correctly represents the missing mechanism. Baker and Laird 
(1988) developed a regression model for categorical responses when missing data are nonignor- 
able. Under the assumption that only outcomes are missing, they used two different regressions to 
describe the model: A :marginal regression for outcomes on covariates, and a nonresponse regres- 
sion for missing indicators on outcomes and covariates. This formula may provide a workable 
approach for RLCA modeling (3) when missingness is not random. 

Many statisticians are skeptical of latent variable models despite a long tradition of appli- 
cation in the social sciences. A predominant concern is that potential nonidentifiability of latent 
variable models is a well-known problem. Without identifiability, standard inferences are mean- 
ingless. In this paper, we have focused on providing a locally identifiable regression extension 
of latent class model. ~Ib reach global identifiability, appropriate constraints that incorporate sci- 
entific knowledge and theory are needed. A second concern is that latent variable model-based 
scientific findings are likely to be driven by the statistical assumptions rather than by the data. 
We acknowledge this danger, but we maintain that it can be minimized by diagnosing w h e t h e r  

and h o w  our models fit or may fail to appropriately describe a given dataset. In summary, regres- 
sion extension of latent class models give well-summarized inferences on theory underlying the 
choice of multiple indicators and their relationships with covariates of interest in a single step. 
When model assumptions are at odds with the observed data, a great deal can be learned from 
identifying the aspects of one's theory that are not borne out in analysis. 
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Appendix A: Proofs 

For simplicity, we assume there are no prefixed conditional probabilit ies and K1 . . . . .  
KM = K (i.e., the levels of items are all the same) in the following proofs. For the constrained 
model, the proofs are based on free parameters only. Extension to allow the levels being different 
is straightforward. 

Proof  o f  Proposition 1. Let 4) denote true parameters of a given LCA. As discussed in the 
paper, we only need to show that (iii) is equivalent to having full column rank of the Jacobian of 
an LCA model. Let A be the LCA's  differential matrix w.r.t. 4). Then A can be partitioned into 
sub-matrices 

A = [All " "  IAj-11 Bl111 " "  IB1(K-1)11" " I BMIJI " "  IBM(K-1)J], 

m = l ; j = l  m=M;j=J 

where A j  is the (K M - 1) x 1 vector of the partial derivative of the l ikelihood function w.r.t, rlj 
with the hth element equal to 

O Pr(Y = Yh) 

Otlj 
- -  Ohj  - O b j .  ( A 1 )  

Bmkj is the (K  M - 1) x 1 vector of the partial derivative of the l ikelihood function w.r.t. Pmkj 
with the hth element equal to 

O P r ( Y =  Yh) _r~jOhj  (Yhmk YhmK) (A2) 

OPmkj \ Pmkj Pm Kj ' 

w h e r e y h m k =  l i f y h m  = k ; 0 i f y h m  7 k k, m = 1 . . . . .  M,  k = 1 . . . . .  K .  
TO prove A is of full column rank, we need to show 

" - 1  r( 
- + 

j = l  m = l  k = l  j = l  L\Pmkj PmKj 

4=> aj = 0 V j ;  bmkj = 0 Vm, k, j ,  (A3) 

where Ymk is the (K  M - 1) x 1 vector of all possible Yhmk over h, and # denotes elementwise 
multiplication. The left-hand side of (A.3) can be written as 

J J 

~-]~{Oj#Pj}@ = ~-]~{Pj@}#Oj. 
j = l  j = l  

(A4) 

Here, P j  = [1, P l j ,  P2j . . . . .  PMj] is a (K M - 1) x ( M ( K -  1)+1) matrix with 1 as a (K M - 1) x 1 
vector of 1 and 

pmj = [ (  Yml YmK~ . . . . .  (Ym(K-1)  YmK ) ] ,  m = l  . . . . .  M. 

