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Abstract—Computers installed with commercial/open-source software have been widely employed as organizational edge gateways

to provide policy-based network management. Such gateways include firewalls for access control, and bandwidth managers for

managing the narrow Internet access links. When managing the TCP traffic, pass-through TCP flows can introduce large buffer

requirements, large latency, frequent buffer overflows, and unfairness among flows competing for the same queue. So, how to allocate

the bandwidth for a TCP flow without the above drawbacks becomes an important issue. This study assesses and improves TCP rate

shaping algorithms to solve the above problems through self-developed implementations in Linux, testbed emulations, live Internet

measurements, computer simulations, modeling, and analysis. The widely deployed TCP Rate control (TCR) approach is found to be

more vulnerable to Internet packet losses and less compatible to some TCP sending operating systems. The proposed PostACK

approach can preserve TCR’s advantages while avoiding TCR’s drawbacks. PostACK emulates per-flow queuing, but relocates the

queuing of data to the queuing of ACKs in the reverse direction, hence minimizing the buffer requirement up to 96 percent. PostACK

also has 10 percent goodput improvement against TCR under lossy WAN environments. A further scalable design of PostACK can

scale up to 750Mbps while seamlessly cooperating with the link-sharing architecture. Experimental results can be reproduced through

our open sources: 1) tcp-masq: a modified Linux kernel, 2) wan-emu: a testbed for conducting switched LAN-to-WAN or WAN-to-LAN

experiments with RTT/loss/jitter emulations.

Index Terms—Bandwidth management, TCP, rate enforcement, window-sizing, ACK-pacing, scheduling, queuing, packet scheduler,

testbed.
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1 INTRODUCTION

POLICY-BASED networking is a plan of an organization to
achieve its resource-sharing objectives. Many policy-

based gateways have been installed at the LAN-WAN
interconnected edges to enforce their organizational poli-
cies. Such gateways include Firewall, Virtual Private Net-
work (VPN), Network Address Translation (NAT), Content
Filtering (CF), Intrusion Detection System (IDS), and
Bandwidth Management (BM). Nowadays, computers
(especially x86-compatible) installed with commercial or
open-source software such as Linux have been the most
widely used platform to provide high performance services
[1], [2]. From the bandwidth management aspect, since end-
to-end Internet QoS such as DiffServ [3] is still under
experiment, enterprises seek to at least manage their
inbound and outbound traffic on the expansive but narrow
Internet access links. Thus, their important, interactive or
mission-critical traffic such as voice over IP (VoIP),
e-business, and ERP (Enterprise Resource Planning) flows
are not blocked by less-important traffic such as FTP. A
policy rule usually consists of condition and action fields that
define specific actions for specific conditions. For band-
width policy rules, the condition field defines the packet-
matching criteria, such as a certain subnet or application, to
classify packets into their corresponding queues. Then, the

queued packets are scheduled according to the specified
action such as “at least/most 20kbps.” The urgent demand
for such gateways encourages many commercial or open-
source implementations.

An intuitive example: A 125kbps access link is partitioned

into a 90kbps VoIP class and a 35kbps FTP class. If there is no

voice call, FTP sessions can occupy the entire 125kbps link.

Whenever a 30kbps VoIP session starts, the bandwidth

manager allocates 30kbps for the VoIP class until the 90kbps

is used up by the three 30kbps voice calls. Administrators can

set the minimum bandwidth for each FTP flow to be 10kbps.

When the FTP class contains only 35kbps, the bandwidth

manager allocates about 11.6kbps for the first three

FTP sessions. Any newly initiated FTP sessions will be

blocked by the bandwidth manager since the minimum

bandwidth for each FTP session is 10kbps now. If a voice call

leaves, the FTP class can obtain another 30kbps and become a

65kbps class. So, a newly initiated FTP session is allowed to

join the FTP class. The four FTP sessions fairly share the

65kbps class and satisfy the administrative 10kbpsminimum

session bandwidth guarantee.

After quantitatively evaluating three kinds of policies

among eightmajor players [1] in themarket, we summarize a

general bandwidth management model in Section 1.1. The

objectives and contributions are then described in Section 1.2.

1.1 General Bandwidth Management Model

Most surveyed bandwidth management gateways [1] can

control both inbound and outbound traffic. For simplicity,

the following general model (Fig. 1) focuses on the control

of outbound TCP traffic. Inbound control of TCP traffic is
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discussed in Appendix A. Key terms used in this paper are

also defined in Fig. 1, where two types of policy rules can be

exercised:

1. Class-based bandwidth allocation: Most bandwidth
allocation policies are class-based. As shown in
Fig. 1, each such policy rule groups a set of flows
into a class by the per-class packet classifier. Each
class corresponds to a FIFO-based per-class data
queue (PCDQ). Data packets queued at PCDQ are
scheduled out to the WAN pipe by the packet
scheduler. A packet scheduler is often a must to
control all kinds of traffic including unresponsive
flows like UDP and ICMP. Many implementations
employed the Class Based Queuing (CBQ) [4], which
can efficiently utilize newly available bandwidth
among classes. However, multiple TCP flows com-
peting for the same queue can cause high buffer
requirement at the edge gateway, hence resulting in
large latency, frequent buffer overflows, and unfair-
ness among the competing TCP flows within the
same class. This is due to the mismatch between the
growing TCP window and the fixed bandwidth
delay product [5], [7] (BDP) of the flow. The
microscopic details will be analyzed in Section 2.4.

2. Guarantee bandwidth for each flow within a class:
Traditionally, RED [8] can be used to alleviate the
unfairness among competing TCP flows within a
class.However, RED is less effective to achieveperfect
fairness [1], [9], [10]. Nowadays, most vendors have

incorporated a per-flow ACK control add-on module
(Fig. 1) in the reverse direction to actively control the
behavior of each TCP sender. All evaluated commer-
cial implementations [1] fairly treat the flows within
the class, namely, no weighted fairness can be set
among the flows in the class. Since flows are
dynamically created, it is not practical to assign some
specific rate on the fly to some dynamically created
flow. In Fig. 1, if n TCP flows are now mixed in the
PCDQ of class c, ideally, the bandwidth for each
flow BWi obtains a share of BWc=n.

1.2 Objectives and Contributions

Guided by the above demand, our objectives and contribu-

tions lie in assessing and improving possible approaches,

namely, the TCP Rate Control, Per-Flow Queuing, and the

proposed PostACK, to solve the problem defined in this

section.

1.2.1 Problem Statement

How to keep TCP flow i at BWi (¼ BWc=n) with

optimizations to the performance metrics:

1. Buffer requirement at the edge gateway, which implies
cost and latency (Section 5.2.1).

2. Vulnerability of goodput under lossy environments (aver-
age goodput1 under packet losses (Section 5.2.2)).
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Fig. 1. General bandwidth management model for class-based outgoing TCP traffic. Terms: Si: TCP sender i;Di: TCP destination i;Wci : congestion

window maintained by Si;Wri : receiver advertised window announced by Di;Dwi
: round-trip WAN delay for flow i; PCDQc: per-class data queue for

class c, inside which mixes N flows; PFAQi: per-flow ACK queue for flow i, inside which queues the ACKs for flow i; BWc: bandwidth settings for

class c; BWi: bandwidth share for flow i (¼ BWc=N); MSSi: max segment size for flow i.

