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Bluetooth has a master–slave configuration called a piconet. Unspecified in the Bluetooth standard,
the link polling policy adopted by a master may significantly influence the bandwidth utilization of
a piconet. Several works have been dedicated to this issue. However, none of them addresses the
asymmetry of traffics between masters and slaves, and the different data packet types provided by
Bluetooth are not fully exploited. In this paper, we propose an efficient pattern matching polling
(PMP) policy for data link scheduling that properly resolves these deficiencies. A polling pattern is a
sequence of Bluetooth packets of different type combinations (e.g. DH1/DH3/DH5/DM1/DM3/DM5)
to be exchanged by a master–slave pair that can properly reflect the traffic ratio (i.e. asymmetry) of
the pair. By judiciously selecting a proper polling pattern together with polling times for the link,
the precious wireless bandwidth can be better utilized. The ultimate goal is to reduce the unfilled,
or even null, payloads in each busy slot. In addition, an overflow mechanism is included to handle
unpredictable traffic dynamics. Extensive simulations are presented to justify the capability of PMP

in handling regular as well as bursty traffics.

Received 29 July 2002; revised 29 August 2003

1. INTRODUCTION

With master-driven, short-range radio characteristics,
Bluetooth [1] is a promising wireless technology for
personal-area networks (PANs), and has attracted much at-
tention recently [2, 3]. The smallest network unit in Blue-
tooth is a piconet, which consists of one master and one or
more slaves. A piconet owns one frequency-hopping chan-
nel, which is controlled by the master in a time-division du-
plex manner. A time slot in Bluetooth is 625 µs. The master
always starts its transmission in an even-numbered slot, while
a slave, on being polled, must reply in an odd-numbered slot.
By interconnecting multiple piconets, a larger area network
called scatternet, can be formed. In the literature, the scat-
ternet performance issues are addressed in [4, 5, 6]. How to
form scatternets is discussed in [7, 8, 9, 10]. In this paper,
we will focus on the data link polling issue within a piconet
involving one master and multiple slaves.

According to the Bluetooth protocol stack, the bottom
layer is the Bluetooth Baseband, which controls the use
of the radio. On top of the Baseband is the link manager
(LM), which is responsible for link configuration and
control, security functions, and power management. The
corresponding protocol is called the link manager protocol
(LMP). The logical link control and adaptation protocol

(L2CAP) provide connection-oriented and connectionless
datagram services to upper-layer protocols. Two major
functionalities of L2CAP are protocol multiplexing, and
segmentation and reassembly (SAR). The SAR function
segments an L2CAP packet into several Baseband packets
for transmission over the air, and reassembles those at the
receiving side before forwarding them to the upper layer.

Two physical links are supported in Bluetooth: asyn-
chronous connectionless (ACL) for data traffic and syn-
chronous connection-oriented (SCO) for time-bounded voice
communication. SCO voice links always have higher priority
than ACL data connection. Three SCO packets are defined:
HV1, HV2 and HV3. HV stands for high-quality voice. An
HV1 packet carries 10, HV2 carries 20 and HV3 carries 30
information bytes. To achieve the specified 64 Kbps speech
rate, the HV1 packet has to be delivered every two time slots,
while the HV2 and HV3 need to be delivered every four
and six time slots respectively. These packets are all single
slot and are transmitted over reserved intervals without going
through L2CAP. The remaining slots can be used by the ACL
link. Section 2.1 will detail the ACL packets. The coexis-
tence of SCO and ACL links is modeled and evaluated in [11,
12]; the result demonstrates that the existence of SCO links
does significantly reduce the data rate of ACL connections.
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This paper focuses on the management of the Bluetooth
ACL link involving one master and multiple slaves. Unspeci-
fied in the Bluetooth standard, the link polling policy adopted
by the master may significantly influence the bandwidth
utilization of a piconet. A number of works have addressed
the polling issue in a piconet [13, 14, 15, 16, 17]. References
[16, 17] consider the coexistence of an ACL link with an SCO
link (HV3). Since the HV3 link will partition time slots into a
number of free segments each of four slots, each master–slave
pair can only exchange data by 1-to-1, 3-to-1 or 1-to-3 slot
patterns. According to the available patterns and the leading
packet sizes at the heads of the buffers, each master–slave
pair is prioritized properly, based on which polling policy is
selected. A K-fairness scheme is further proposed to guaran-
tee channel access for master–slave pairs with low priorities
(starvation avoidance). A learning function is proposed in
[14] to predict the polling interval for each master–slave pair.
Hence bandwidth waste is reduced. Since the next polling
time is known, the slave may go to the low-power sniff mode
to save energy. Also, bounded packet delay is guaranteed.
However, the learning function is pretty complex and the
cost of control messages could be significant.