L\Pmlj  PmKj / \Pm(K-1)j PmKj 

Notice that P j  can be expressed as a simple matrix with elements (1/Pmkj) 's .  If  the response pat- 
tern of (yhb Yh2 . . . . .  YhM) is (1, 1 . . . . .  1), (1, 1 . . . . .  2) . . . . .  (1, 1 . . . . .  K)  . . . . .  (K, K . . . . .  K) ,  
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then 

1 1 
1 0 . . .  0 . . .  0 

Pl l j  PMlj 
1 1 

1 - -  0 . . .  0 . . .  0 
P 1 lj PM2j 

PJ = 1 --1 --1 
1 0 . . .  0 

Pl l j  PMKj PMKj 

- 1  - 1  - 1  
1 . . . . . .  0 0 

PlKj PlKj PlKj 

* = [a j ,  aj 
m = l  m=M 1 

b l l j ' ] j  . . . .  ~bl (g-1) j ' t ] f ,  . . . .  bMljl ']j  . . . .  ';[gM(K-1)j~]j" 

- 1  

PMKj 

1 

P M ( K - 1 ) j  

j = 1 . . . . .  ( J  - 1), 

and 

[ m7 1 * = - a j ,  b l l J r ] j ,  , [ l ( K - l ) j t ] j ' ,  , bM1Jr l j ,  b M ( K - 1 ) J r ] f  a j  . . . . . . . . .  
j = l  

If  tOm . . . . .  tOj are l inear ly  independent ,  then (A.4) = 0 ~ (P ia~)  . . . . .  ( P j a } )  = 0. Since  
PmU > 0 for all m, k, j plus the structure of the matr ix,  P j  j = 1 . . . . .  J has full co lumn rank. 
Since  t]j > 0 V j ,  ( P l a  . . . . .  ( P j a  = 0 ~ a m . . . . .  a = 0 ~ am . . . . .  a j - i  = 
~111 . . . . .  DM(K-1) J = 0. ~lherefore, if  (iii) holds,  A is of  full co lumn rank. Conversely,  
suppose  A has full co lumn rank, (P ja~)  . . . . .  ( P j a } )  = 0. Thus, tOm . . . . .  tO; are l inear ly  
independent .  

Proof o f  Theorem 1. We first ut i l ize the fo l lowing two proposi t ions .  

Proposition 2. For  an L C A  model  with 

O~ 0 ~, otOmk ZimL ) o ~ , o  T 0 exp'~mkJ + link ~4ml + . . .  + 
Pmkj Pmkj 

\ rmj + ZimOLm) = 1 + ~ s L 1 1  exp(y't~s j + a~lmsZim + . . .  + (10Lms~4mL),. 

and 

o ~U ( x f 1 3 o ) =  exp(f i° j  + fi~)jxi~ + - - - +  f i° jxi t , )  

t]J = 1 + 2--I=1 P/PoI 

for some fixed o o ,y,~j, oz,~ and 13 °, the model  is loca l ly  ident i f iable  at (pO, ~qo) if  the fo l lowing 
assumpt ions  hold:  

(a) K M > J M ( K  - 1) + J ;  

(b) all o~°s, 13°s, xs and zs are finite; and 
(c) ~.o . . . . .  ~.o with gmU in ~-j evaluated at y°kj  are l inear ly  independent ,  where  ~-j is def ined as 

in Theorem 1. 
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Proof of  Proposition 2. Since assumptions (i) and (ii) in Proposition 1 are true under the 
above model, we only need to show that (c) implies (iii) in Proposition 1. Let ~ o  be a (K  M - 1 ) × 1 
vector with hth element 

M 

~po = t ~ ( Y i  = yhlSi = j ,  z i )  = H p 0  hj myhmj 
m = l  

M X 0 0~ 0 ~ - -  Cg 0 7 e P(gmyhmj + lmyhm ~'iml + ' ' "  ~ 

1 + E s = l  e v(r~s j  + + "'" + LmsZimL) 