1. The reason is minor when applying RED at edge gateways because the
retransmissions only consume LAN bandwidth.



3. Fairness among flows in one class (flow isolation within
one class (Section 5.2.3)).

4. Robustness under Various TCP implementations (Sec-
tion 5.2.4).

1.2.2 Underlying Assumptions

As described in Section 1.1, a TCP-unaware packet
scheduler is always needed to deal with unresponsive
flows. Moreover, a qualified network administrator should
not mix TCP flows with TCP-unfriendly [11] (i.e., un-
responsive) flows in the same class (i.e., queue). Addition-
ally, the LAN bandwidth is big so that the delay and frame
loss rate in LAN are negligible compared to those in WAN.
Bulk data transfer is assumed during the analysis. Encryp-
tion/decryption beyond the IP layer are performed after/
before bandwidth management, respectively, so that the
gateway can differentiate the flows. Importantly, TCP flows
should be able to reach their target rates, namely, they are
bottlenecked by their configured rates at the edge gateway
rather than the receiver advertised window sizes
(Wri > Wwi

). For simplicity, all figures and discussions
assume that TCP receivers will instantly reply with an ACK
for each successful received data packet.

1.3 Organization of This Work

The following sections are organized as follows: The next
section reviews TCP sender behaviors and previous works
(Section 2). The PostACK approach is presented in Section 3.
Next, the microscopic behaviors and goodput analysis of
TCP over these schemes are modeled (Section 4.1). Subse-
quently, the effectiveness of the schemes is verified through
prototype experiments, simulations, and live experiments
(Section 5). Section 6 designs a scalable PostACK for gigabit
networks. Finally, conclusions are given in Section 7. Some
analytical works, proofs, and discussions are included in
the appendices.

2 BACKGROUND AND RELATED WORKS

This section briefly reviews the behaviors and throughput
of a TCP sender. Subsequently, we survey previous
approaches in solving the problem.

2.1 Brief Review of TCP Sender Behaviors

The design philosophy of TCP aims at reliably and
cooperatively [14] utilizing network resources. As for
reliability, TCP senders carefully avoid overflowing their
receivers’ buffer and retransmit lost packets which are not
acknowledged within a timeout. As for cooperation, TCP
senders infer network congestion by detecting packet loss
events and trade off their goodputs for network stability. To
satisfy both of them, each TCP sender keeps two window
values, receiver advertised window (RWND or Wr) and
congestion window (CWND or Wc), indicating its receiver’s
buffer capacity (flow control) and the current network
capacity (congestion control), respectively. So, each TCP
sender does not have unacknowledged data more than the
min(RWND, CWND). RWND is advertised by the receiver
in TCP ACK packets and ranges widely among operating
systems [7]. CWND, which is kept by the sender, increases
exponentially during the slow-start phase and linearly

during the congestion-avoidance phase to probe available
bandwidth until packet losses occur. Loss behavior differs
among TCP versions, mainly on how the CWND is
shrunken and raised or on how the lost packets are
accurately retransmitted . Fall and Floyd [15] give a good
overview and problems on Tahoe, Reno, NewReno, and
SACK versions. Vegas [16] and FACK [17] are also famous
for their elaborate designs. The four TCP congestion control
algorithms, slow start, congestion avoidance, fast retrans-
mit, and fast recovery are formally defined in [18] as basic
requirements of an Internet host. The TCP sender imple-
mentation in Linux kernel 2.2.17, which constitutes most of
our traffic source when evaluating related schemes, is a
joint implementation of NewReno, SACK, and FACK. The
following sections assume that readers are familiar with
TCP congestion control schemes.

2.2 Bandwidth of a TCP Flow

TCP throughput modeling has been extensively studied in
[12] and [13]. But, they are too complex to be used for
discussion in this paper. Without considering packet losses
for simplicity, the bandwidth (or rate) of a TCP flow can be
measured in various time scales as shown in (1). For a TCP
flow, choosing its RTT (Dwi

plus delays at PCDQc and
PFAQi) as the measuring time interval can establish a
relation with TCP windows as in (2). Excluding the packets
queued at the edge gateway (A in Fig. 1), (2) is transformed
into (3). Apparently, the bandwidth of a TCP flow can be
affected by either shrinking the window size (the TCP rate
control approach) or stretching the RTT (the PostACK and
per-flow queuing approaches).

BWi ¼
Bytes Sent

Time Interval
ð1Þ

¼ TCP window

RTT
¼ minðWci ;WriÞ �MSSi

Dwi
þ PCDQdelay

c þ PFAQdelay
i

ð2Þ

¼ Bytes in WAN

Round Trip WAN Delay
¼ Wwi

�MSSi

Dwi

: ð3Þ

As shown in Fig. 1, if the WAN pipe of flow i is full, each
bandwidth sample of flow i measured at the end of each
Dwi

will approximate BWi; otherwise, the flow is under-
utilizing its bandwidth share. Additionally, the more evenly
the packets are distributed across the Dwi

, the fewer the
fluctuations among the consecutive measured bandwidth
samples.

2.3 History of Existing Schemes

Several packet scheduling algorithms have been proposed
and formally analyzed by Stiliadis and Varma [19]. Floyd
and Jacobson [4] investigate the hierarchical link sharing
among bandwidth classes. Bennett and Zhang [20] further
propose a theoretical-proven link-sharing architecture that
can simultaneously support real-time traffic. These schemes
are TCP-unaware approaches.

Since a TCP sender is clocked by its feedback ACKs, most
TCP-awareworks tend to regulate theACKs toactively control
the TCP senders. The approaches are motivated by two
concepts: window-sizing and ACK-pacing. Window-sizing
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determines how much to send while ACK-pacing decides

when to send. Many works employ these concepts, but

only typical examples are outlined here.

2.3.1 Window-Sizing

TCP Vegas [16] employs a sender-based window-sizing

scheme that adapts its CWND to the BDP by a fine-grained

RTT measurement. Kalampoukas et al. [21] propose a

gateway-based window-sizing scheme that reduces the

buffer overflow at interconnected gateways by modifying

the RWND in TCP ACKs. Spring et al. [22] present a

receiver-based window-sizing approach that makes each

bulk-data transfer advertise a small RWND.

2.3.2 ACK-Pacing

Zhang et al. [23] suggest sender-based pacing to alleviate

the ACK-compression phenomenon due to cross traffic.

Narváez and Siu [24] propose a gateway-based scheme that

regulates ACKs to make the sender adapt to the ABR

explicit rate. Aggarwal et al. [25] then summarize sender-

based and receiver-based approaches.

2.3.3 Hybrid (Window-Sizing Plus ACK-Pacing)

Karandikar et al. [9] sponsored by Packeteer [26] propose a

edge-gateway approach, the TCP rate control (TCR, a

strange acronym named in [9]), that combines window-

sizing and ACK-pacing. While TCR is popular among many

commercial implementations [1], it remains only partially

studied. TCR is only compared with RED and ECN, which

are merely congestion control schemes without keeping

per-flow states as TCR does. Additionally, not a single loss

in the TCR performance study may hide its deficiencies

compared with per-flow queuing.2 Because better under-

standing of TCR is helpful in presenting the PostACK

algorithm, next we assess the TCR algorithm in detail.