More practical polling policies are proposed in [13, 15].
In [13], three polling schemes are proposed: pure round
robin (PRR), exhaustive round robin (ERR), and exhaustive
pseudo-cyclic master queue length (EPM). Assuming a fixed
serving order, PRR naively polls each slave sequentially.
With a fixed order, ERR will exhaust each master–slave pair’s
payload on both sides in each polling before moving on to the
next slave. As for EPM, it is similar to ERR except that the
polling order is dynamically adjusted in each round based on
the master’s queues for slaves. The SAR and polling issues
are addressed in [15]. Three polling strategies are proposed:
adaptive flow-based polling (AFP), sticky and sticky adaptive
flow-based polling (StickyAFP). A new flow bit is defined for
each master–slave pair. The bit is set to TRUE if the buffered
data at any entity is above a threshold. AFP then dynamically
adjusts each slave’s polling interval based on the correspond-
ing flow bit. Whenever the flow bit is 1, the polling interval is
reduced to the minimum, and whenever a poll is replied by a
NULL packet, the polling interval is doubled if a certain up-
per bound is not exceeded. The sticky strategy defines a new
parameter, num_sticky, to indicate the maximum number of
consecutive polls that a master–slave pair can be served, un-
der the condition that the corresponding flow bit is 1. Finally,
the StickyAFP policy is a combination of the above two.

From the above reviews, we observe two deficiencies
associated with the existing methods. First, they all fail to
address the asymmetry of traffics between masters and slaves.
That is, each master–slave pair may exhibit distinct traffic
load in each direction. Second, the different packet types
provided by Bluetooth are not fully exploited to match the
traffic need.

In this paper, supposing that the traffic ratio between each
master–slave pair can be approximated, we propose a pattern
matching polling (PMP) policy for ACL link scheduling. A
polling pattern is a sequence of Bluetooth packets of different
type combinations (e.g. DH1/DH3/DH5/DM1/DM3/DM5)

TABLE 1. Summary of Bluetooth ACL data packets.

Type

Payload
header
(bytes)

User payload
(bytes) FEC CRC

Bandwidth
efficiency

(bytes/slot)

DM1 1 0–17 2/3 yes 17
DH1 1 0–27 no yes 27
DM3 2 0–121 2/3 yes 40.3
DH3 2 0–183 no yes 61
DM5 2 0–224 2/3 yes 44.8
DH5 2 0–339 no yes 67.8
AUX1 1 0–29 no no 29

to be exchanged by a master–slave pair. Since each Bluetooth
packet has its payload efficiency, different patterns can
reflect different traffic ratios of the two sides. We show
how to judiciously select the polling pattern, as well as
the polling time, that best matches each master–slave pair’s
traffic characteristics. The ultimate goal is to reduce the
unfilled, or even null, payloads in each packet. As a result,
the traffic asymmetry problem can be properly handled, and
the precious wireless bandwidth can be better utilized. We
demonstrate how to apply this policy to single- and multi-
slave environments. In addition, an overflow mechanism
is included to handle unpredictable traffic dynamics. This
further enhances the robustness of our PMP policy to
deal with bursty traffics. Extensive simulation results are
presented to justify the capability of the proposed PMP policy
in processing regular as well as bursty traffics.

The rest of this paper is organized as follows. Preliminaries
are provided in Section 2. Section 3 proposes the PMP policy.
Performance evaluation is presented in Section 4. Finally,
Section 5 concludes the paper.