Therefore, 

where 

~2, o • • • o # z * = o ,  a t 0 ° = 0 ¢> ,r)  #Zi }aj = 0 ¢> aj r j  
j = l  j = l  L J = l  _I 

z;= 

ly o 
H exp(cZ~)mylm ziml + " "  -}- Lmylm zimL) 

m = l  

M 
H , 0 o~O . exp(a, . . . . . . .  giml + "'" -}- LmY(K M 1)mZtmL) 

m = l  .... 7(g~-l)m 

and 

"~-,K-1 e x  ~ o , 
M 1 + 2-,s=1 Ptgmsj) 

a~ = aj I-I  1 + E.s ,~  1 e P(×,,sj + lms zimi + " "  + cecm~ZimC) x 0 olO o " 
m = l  

Since ~.o . . . . .  r ° are independent, a~ . . . . .  a~ = 0 ~ am . . . . .  a j  = 0. Hence the proof. 

Proposition 3. Suppose a given latent class analysis model is locally identifiable at (p, ~q). 
Then, it is locally identifiable in the transformed parameters (E, oJ), where ~ = ( q l l  . . . . .  

K - 1  
q ( K - - 1 ) l  . . . . .  ~ M I J  . . . . .  e M ( K - 1 ) J )  is defined as Pmkj = exp(c-mkj)/[1 + ~ , = 1  e x p ( ~ m s j ) ] ,  

and o~ = (o~1 . . . . .  o o j - 1 )  as  rtj = e x p ( c o j ) / [ 1  + ~[__~1 exp (oo l ) ] .  

Proof of  Proposition 3. 

(P ,  ~), 
J-1 M K - 1 J  { [ (  

j = l  m = l  k = l  j = l  L\Pmkj  

4:> aj = 0 Y j ;  bmkj = 0 Vm, k, j .  

Since a given latent class analysis model is locally identifiable at 

PmKj 

(A5) 

To prove this latent class analysis model is also locally identifiable at (~, o~), we need to show 

j = l  m = l  k = l  j = l  

¢:> cj = 0 Y j;  dmkj = 0 Vm, k, j .  (A6) 
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N o t i c e  that 

a Pr(Yi = Yh) 
- ~lj ~,~j - ] ~ ( ~ 1 ~ , ~ )  

l=l J 
v j ,  

and 

I~(Yi = Yh) 
= rtj ~hj  [Yhml: -- pink j]  

O~mlcj 

Therefore, the leR-hand side of  (A.6) can be expressed as 

+ ~ ~ ~ d m k j p m k j -  dm~.jpm~.j Pmkj rlj [_kPmkj 
m=l k=l j=l  \ s = l  

Ym,  k , j .  

Pm Kj 

By (A.5), we can get 

c j t l j - ( ~ q t i ~ l r i j = O  f o r j  = 1 . . . . .  J - 1  
" - -  / \ / : 1  

(~,K-1 ) 
dmkj Pmkj -- \.~=l dmsj Pms j Pmkj = O tk)r m = l ,  . . . , M ; k = l . . . . .  K - 1 ; j = I  . . . . .  J,  

which imply cj  = 0 V j ;  dmkj = 0 Vm, k, j .  Hence the proof. 

P r o ( ~ o f g h e o r e m  1. Let D be the differential for the RLCA model (3). Then D can be 
partitioned into sub-matrices 

D = [D1]" " ] D j - I [ E l l l [ ' ' '  [EI(K-1)I [ ' ' '  [EM1J[" " [EM(K-1)J] 
Y Y 

m=l;j=l m=M;j=J 

F i l l  " "  [ F I ( K - 1 ) [ "  " [ F M I [  " "  [ F M ( K - 1 ) ] .  

m=l m=M 

Here, Dj  is the ( ( K  M - 1)N) x (P  + 1) dimensional matrix of partial derivatives of Pr(Y/ = 
yh[x/, z/) w.r.t. ~ j  = (fioj, f l u  . . . . .  f ip j )  with the ( ( K  M - 1)(i - 1) + h)th element in the 
(p + 1)th column equal to 