2.4 Prior-Art ACK Control Approach: TCR

2.4.1 Algorithm Review

Fig. 2 displays the TCR [9] ACK control model that
exercises window-sizing and ACK-pacing. If Wwi

denotes
the number of packets in the WAN pipe for flow iwith BWi

(¼ BWc=n), then

Wwi
¼ BDPi

MSSi
¼ BWi �Dwi

MSSi
; ð4Þ

where the equation can be used as follows:

1. Window-sizing: Because, normally, a TCP sender Si

expands its Wci to speed up its rate, window-sizing
tries to slow it down by locking the TCP window
(¼ minðWri ;WciÞ) using the modified Wri . Window-
sizing periodically measures the Dwi

by observing
the sequence numbers and then rewrites the Wri in
each ACK with BDPi bytes (Wwi

packets). Thus,
flow i is expected to just fill up its WAN pipe
without overflowing excessive packets to the PCDQ.

2. ACK-pacing: To evenly spread Wwi
of packets across

the WAN pipe, the inter-ACK spacing time, �i, can

also be derived from (4) as �i ¼
Dwi

Wwi
¼ MSSi

BWi
. The

ACK-pacing module then clocks out ACKs of flow i

at intervals of MSSi

BWi
. Thus, the Wwi

packets from Si

are smoothly paced out and are most likely to be

evenly distributed across the measured Dwi
.

2.4.2 Microscopic Behaviors of TCR-Applied Flows

To develop an efficient ACK-pacing, TCR can be imple-
mented with a single timer for each class instead of for each
flow. The timer times out at intervals of MSSi

BWi
and releases

all n ACKs back to the n senders at a time. If window-sizing
is absent, the reaction of releasing an ACK to a sender
depends on the congestion control phase the sender is in:

1. TCP Senders in Slow-Start Phase: In the TCP slow-start
phase, CWND advances by one whenever an ACK
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Fig. 2. TCP rate control ACK control model for managing outgoing TCP traffic.

2. Goodput means effective throughput, which excludes the throughput
consumed by retransmissions.



acknowledges the receipt of a full-size data segment.
So, generally, every ACK released by the edge
gateway in this condition will trigger out two new
data packets into the corresponding PCDQ.

2. Full-CWND ACKed TCP Senders in Congestion-Avoid-
ance Phase: In the TCP congestion-avoidance phase,
CWND advances by one whenever an ACK ac-
knowledges the whole window (CWND) of data
packets. So, generally, each ACK will trigger out one
new data packet, but the last ACK of each CWND
round3 can trigger out two new data packets into the
corresponding PCDQ.

3. TCP Senders Exited from Fast Recovery Phase:
Acknowledgments of successfully retransmitted
packets may bring the sender out of the fast recovery
phase, causing the Wc to reset to ssthresh
(¼ 1

2minðWc;WrÞ, whereWc herein means the largest
Wc before congestion occurs) . The reset action can
trigger a burst of packets into the PCDQ.

Because the edge gateway cannot accurately identify

which sender is in which phase, simultaneous releasing of

n ACKs to the n flows of class c may result in unfairness.

Some flows may respond to multiple packets while some

flows may only respond to one. By window-sizing, TCR can

enforce that each ACK will respond to exactly one packet,

no matter in which phase the TCP sender is, because the

sending window is then bounded by the Wr instead of Wc.

2.4.3 Expected Side Effects of TCR Approach

Measuring round-trip WAN delay and modifying the TCP

ACK header are expected to have at least three side effects:

1. Halved-BDP Side Effect: Lower Throughput: Since TCR
shrinks the RWND of flow i to its WAN pipe size
(BDPi bytes or Wwi

packets, which is smaller than
WriÞ, a single loss can trigger the sender to halve its
window down to 1

2Wwi
(which is smaller than 1

2Wri )
rather than to 1

2minðWci ;WriÞ packets. Thus, the
performance degrades even under slight WAN
packet losses.

2. Tiny-Window Side Effect: Less Compatibility and even
Lower Throughput: For flows with small BDP (either
BWi or Dwi

is too small), window-sizing may shrink
their RWNDs to the situation that no more than
three unacknowledged data packets are in the WAN
pipe. As such, any single loss resorts to a retransmis-
sion timeout (RTO) rather than using fast retransmit
(also stated in RFC 3042 [6]). Some classical
Berkeley-derived operating systems employ a
coarse-grained timer (500ms), which can cause a
1-second idle to retransmit the packet [5]. This
significantly degrades the TCR-applied flows. Many
enterprises installing heterogeneous OSs may en-
counter such problems. A recent benchmark [28]
among TCR-employed vendors also demonstrates
this phenomenon.

3. Inaccurate Dwi
Estimation Side Effect: Less Fairness: In

[9], the WAN delay is assumed to be a constant. So,
the TCR approach can effectively adjust the window
size as described. However, the Dwi

of a flow i can
vary dramatically. An increase of measured Dwi

indicates an increase in queuing rather than an
increase in end-to-end distance. Then, the mislead-
ing Dwi

causes the TCR to raise the modified Wri ,
thereby causes a burst of traffic into its correspond-
ing PCDQ that results in unfairness among flows
within the class. Our TCR implementation uses the
exponential weighted moving average (EWMA) as
in thr TCP RTT measurement to smooth the burst.

3 ALTERNATIVE ACK CONTROL APPROACH:
POSTACK

PostACK is designed to be more intelligent both in retaining
previous TCR benefits and eliminating its deficiencies.
Without measuring the WAN delay and shrinking the RWND in
TCP ACKs, PostACK can avoid the side effects of TCR.

3.1 Motivation: Delaying the ACKs instead of
Data Packets

As assumed in Section 1.2, ideally, each flow should obtain
a bandwidth share of BWi ¼ BWc=n. Recall that, in Fig. 1,
the RTT consists of Dwi

, the queuing delays at PCDQc and
PFAQi, and the neligible round-trip LAN delay. Generally
the delay at PFAQi approaches zero while the forward-
data-packet queuing delay for TCP is large. Imagine that a
Per-Flow Queuing (PFQ) is placed within the class c to
enforce that each BWi ¼ BWc=n (i 2 c). Thus, the number of
data packets of flow i queued before the packet scheduler in
Fig. 1, PCDQqlen

i , is minðWci ;WriÞ � ðBDPi=MSSiÞ, namely,
all unacknowledged packets excluding the packets in the
WAN pipe. To achieve BWi, each queued data packet
should wait for a period of ðPCDQqlen

i �MSSiÞ=BWi.
Imagine that the packet scheduler in the forward direction
was absent. By delaying each ACK for the same interval
(ðPCDQqlen

i �MSSiÞ=BWi), the bandwidth of flow i will
also approach its target bandwidth BWi. The effects of
delaying the data packets in the forward direction by the
packet scheduler is identical to delaying the ACKs in the
reverse direction since a TCP sender only measures RTT,
which consists of bidirectional delays. Gradually increasing
the delay of ACKs would not cause Retransmission Time-
Outs (RTO) because a TCP sender can adapt the RTO to the
newly measured RTTs. Without considering any imple-
mentation details, the PostACK algorithm is shown in Fig. 3.
The TCP window (minðWci ;WriÞ) can be estimated by
watching the data stream and the ACK stream.

In summary, the target bandwidth, BWi, which keeps
only BDPi=MSSi packets in the WAN pipe, can be
achieved through queuing excessive packets. Either queu-
ing the data packets or the ACKs have the same effects on
rate shaping. While queuing data packets has many
drawbacks (Section 1), queuing the ACKs has many
advantages:

1. Low buffer requirement: Buffer requirement for TCP at

edge gateways can be minimized up to 96 percent
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3. Per-flow queuing (PFQ) assigns each TCP flow to a queue to isolate the
bandwidth share. The scheduling algorithm can be any, such as weighted
fair queuing [27] (WFQ). In this paper, PFQ results are obtained by simply
applying a token bucket shaper to each flow.



(¼ 1;500�64
1;500 ) since an ACK takes only 64 bytes, while a

data packet takes roughly 1,500 bytes if the pathMTU

so permits. Zero buffer is feasible because ACKs
can be artificially generated by the edge gateway.

However, it improves little and introduces addi-

tional overheads to record TCP timestamp/SACK

options. So, our implementation chooses to merely

queue the ACKs.
2. Low data packet latency: Low buffer requirement

implies small data packet latency at the gateway.
So, a newly created flow can establish the connection
faster because the shared PCDQc and the flow’s
initial PFAQi are empty. Thus, users may obtain a
faster response when establishing a connection.

3. Fairness among Flows within a Class: Each flow in
class c can be enforced to its target bandwidth BWi

(¼ BWc=n).
4. Higher Goodputs than TCR-applied Flows: Without

measuring the Dwi
and shrinking the Wr, Post-

ACK does not have the Halved-BDP side effect
(Section 2.4.3).

5. More Robust under Various TCP Implementations:Same
as above.

While queuing the ACKs may sound good, it is not practical

due to the following two challenges:

1. Computational Inefficiency: The algorithm in Fig. 3 may
not be computationally efficient because it requires
accurately delaying each ACK for some time. The
most straightforward method is to employ a timer for
each TCP flow to shape its ACKs. If there areN flows
passing through the edge gateway, the kernel timers
require per-packet OðlogNÞ complexity.

2. Bottlenecked by PCDQc: Since a packet scheduler is
assumed to be always present at the forward direction
to manage non-TCP traffic, PCDQc and PFAQi are
two shaping points of flow i. Because the n flows
sharing the PCDQc should obtain BWc=n, packets of
flow i will be bottlenecked by its PCDQc first rather
than by its PFAQi. Obviously, the PCDQc will grow
upbeforePFAQi canqueue theACKssincePCDQc is
the first shaping point of flow i.

The above challenges question thedeployment of the basic

PostACK algorithm in Fig. 3. However, an efficient and

elegant PostACK does exist. To cope with the above

challenges, the implementation should avoid having per-
packet OðlogNÞ complexity or being bottlenecked by the
PCDQ. Moreover, it should neither require the information
of CWND nor measure the RTT of a flow to estimate its BDP.

3.2 Efficient PostACK Implementation

3.2.1 Motivations to Overcome the Challenges

Although the concept of PostACK is completely different
from that of TCR, PostACK can also be efficiently
implemented as an on-off variant of ACK-pacing. Namel,y
it can also employ a per-class timer and has Oð1Þ per-packet
processing time complexity, which is as efficient as TCR.
Recall that the ACK-pacing interval (�i ¼ MSSi

BWi
) can be

derived without estimating the RTT. So, PostACK imple-
mented as an on-off variant of ACK-pacing does not need to
measure the WAN delay.

To overcome the second challenge, we first recall that
TCR achieves the fairness among the n flows within the
class c by using a per-class timer to simultaneously release n
ACKs to the n TCP senders. Window-sizing forces each
ACK to trigger out only one data packet such that n senders
are expected to send n data packets into the PCDQc. Since
PostACK do not modify the Wr, when using ACK-pacing,
among the n ACKs released to the n TCP senders on an
ACK-pacing timeout of class c, slow-start TCP sender i 2 c
will be triggered out two data packets while congestion-
avoidance TCP sender j 2 c may be triggered out one or
two data packets, as discussed in Section 2.4.2. Thus, flow i
and j may not get the same share of bandwidth during this
round of ACK-pacing (the interval between two consecutive
ACK-pacing timeouts) because, during this time interval,
only n data packets in PCDQc can be scheduled out. To
retain fairness among flows, whenever seeing k (k > 1) data
packets of flow i entering the edge gateway after releasing
an ACK of flow i, PostACK stops the pacing of flow i’s ACK
for the next k� 1 times. During this silent period, flow i’s
feedback ACKs still come in from the WAN pipe and get
queued, resulting in the delaying of ACKs. Intelligent
stopping and resuming ACK-pacing of flow i 2 class c
guarantee that BWi ¼ BWc=n.

3.2.2 Efficient Implementation: Relocating the

Queuing Delay

To determine the number of ACK-pacing timeouts to skip
for flow i (the k� 1 in the above example), Per-Flow
Accounting (i:out in Fig. 4 and PFA in Fig. 5) of additionally
enqueued packets is introduced. Whenever PFA finds
additionally enqueued packets of flow i, QueueRelocator
(line 03 in Fig. 4 and QR in Fig. 5) quench the pacing of flow
i’s ACK (PFAQi in Fig. 5) to relocate the queuing at
PCDQc to the PFAQi. Namely, when the first shaping
point (PCDQc) discovers that flow i is over its share,
instead of queuing data packets at the first shaping point,
the PostACK queues additional packets in PFAQi as ACKs
by temporarily quenching the pacing of flow i’s ACKs. As
implied in Fig. 4, i:out is always nonnegative because a
sender always emits a packet into the PCDQc first (i.e.,
i:out ¼ i:outþ 1 in Fig. 4) before its corresponding ACK is
released (i.e., i:out ¼ i:out� 1 in Fig. 4). Similar to TCR,
generally, PostACK expects one data packet (i.e.,
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i:out ¼ i:outþ 1) after releasing an ACK of flow i (i.e.,
i:out ¼ i:out� 1). However, if two data packets enter
PCDQi (i.e., i:out ¼ i:outþ 1 for two times) after releasing
an ACK, one additionally enqueued data packet (i:out > 1)
triggers the QR to stop the next ACK-pacing of flow i.

4 MODELING AND ANALYSIS OF ACK CONTROL

SCHEMES

This section analyzes the microscopic behaviors of TCR/
PostACK-applied TCP flows. A packet-level model, time
series snapshot (TSS) model is presented to model the
CWND evolution. This facilitates the modeling of TCP
goodput (i.e., effective throughput) and buffer requirement
at the edge gateway.

4.1 Time-Series Snapshots Model

4.1.1 Description of Time Series Snapshots (TSS)

Model

The behaviors of a TCP flow i bounded by bandwidth BWi

are modeled in a queuing model (Fig. 6a). The model
indicates the packets ready to be sent by the sender, queued
at the edge gateway, and sent by the edge. Fig. 6b displays a

sample snapshot of the model taken at the end of a Dwi

(assumed to be a constant). Each tiny diamond stands for a
packet, with the bounding rectangle specifying the packet
size in the vertical axis and the time at which the packet is
sent by the edge gateway within that Dwi

in the horizon
axis. Each diamond is also accompanied by a number
indicating its sequence within its CWND round (defined in
Section 2.4.2). Packets one to four can be scheduled out
within the Dwi

and are evenly distributed across the Dwi
if

the scheduler clocks out packets using a fine granularity.
Packets five to eight are not allowed to be forwarded within
the Dwi

and, thus, are queued at the edge; packets with
numbers above eight are queued by the sender if the
window size (¼ minðWci ;WriÞ) is eight (Wci ¼ 11;Wri ¼ 8).
Queued packets (i.e., numbered 5 to 11) are aligned to the
right of the Dwi

.
The time series of snapshots (TSS) model (Fig. 6c) is

comprised of consecutive snapshots. TSS is a packet-level
model analogous to the model in [12], but contains extra
details about each packet, such as the time each packet is
sent within an Dwi

, as well as its location (at sender, edge
gateway, or WAN pipe). Packets with the same shape
belong to the same CWND round, as shown in Fig. 6b. Since
bulk data transfers are assumed herein, the packet size
should generally be MSS. Once packets with the same shape
(i.e., the same CWND round) are completely scheduled out
and the last of their corresponding ACKs returns, the
CWND is advanced with a full-size packet. If Wci grows
beyond Wwi

, packets with the same shape cannot be
completely scheduled out during a single Dwi

and, thus,
excessive packets are overflowing to the edge gateway for
sending in the next Dwi

. Packets queued at the edge in
previous Dwi

s are darkened.