0 Pr(Yi = yh]xi, zi) J 
= xip ~lij [~ihj - ~-~(~il ~im)],  (A7) 

Ofipj l=~ 

where ~ij = t]j (xF~) ,  @ihj = Pr(Yi = Yh ISi = j ,  zi). Emkj is the ( ( K  M - 1)N) x 1 dimensional 

matrix of  partial derivatives of  Pr(Yi = yhlx i ,  zi) w.r.t. Ymkj with the ( ( K  M - 1)(i - 1) + h)th 
element equal to 

0 Pr(Yi = yhlx i ,  zi) 
= tlij ~ihj  [Yhmk -- Pimkj ], (AS) 

0 Ymkj 
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T w h e r e  Pimkj = Pmkj ( Tmj q- ZimOem) • Fmk is t he  ( ( K M - I ) N )  x L d i m e n s i o n a l  m a t r i x  of partial 

derivatives ofpr (Yi  = yhlxi ,  zi) w.r.t. OLmj = ((Ylmk . . . . .  OLLmk) with the ( ( K  M - 1)(i - 1 )+h ) th  
element equal to 

Opr(Yi  = yhlxi, zi) 

OO@mk 
= Zimp [~]ij q~ihj (Yh*,z,t - Pimkj)] • 

( j = l  

(A9) 

Each D j  c a n  be decomposed into D j  = d j # X  D. Here, X D is the Kronecker product of  X 
and ( K  M - 1)N x 1 dimensional vector of  ones - - tha t  is, the design matrix for latent prevalences 
with each row repeated ( K  M - 1) times. The ( ( K  M - 1)(i - 1) + h)th element o f d j  is defined 
by (A.7) setting the leading xip equal to one, which is equivalent to the partial derivative of 

Pr(Yi = yhlxi, zi) w.r.t, o)ij , where rjij = exp(coij)/[  1 + ~-~./._.-11 exp(ooii)]. 
Each Emkj can be decomposed into a ( K  M - 1)N x 1 dimensional vector of  o n e s - -  

l (KM_l )N- -and  a vector emkj such that Emkj = emkj#1(gM_l)  N. The  ( ( K  M -  1 ) ( i -  1)+h) th  ele- 
ment of  emkj is defined by (A.8), which is equivalent to the partial derivative of  Pr(Yi = yhlx i ,  zi ) 

w.r.t. ~imkj, where Pimkj = exp(e imkj ) / [1  + ~ 5 ~ 1  exp(eimsj)] .  
Each Fmk can be decomposed into Fmk = fmk#Z~i, t tere, Z F is the Kronecker product of  

Zm and ( K  M - 1)N × 1 dimensional vector of  ones - - tha t  is, the design matrix for the conditional 
probabilit ies of the ruth item excluding IN with each row repeated ( K  M - 1) times. The ( ( K  M - 

1)(i - 1) + h)th element of fmk is defined by (A.9) setting the leading Zimp equal to one, which 
is equivalent to 

J ( OPr(Yi =yhlXi'zi))-(')Tn~kj " 

j = l  

J e Therefore, fmk = ~ j = l  mkj, m = 1 . . . .  , M, k = 1, . . . ,  K - 1, which are the exclusively 
linear combination of vectors emkj. 

The RLCA model (3) will be locally identifiable if Du = 0 ¢> u = 0. Since fmk = 
J 

~ j = l  emkj '¢n7, k, D u  can  b e  expressed as 

Du = ( X D u l ) # d l  + - . .  + ( X D u j _ l ) # d y _ l  

-~- ( I (KM_I)NVl l l )#e l l  1 -}'" . . .  -1- ( I (KM_I)NVM(K-1) j )#eM(K-1) j  

F 
-}- ( Z f W l l ) # f l l  -1- • • • @ (ZMWM(K-1) )# fM(K-1)  