4.1.2 Behaviors of PostACK-Applied TCP Flows

Because PostACK emulates the queuing delay of per-flow
queuing (PFQ) in the reverse ACK direction, the PostACK-
applied TCP source behaviors are essentially the same with
PFQ. In the congestion-avoidance phase, PostACK/PFQ-
applied TCP source i raises its window linearly until Wwi

is
reached. After that, a curved increasing phase slows down
the evolution of Wci , as modeled in Fig. 6c. Continuous
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Fig. 4. Efficient PostAck implementation: on-off variant of ACK-pacing.

Fig. 5. Efficient PostACK implementation for managing outgoing TCP traffic. Terms: QR: queue relocator; PFA: per-flow accounting.



increasing of Wci but bounded by a fixed Wwi
results in the

change from linear phase into curved phase. Between Wwi

and minðWci ;WriÞ is exactly what the gateway buffers for
the flow. Thus, a large advertised Wri [7] or a small Wwi

result in high buffer requirement at the gateway, i.e.,
minðWci ;WriÞ �Wwi

packets. The edge gateway may en-
counter severe buffer overflows under such conditions if
the gateway ignore the above phenomenon. Formally
speaking, (2) indicates that, when Wci grows beyond Wwi

,
PFQ stretches the PCDQdelay

i by queuing the data packets.
PostACK minimizes the buffer requirement by relocating
the queuing delay of PCDQdelay

i to the reverse ACKs. Zero
buffer is also feasible (Section 3.2).

4.1.3 Behaviors of TCR-Applied TCP Flows

In the TSS model (Fig. 6c), window-sizing resizes the Wri to
W 0

ri
(¼ Wwi

) and thus reduces the buffer requirement and
latency at the edge. According to (2), as the window grows,
TCR shrinks the Wri to Wwi

such that PCDQdelay
i and

PFAQdelay
i both approximate zero.

4.2 Modeling the Throughput under Loss

The closed-form throughput for Per-Flow Queuing (PFQ)
and TCR is derived here using the TSS model. Since
PostACK does not shrink the window size, throughput of a
PostACK-applied flow approximates that of a PFQ-applied
one. Thus, only PFQ and TCR are considered. TCP
modeling has received considerable attention, but the
assumptions made differ significantly. Altman et al. [13]
present a fairly good survey of the evolution and limitations
of each model. Unfortunately, none of them address the
performance of TCP under rate shaping gateways, though
numerous bandwidth management gateways have been
installed. Due to the limitation of space, the modeling and
its verification using NS-2 simulations are briefly presented
in Appendix C. The results confirm that the modeling
closely approximates the simulations.

5 IMPLEMENTATIONS AND EXPERIMENTAL RESULTS

We have implemented PostACK and TCR into Linux

kernel 2.2.17, together with a practical emulation testbed.

The per-flow queuing is achieved by assigning a token

bucket policer (available in Linux kernel 2.2.17) to each

TCP flow. We hereby describe the implementations and

experimental results.

5.1 Tcp-masq and Wan-emu Open-Source
Packages

Fig. 7 illustrates the protocol-stack view and bird’s-eye view

of the Tcp-masq and Wan-emu. All mechanisms are placed

in kernel-space and configured by user-space tools. Mem-

ory disks and null devices (/dev/null) are used to avoid

disk I/O overhead when logging/sniffing/storing traffic.

Detailed descriptions about the tcp-masq and wan-emu

testbed are self-contained in Fig. 7, Appendix D, and [28].

Because we focus on multiple TCP flows sharing a queue as

assumed, the traffic load is always 100 percent due to TCP’s

aggressiveness.

5.2 Numerical Results

5.2.1 Buffer Requirement at the Edge Gateway

This section demonstrates the same effectiveness of Post-

ACK and TCR in saving the buffer space. Fig. 8 quantifies

the goodput degradation due to buffer overflow at the edge

gateway. For a 500KB/s class, pure CBQ requires a huge

buffer (35 packets at 25 flows) to achieve the same goodput

(480kbps) as TCR and PostACK. The highest goodput is

480kbps because of TCP/IP header overheads. For Post-

ACK and TCR, only a reasonable buffer (< 10 packets) is

needed. Buffer overflow can cause high retransmission ratio

(up to 22 percent when 25 flows compete for a 1-packet

FIFO), which consumes a considerable amount of

LAN bandwidth.
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Fig. 6. Microscopic view of the TSS model. (a) Queuing model. (b) Snapshot at the end of a DWi. (c) Time series of snapshots (TSS) model.



5.2.2 Loss Behaviors (Sensitivity to Internet Loss)

Fig. 9 compares the goodput degradation due to packet
losses in WAN. Under normal WAN loss (below 4 percent
random loss), PostACK obviously outperforms TCR, but
retains the same degree of TCP-friendliness with PFQ. A
microscopic view of the bandwidth fluctuations in 0.5 per-
cent random WAN loss (Fig. 9a, Fig. 9b, Fig. 9c) proves the
benefit of PostACK against TCR. Fig. 9d shows the average
goodput over 10-30 seconds. PostACK can have 10 percent
improvement against TCR under 1 percent packet loss rate.
Mathematical modeling for the improvement is analyzed in
Appendix C. Under heavily congested conditions (beyond
4 percent random loss), no significant difference can be
found among the three. This is because the throughput is
not bottlenecked by the configured rate at the edge gateway
anymore. The CWND becomes too small to achieve its
target rate.

5.2.3 Fairness among flows in One Class

(Flow Isolation)

This section investigates the effectiveness of ACK control
modules in resolving the unfairness among TCP flows with
heterogeneous WAN delays. Test configurations are de-
scribed in Fig. 10. Fig. 10a demonstrates the classical
problem: Throughput of a TCP flow is inversely propor-
tional to its RTT. However, when the three flows share a
200KB/s class in a FIFO PCDQ (Fig. 10b), the unfairness
among the 10ms/50ms/100ms flows is alleviated. This is
because the RTT measured by flow i (RTTi) equals
Dwi

þ
P

i PCDQdelay
i . The shared PCDQ’s queuing delay,P

i PCDQdelay
i , dominates the RTTi so that the flows are

almost fair. Both TCR (Fig. 10c) and PostACK (Fig. 10d) can
further eliminate the little unfairness. Note that these
figures are measured at TCP sender side, so each peak
corresponds to the phase of pumping traffic to the edge
gateway. The peaks in PostACK are relatively lower than
those in CBQ since, whenever a PostACK-applied flow gets
queued at the PCDQ, the QR in PostACK skip the flow’s
ACK-pacing. So, the peak diminishes immediately.

5.2.4 Robustness under Various TCP Implementations

This section tests the robustness of TCR and PostACK
under major TCP implementations. The test methodology is
self-contained in Fig. 11. In Fig. 11a, Fig. 11b, the bandwidth
policy constrains the unacknowledged packets in WAN to
one (Ww ¼ 1). The Tiny-Window Side Effect of TCR occurs in
Fig. 11a. Linux takes the finest timer on measuring the RTT
and the RTO fires faster than other systems. So, Linux
sender has the best performance. Solaris keeps a coarse-
grained timer and performs badly. Under the condition that
five unacknowledged packets (Ww ¼ 5) can pipeline in the
WAN pipe (Fig. 11c, Fig. 11d), goodputs of the TCP flow
under Window 2000 or Solaris are still slightly lower than
the others. In a recent benchmark, TCR employed by
PacketShaper also reveals this phenomenon [1]. In contrast,
PostACK (Fig. 11b, Fig. 11d) can keep the target rate
regardless of TCP implementations.

5.2.5 Live WAN Experiments

So far, the results are obtained from the Tcp-masq over the
Wan-emu testbed. This section tries to seek empirical
validation from live WAN experiments between our site
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Fig. 7. Protocol-stack and bird’s-eye views of Tcp-masq and Wan-emu. Description: The testbed topology emulates the well-konwn single bottleneck

(or “dumbbell”) emulation scenario.



and UCLA. The focus is on how a single TCR/PostACK-
applied flow pumping traffic across the Pacific is degraded
by the lossy WAN. The test parameters are contained in
Fig. 12. The results (Fig. 12a) confirm that throughput of
TCR-applied flows suffers even under slight Internet losses.
Fig. 12b displays the rate fluctuations of one data set. The
PostACK scheme has the smallest degree of rate fluctuation.

5.2.6 Scalability

The primary overhead in PostACK/TCR is ACK-Pacing,
which uses a kernel timer for each class to pace out ACKs.
Since TCR in Packeteer’s PacketShaper could support 20,000
flows [9] in 1999 (it is now upgraded to at least P-III
600MHz), the kernel timer scales well in modern compu-
ters. In fact, the overhead of the per-class timer does not
increase as the number of flows, n, sharing the class
increases. When n increases, the target bandwidth of flow i,
BWi (¼ BWi

n ), decreases such that the ACK-pacing interval
becomes larger, causing the timer to be even less busy.
Therefore, scalability depends mostly on the bandwidth of
the class rather than the number of flows sharing the same
class. For PostACK, the stopping/resuming operations in
Fig. 4 do not introduce any new processing overhead, but
only skip the flows that send more than expected.

Note that per-flow bandwidth management approaches
such as TCR and PostACK should only be deployed at

enterprise-side edges only. The access link speed is often
too slow as some commercial TCR implementations are
only equipped with a Pentium 133 MHz CPU [1]. However,
some vendors also deploy their commercial TCR imple-
mentations for ISP edges. Actually, this may not be practical
and could be only for marketing because 1) the ISP should
only control the bandwidth among the subscribers rather
than the bandwidth of TCP flows which belongs to
organizational policies; 2) VPN tunnels using IPsec prevail
so that everything beyond the IP header is encrypted by the
enterprise and cannot be read/write by the ISP. For
deployment at enterprise edge gateways, current PostACK
and TCR scale well and are very practical solutions.
However, the next section designs a scalable PostACK to
overcome several challenges of PostACK and TCR.

6 SCALABLE IMPLEMENTATION OF POSTACK

The previous designs of PostACK/TCR require a timer for
each bandwidth class. Maintaining multiple timers within a
kernel system introduces overheads and side-effects. This
section presents a zero-timer Oð1Þ PostACK with per-flow
queuing that can eliminate the following drawbacks of
PostACK:

1. Only optimized for TCP traffic: The above PostACK/
TCR achieves the goal by regulating the ACKs. For
flows without ACKs such as UDP and ICMP,
PostACK and TCR are not usable.

2. Nonscalable to gigabit networks: When allocating a
large bandwidth from a big WAN pipe, the timer
can be too busy to pace out ACKs. Typically, modern
operating systems use 1-10ms as one tick. For the
most common largest packet size (1,500 bytes), such
timer granularity can only achieve at most 1,500*8/
0.001 bps. Though PostACK/TCR can be designed to
pace out more ACKs at a time, the solution may
degrade their fine-grained fairness.

3. Inefficient bandwidth borrowing: When sharing newly
available bandwidth among classes within a link
(interclass bandwidth borrowing) or among flows
within a class (intraclass bandwidth borrowing), the
timers to release ACKs should be adjusted according
to dynamically borrow bandwidth from nonactive
classes or flows, respectively. Otherwise, inefficient
bandwidth borrowing will waste the newly available
bandwidth.

Per-flowqueuing (PFQ)within eachbandwidth class is the
most general approach to overcome the first drawback.
However, pure PFQ still queues a large number of TCP
packets. So, we apply the PostACK to each per-flow queue to
minimize the buffer requirement. The PFQ can be simply
implemented using the Oð1Þ deficit round robin (DRR) with
equal quantum size for each queue to achieve the assumption
of fairness among flows within a class (Section 1.2). Three
design strategies to overcome the other drawbacks are:

1. Round-robin within a class to achieve intraclass band-
width borrowing: Without having to detect if any flow
joins/leaves the bandwidth class and then adjusts
the ACK-pacing timer accordingly, round-robin
servicing each per-flow queue can seamlessly dis-
tribute bandwidth among active flows.
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Fig. 8. Buffer requirement of a 500KB/s class: The testbed is configured

as WAN delay = 50ms, class bandwidth = 500KB/s, and default RWND

= 32KB. (a) Average goodput of the class. (b) Retransmission ratio of

the class.



2. Keeping CBQ backlogged whenever possible to achieve
interclass bandwidth borrowing: Only when the band-
width class c’s PCDQ has packets can the class c
compete for the extra newly available bandwidth.

3. Everything clocked by PCDQ_Dequeue to scale: Without
employing extra timers, PostACK can scale with the
link-sharing systems (e.g., CBQ).

Fig. 13 illustrates our 2-stage integration: 1) adding PFQ
to the CBQ; 2) adding PostACK to the PFQ. The evolutions
of the data path are self-contained in Fig. 13. Fig. 14
describes the algorithm of the above integration.

When the administrator sets a new policy to enforce per-
flow bandwidth guarantee (Seciton 1.1.2) for each TCP flow
in class c (Fig. 13), the PFQ_PCDQ_Enqueue(m,c) (Step 2.1
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Fig. 9. Goodput degradation under various WAN loss rates. Configuration: A flow bottlenecked by a 200KB/s class runs under various random

packet loss rates set by the WAN emulator. (a) Goodput under per-flow queuing. (b) Goodput under TCR. (c) Goodput under PostACK. (d) Average

goodput.