J - 1  M K - 1  J 

j = l  m=l  k=l  j = l  

where u [Ulr , . .  ujr_l  , v111, vM(K-1)J, w~] , . .  T T . . . . . . .  . ,  ,arM(K_l) ] with Uj being a (P  + 

G z F ] ,  and Zmkj -- 1) × 1 vector; Vmkj a constant; and wink a L x 1 vector, Z m = [I(KM_I) N, 

[1)mkj ' T T Wink] . From Proposition 2, 3, and assumption (ii~), the d j ' s  (J  = 1 . . . . .  J - 1) and 
emkj'S ( j  = 1 . . . . .  J,  m = 1 . . . . .  M, k = 1, . . . ,  K - 1) are linearly independent. Du = 0 if  
and only if  (XDuj)  = 0 Vj and G (Z,, zmkj ) = 0 Vm, k,  j .  Moreover, since X D and Z~  are of  full 
column rank (assumption (iv')), 

Du = 0 ¢:> u j  = 0 'qj, Vmkj = 0 'gin, k, J, and Wink : 0 Vm, k <=> u = 0. 

Thus, the model is locally identifiable. 
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Appendix B: EM Estimation of Parameters and Variances 

M-step calculation 

From equation (12), the parameter space of ~b separates into (M + 1) subsets: fl = 
(/io . . . . .  / Ip)  with ~p = (tip1 . . . . .  t ip(:-1)),  P = 0 . . . . .  P;  and, for m = 1 . . . . .  M, 
tom = ("I/ml . . . . .  Tin J, Ollm . . . . .  OlLm ) with "~/mj : (Ymlj . . . . .  )/m(Km-1)j) and Oeqm = 
(Oeqml . . . . .  CZqm(K,,-1)), j = 1 . . . . .  J ,  q = 1 . . . . .  L. q~us, maximization of an EM algo- 
rithm can be implemented separately for each subset, saving substantial computing time. The 
M-step can be written as: Find 18, which maximizes 

N J 

Q/3 ([114)@)) = Z Z {Oij (4)(P)) [l°g rtj (xf/3)]}, 
i=1 j = l  

and find oJm, m = 1, . . . ,  M,which maximizes 

N J Km 
Q~o,, (oJm I~b (1:)) = ~ ~ ~.{Oij (+@))Yimk[lOg Pmkj (Tmj + Z~nam)]}, 

i=1 j = l  k=l  

where 

Oij ( ~ ( P ) )  = E(Sij  IYi = Yi, ~(P), xi, zi) 

T (P)- 1-[X~, pY~,k (y(P) + Zim Olm ) 

~ J  
l= l  /~Jl (X/T~ (fl)) 1 - [ f= l  1-I:~ll pYimk:mkl {,'Yml (p) -~- zimT Olt~(P).) 

is the posterior probability of class membership evaluated at 4)(p). The maximizing process 
is carried out using the one iteration Newton-Raphson method. The first and second deriva- 
tives used in Newton's  methods for deriving maximum parameter estimates of Qg ([114) (p)) and 

Qoom (OJm I t~ (p)) are as fo l lows:  

OQt~(~14)(p) ) N 

Oflpj i=1 

O2Qij([jl~b(p)) N 

O~pj O~ z i = 1 

OQo,,,(~I4a(P)) x 

O YmkJ ~ i=1 
= Z { 0 [ :  )[yimk -- Pimk/]}; 

OQo,,~(tomi~(:,)) N J 

-- {ZimqOij, [Yimk -- Pimkf ]}; Oo@~k - }--~" ~ (P) i=1 ff=l  

N 
(p) 

0 2 Qo,,, (~m 14 Cp)) = _ ~ { O i j :  (~j:FPimkj:[(~ks _ PimsU]}; 
Ogmkj/O}/msF i=1 

02 Q,o., (ojm i~(p) ) N J 
= -  { tmq imr ij Pimkj [ ks Pims/]}; OCeqmkOCerms ~ ~ Z Z 0(:i ) ~ -- 

i=1 j / = l  
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O2Qoom(~Oml~(p)) N 