Fig. 10. Fairness among flows in 200kB/s class. Configuration: Three paths are configured as different WAN delays (10ms, 50ms, and 150ms) in

Wan-emu. In (a) each flow sends packets at its own will; in (b), (c), (d) a 200KB/s class contains the three flows ((b) CBQ, (c) CBQ+TCR, (d)

CBQ+PostACK). These figures are measured at the TCP sender.



in Fig. 13) hooks before the PCDQ_Enqueue(m,c) to decide
whether to enqueue packetm into c’s PCDQorm’s PFQ. Step
2.1 ensures a backlogged PCDQ to compete for any newly
available bandwidth released from other link-sharing (e.g.,
CBQ) classes. Subsequently, any PCDQ_Dequeue(c) kicks
out one packet, but then immediately fetches another packet
from the next DRR-selected PFQ into its PCDQ. So far, the
PFQ can provide per-flow guarantee. In order to further
minimize PFQ’s buffer requirement, PostACK in Step 2.4
further checks the DRR-selected PFQ against a table to
relocate the queuing delay: 1) If the queue length of the DRR-
selected PFQ is becoming large (qlen > 1), PostACK does not
release the flow’s ACK to queue more ACKs in the reverse
direction; 2) if qlen ¼¼ 1, PostACK simultaneously releases
the flow’s data packet andACK; 3) if qlen ¼¼ 0 (such aswhen
at the end of a transfer), PostACK releases its ACK.

The numerical results show that: 1) The scalable
PostACK with PFQ effectively minimizes the buffer

requirement as in previous PostACK results (Section 5.2).
We do not show the results again because they are too
similar. 2) PostACK integrated with CBQ in ALTQ 3.1 on
NetBSD 1.5.2 equipped with Gigabit Ethernet cards can
scale with the link-sharing mechanism up to 750Mbps.

7 CONCLUSIONS

This study evaluates possible TCP rate shaping approaches,
including the TCP Rate control (TCR), the proposed
PostACK, and the Per-Flow Queuing (PFQ) approaches, to
shape TCP traffic at the organizational edge gateways.
Specifically, this study demonstrates the throughput vul-
nerability (a degradation of 10 percent shown in
Section 2.4.3) and incompatibility (Solaris’ poor RTO) of
TCR, which exercises window-sizing and ACK-pacing
techniques. Window-sizing is especially widespread among
vendors [1], but with only partially studied. An alternative
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Fig. 11. Robustness under various TCP sender implementations: TCR versus PostACK. Testbed Configurations: round-trip WAN delay = 50ms,

MSS = 1,500 bytes. In (a), (b), periodic drop rate in WAN = 1/40, class bandwidth = 10KB/s, and, thus,Ww < 4; in (c), (d), periodic drop rate = 1/100,

class bandwidth = 100KB/s, and, thus,Ww > 4. Linux 2.2.17, FreeBSD 4.0, Solaris 8, and Windows 2000 are tested. (a) TCR: Ww = 1. (b) Post ACK:

Ww = 1. (c) TCR: Ww = 5. (d) PostACK: Ww = 5.

Fig. 12. Out site-to-UCLA live experiments. Configuration: The live experiments were conducted seven times. Each time a 100KB/s TCP flow is

separately run over each scheme for 60 seconds. Data from 10 to 50 seconds is analyzed. The loss rate ranges from 0.002 to 0.007, with

corresponding WAN delays ranging from 102 ms to 168 ms. (a) Average goodput. (b) A snapshot of bandwidth.



robust and simple approach, PostACK, is hereby proposed

(Section 3) to combine the virtues of TCR (good fairness,

low buffer/cost/latency) and PFQ (better performance

under loss) without the drawbacks of TCR. Also, the

throughput and buffer requirement of each scheme are

modeled through the TSS model (Section 4.1). A further

scalable design of PostACK can scale up to 750Mbps while

seamlessly cooperating with the link-sharing architecture.

All numerical results can be reproduced through our open

sources [28]: 1) Tcp-masq: a modified Linux kernel that

implements TCR and PostACK; 2) Wan-emu: a practical

testbed for conducting LAN-to-WAN experiments with

delay/jitter/loss emulations (Appendix D). Notice that

PostACK/TCR is not limited to only applying on CBQ,

but should also apply on any queuing-based link-sharing

mechanisms. However, this study customizes PostACK/

TCR to work for CBQ because CBQ is the most popular

link-sharing mechanism.

Table 1 summarizes the pros and cons among them.
Notice that, under WAN, without any loss, PostACK can

also achieve perfect fairness, as PFQ and TCR can, if the

measuring time scale lasts for several RTTs. But, if we

measure the bandwidth with a very fine-grained time scale,
PostACK’s fairness is slightly degraded. However, in lossy

WAN environments, several found side-effects of TCR

question its perfect fairness. Honestly speaking, ACK
control has always been a cool hack, but not a deep

solution. This study is perhaps most interesting as a big

picture of how much you can shape TCP traffic transpar-

ently, especially in lossy WAN environments. Hence, the
comparison sometimes shows trade offs among the

schemes. In lossy environments, TCR does not always

work perfectly, both in their commercial implementation [1]
and our Tcp-masq implementation. PostACK can be an

alternative.
Table 2 compares the implementation complexities

among the three. Note that PFQ cannot be Oð1Þ when using
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Fig. 13. Modularized integration of scalable PostACK with per-flow queuing into existing link-sharing architectures. (a) Original data path: Packets

pass through Steps 1, 2, 3, 4, and 5 (e.g., Linus Kernel, ALTQ in BSD kernels). (2) PFQ data path: Packets folow Steps 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4,

and 5. Step 2.4 is triggered by CBQ’s PCDQ_Dequeue call and selects the next packet by the Oð1Þ deficit round-robin (DRR). (3) PostACK with PFQ

data path: Step 2.4 further checks the state of the selected packets against the table to judge whether to relocate the queuing delay or not.

Fig. 14. Scalable PostACK with PFQ Algorithm.



a fine-grained packet scheduler such as WFQ. They all
require OðNÞ space, where N denotes the number of TCP
flows passing through.

APPENDIX A

INBOUND TCP TRAFFIC CONTROL

Inbound traffic control, though important, is less effective
since traffic flows have already traversed the WAN access link
and consumed the link bandwidth before the edge gateway can
control them. With queuing at the inbound direction, traffic
can be shaped at its configured rate. However, since the
traffic has arrived and consumed the WAN link bandwidth,
shaping the traffic is less meaningful. TCR or PostACK can
achieve inbound TCP traffic control by simply reversing
their modules. However, they are also less effective because
the evenly clocked-out ACKs have to traverse the dynamics
in the Internet to trigger new data packets coming back.
Their effectiveness still requires further study.

APPENDIX B

MODELING THE WINDOW EVOLUTION IN THE

TSS MODEL

the TSS model (Fig. 6c) facilitates the modeling of the
CWND evolution. This can further analyze the per-flow
throughput and buffer requirement of each scheme at the
edge gateway. The curve in the TSS can be modeled as
follows: Given the current CWND as w (w � Ww;
w ¼ 1; 2 . . . ), the number of consecutive Dwi

without packet
loss as x, and (4), we can write the following inequality
according to the TSS (Fig. 6):

wþ wþ 1ð Þ þ wþ 2ð Þ þ � � � � þ wþ n� 1ð Þ � x�Ww;

n ¼ 0; 1; 2 . . . ;

where n is the number of full-sized windows raised during
x RTTs. Letting gðw; xÞ be the CWND after x RTTs, we can
derive gðw; xÞ as

gðw; xÞ ¼ initialþ largest possible n

¼ wþ
1� 2wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w� 1ð Þ2þ8xWw

q
2

6664
7775:

APPENDIX C

MODELING THE THROUGHPUT OF TCP OVER

PFQ AND TCR

This section models TCP throughput over PFQ and TCR
with the given periodic loss rate p and Ww of a flow.
Throughput of PostACK-applied flows are approximated
by PFQ-applied flows since they both do not shrink Wr.
Though TSS is analogous to the stochastic model in [12],
deriving a closed-form throughput is difficult because the
window evolution differs among cases. Since Altman et al.
[13] have shown that the random loss events assumed in
[12] imply a deterministic interval between loss events, we
model the throughput by assuming a deterministic interval
between congestion events. However, our modeling is
verified through ns2 simulation with random loss.