O Ymkj /  O0~rms i = 1  

(p) 
= --  z.....J-){ZimrOij/ P i m k j : [ 3 k s  --  Pimsj']}, 

T where 0i7) = Oij(ff)(P)), tli j = t/j (x/T~), Pimkj = Pmk j (Tmj  -I-zimoem), 3jl = I ( j  = l), XiO = 1, 

and i = 1 . . . . .  N; m = 1 . . . . .  M ; k ,  s = 1 . . . . .  ( K i n - l ) ;  j ,  l = 1 . . . . .  J - l ;  j l ,  1 i =  1 . . . . .  J ;  
p , u = O ,  1 , . . . , P ; q , r  = l , . . . , L .  

Variance es t imat ion  

Let D~  and D~  be the gradient and Hessian operators with respect to 4~, and define 

I(4~; Y) = - O ~  log L(4~; Y) 

as the observed Fisher information matrix of the incomplete-data likelihood with respect to the 
elements 4~. For the complete-data likelihood L o  we let 

Ic(4~; Y, S) = - O ~  log Lc(4~; Y, S). 

Louis (1982) showed that 

I ( $ ;  Y) = Zc($ ;  Y) - Var{Sc($; Y, S)IY}, 

where Zc(~;  Y) = E{Ic(4~; Y, S)IY}I4,=$, Sc(,~,; Y, S) = D~  logLc(4~; Y, s)14,=,, and ~ is 

the MLE of 4~. 
Therefore, the observed information matrix can be computed in terms of the conditional 

moments of the first- and second-order partial derivatives of the complete-data log likelihood 
function introduced within the EM framework. The estimator for the variance-covariance matrix 
of the parameter estimates is the inverse of the observed information matrix, evaluated at the 

parameter estimates. It is easy to see that Zc(~;  Y) has the same formula as the second derivatives 

of Q(4~l~).  The elements of Var{Sc(~; Y, S)IY} can be shown as follows: 

~ o v { O l o g L c  OlogLc ] _  , N 
Ofipj  ~ u l  Y : ~ - ~ { X i p X i u g i j [ 3 j l  - -  0 i / ] } ;  

i = l  

~ { 0 1 o g L c  01ogLc ] N 
Cov , Y = ~_~([Yimk -- Pimkj/] [Yivs -- Pivsl/]Oij/[3j/I/ -- ()i//]}; 

8?'mkj / 8?'vsF i=1 

-Oaqm~ ' ~ Y = zimqzi~r ~_~ ~ _ ~ P i m k j @ i ~ s r d i j ' [ 3 j ' l ' -  Oil,] ; 
i = 1  j / = l  l / = l  

°° Cc J J - - -  , - -  Y = - Zimq[Yivs - Pivsl I] ~_~[Pimk/Oi / (3 jq~ - Oil')] ; 
O0~qmk OYvsll i=1 j/=l 

~ov O logLc O logLc Y = ~_~(xip[Yi ,s  - Pivsl/]Oij [@F - 0/F]}; 
O~p~ ' O×,~z, i=1 

Cov , Y = - ~ XipZivr ~_~ PivsFOij[@F -- OiF] , 
Ofipj OClrv s i=1 //=1 
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w h e r e  

 / lOgLc y} Cov/ lOgLc 0 Y  lOgLc 0 Y Y/ 
o.  ' o .  ' o .  I ~= ,1 , ,  

Oij = O i j ( $ ) ,  Pimkj = P m k j @ m j  + Z~m&m), 3 j l  = I ( j  = l),  xio = 1, 

a n d /  = 1 . . . . .  N ; m , v  = 1 . . . . .  M ; k , s  = 1 . . . . .  ( K m - 1 ) ;  j , l  = 1 . . . . .  J - 1 ;  j1,11 = 

1 , . . . , J ; p , u = O ,  1 , . . . , P ; q , r  = 1 , . . . , L .  
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