Fig. 15 illustrates all possible steady-state cases of a
PFQ/TCR-applied flow under periodic losses using the
TSS model. We define the renewal point to be the time
when the lost segment is ACKed. Let Wck be the congestion
window at the end of the kth renewal cycle. The shaded
areas correspond to the packets of the flow sent by the edge
(described in Section 6). Each renewal cycle consists of three
phases: the normal sending phase, buffer-draining phase,
and retransmission phase, which are separated by the
vertical dashed lines in Fig. 15. The ns2 simulation results
confirm the accuracy of the modeling.

Given periodic loss rate p (a packet loss occurs every 1
p

packets) and the Ww, we can derive to which among the
four cases the Wck in its steady state belongs through the
following claims, with the function gðw; xÞ developed in
Appendix B. For TCR, cases other than Fig. 15a are
equivalent to Fig. 15d.

Claim 1. If 1
p � 3

8W
2
w and Wr � Ww¼)E½Wc� � Ww.

Short Proof. If 1
p packets cannot raise the Wc from 1

2Ww to
Ww, a packet loss then halves the Wc down to 1

2Ww or
lower, which will repeat the same process and result in a
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TABLE 1
Comparison of PFQ, TCR, and PostACK: Performance Metrics

TABLE 2
Comparison of PFQ, TCR, and PostACK: Complexity



steady state indicated in Fig. 15a. The inequality can be

arranged as p � 8
3W 2

w
. tu

Claim 2. If gðWw;
1=p
Ww

Þ � 2Ww and

Wr � Ww¼)Ww < E½Wc� � 2Ww:

Short Proof. If 1
p packets cannot raise the Wc from Ww to

2Ww, a packet loss then halves the Wc below Ww, which

will repeat the same process and result in a steady state

indicated in Fig. 15b. The inequality can be arranged as

8
3W2

w
> p � 2

3W2
w�Ww

. tu
Claim 3. If gðWw;

1=p
Ww

Þ > 2Ww and Wr � Ww¼)E½Wc� > 2Ww.

Short Proof. It is trivial from Claim 2 that this case will

result in Fig. 15c. The inequality can be arranged as

p < 2
3W 2

w�Ww
. tu

Given p and Ww for a flow, its steady state behavior can

be determined through the above claims. The throughput T

for a flow in each case can be derived by computing

(BytesSentTime ) during a renewal cycle. In each renewal cycle, the

shaded area is equal to the 1
p packets sent during the cycle.

Each renewal cycle contains three phases, as described.

1. PFQ/TCR case 1: Wc < Wr, and Wc < Ww,

1

p
¼ Wc

2
þWc

� �
Wc

2

� �
1

2
) Wc ¼

ffiffiffiffiffi
16

3p

s

¼)T ¼
1
p

Wc

2 þ 1
¼ 1ffiffiffiffi

2p
3

q
þ p

:

2. PFQ case 2: Ww < Wc < 2Ww, and Wr > Ww, let x be
the period during normal sending phase and buffer-
draining phase,

gðWw; x� ðWw � w
2ÞÞ ¼ w

1
p ¼

ðw2þWwÞðWw�w
2Þ

2 þ x� Ww � w
2

� �� �
Ww þ w�Wwð Þ

(

)
w ¼

�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ24

pþ12Ww

p
3

x ¼ Ww

2 þ 3
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Fig. 15. Modeling the throughput: steady-state cases under periodic losses represented in the TSS model. (a) PFQ/TCR: Case 1. (b) PFQ: Case 2.

(c) PFQ: Case 3. (d) TCR: Case 2.

Fig. 16. Throughput of PFG and TCE: modeling versus simulation. Configuration: flow bandwidth = 100KB/s.



3. PFQ case 3: Wc > 2Ww and Wc > Ww,

T ¼ 1
1

Ww
þ p

:

4. TCR case 3: Wr < Wc < 2Ww,

1
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2
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Fig. 16 verifies the modeling using NS-2 simulation. Each

point is conducted on a single flow and the throughput is

averaged over 2,000 seconds. Both Fig. 16a and Fig. 16b

depict that the trends of simulation follows the valid

portion of each case, but the modeling seems to over-

estimate the expected throughput of PFQ and TCR by some

constant factor. Elimination of the floor functions when

solving the equations results in the mismatch. The TCP code

in NS-2 takes a floor function such that the throughput is

lower than that of the modeling.
No larger loss probability is demonstrated since, in those

cases, the bottleneck no longer resides at the edge gateway.

Their throughput can be characterized by classical models.

APPENDIX D

DESCRIPTIONS OF OUR WAN-EMU TESTBED

Our testbed (Fig. 7) consists of cascaded machines with

statically configured routes. IP-aliasing is used to emulate

multiple competing senders and their receivers. Self-

written WAN Emulator (a loadable Linux kernel virtual

device driver) is to emulate the dynamics (delay, jitter,

loss) of the Internet. A detailed description of the testbed

is available at [1].

1. IP-aliasing support: In Linux, each network interface
card (NIC) can emulate multiple virtual NICs, with
each one having a unique IP address. With a proper
routing table setup, we can direct flows destined to
somewhere through some virtual NIC. Virtual NICs
generate packets with their corresponding IP
addresses such that the edge gateway will feel that
outgoing packets are from different local hosts and
incoming ACKs are from different remote hosts.
What is more, packets are sent without link-layer
collisions since only a single physical NIC is present
at each side. By this we claim that it is a switched
LAN-to-WAN testbed. Note that some operating
systems, such as FreeBSD and Windows 2000,
merely support aliased IP addresses but not aliased
interface names.

2. Wan-emu virtual device driver: Each packet passing
through is labeled with a timestamp indicating the
time at which it is to be expelled. An interrupt is
triggered every 1ms (tunable to 8192Hz in Linux) to
examine how many packets are due and should be
forwarded. Random/periodic loss rate and delay

jitter are also implemented. Multiple Wan-emu
devices can simultaneously be attached onto a NIC.

The tcp-masq runs over the ip-masq module (for NAT),

thus tcp-masq can incorporate its fast per-flow classifica-

tion. Furthermore, ip-masq is application-aware such that

layer-7 protocols as FTP, CUSeeMe, RealAudio, and

VDOLive traffic can also be identified for bandwidth

management.
The CBQ used herein is from Linux kernel. Because the

CBQ in Linux is not very accurate, a token bucket shaper is

attached in each CBQ class. The PFQ used herein is

achieved by applying a token bucket shaper to each flow.

However, the scalable PostACK (Section 6) is implemented

in ALTQ 3.1 on NetBSD 1.5.2 because the CBQ in ALTQ is

very accurate.
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