2. PRELIMINARIES

2.1. Bluetooth Data Packets

Since our main focus is on ACL connections, we need to
introduce the available packet types in Bluetooth. Table 1
summarizes all the supported packet types. DM stands for
data-medium rate, and DH for data-high rate. DM packets are
all 2/3-FEC encoded to tolerate possible transmission errors.
Not encoded by FEC, DH packets are more error-vulnerable,
but can carry more information. DM1/DH1 packets occupy
one time slot, while DM3/DH3 and DM5/DH5 packets
occupy three and five time slots, respectively. The AUX1
packet is similar to DH1, but has no CRC code. We define
bandwidth efficiency as the number of payload bytes per slot.
From Table 1, we see that DH5 has the highest efficiency,
which is followed subsequently by DH3, DM5, DM3, AUX1,
DH1 and DM1.

By monitoring the channel conditions, a Bluetooth unit can
pick the proper packet types (DM or DH) for use. However,
in this paper, we assume an error-free environment and
only consider DH1/DH3/DH5 packets. For an error-prone
environment, our PMP policy can be tailored to include
DM1/DM3/DM5 packets easily.
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FIGURE 1. A naive greedy polling example.

2.2. The ACL link polling problem

In this paper, we consider a polling problem as follows.
Suppose a long-term scenario (e.g. remote data exchange
through TCP) where communication traffics in both
directions (up-/down-link) have been stable and approached
certain average arrival rates. In a piconet, we assume that
from history, or by approximation, the average traffic arrival
rates of each pair of master and slave are known factors. Note
that these rates are not necessarily the same for all master–
slave pairs. In addition, unpredictable, but rare, bursty traffics
may appear on any side. The objective is to determine a
good polling policy that should be adopted by a master as
well as a replying policy of a slave, when being polled.
The ultimate goal is to increase bandwidth efficiency while
keeping delays low.

To motivate this problem, we demonstrate a naive greedy
protocol (NGP) solution below (later on we will show a better
solution). Suppose that a master–slave pair has traffic loads
of 20 and 2 bytes/slot in each direction. Since DH5 is most
bandwidth-efficient, a greedy approach may work as follows.
The master may always delay its polling time until a DH5
packet is full or close to full. A possible scenario is shown in
Figure 1, where the master always polls the slave whenever
it has collected [339/20] × 20 = 320 bytes, which fit into a
DH5 packet. On the other side, the slave may have collected
[339/20] × 2 = 32 bytes, and will reply with a DH3 packet.
Then the same polling pattern will be repeated every 16 time
slots. As can be observed, although all forward packets are al-
most fully loaded, the backward packets are hardly filled, re-
sulting in a lot of bandwidth waste. Since 16(20+2) bytes are
delivered in every 5+3 slots, the bandwidth efficiency is 44.

In general, suppose that the master and slave have loads of
λH and λL (bytes/slot), respectively, and λH ≥ λL. In every
339/λH slot, the master will poll the slave with a DH5 packet.
In response, the slave may return α = 339 ·λL/λH bytes with
the smallest possible packet of f (α) slots, where

f (α) =




1, if α ≤ 27,

3, if 27 < α ≤ 183,

5, otherwise.

Then the bandwidth efficiency is

β = 339 + α

5 + f (α)
. (1)

The value of β heavily depends on λH and λL. Taking
the above example, we have β = 46.6. This is still
far beyond the best possible efficiency of 67.8 offered
by DH5.

3. THE PMP POLICY

The basic idea of PMP is to use different combinations of
Bluetooth packet types to match the traffic characteristics
of masters and slaves. For ease of presentation, only
DH1/DH3/DH5 will be used (however, our result can be
extended to other packet types easily).

3.1. Polling patterns

In this subsection, we consider only one master–slave pair.
Under long-term steady communication patterns, let λM and
λS be their traffic loads, respectively (unit = bytes/slot). Let
λH = max{λM, λS} and λL = min{λM, λS}. Also, let ratio
ρ = λH/λL. We denote by NH and NL the units with loads
λH and λL respectively. Note that in reality, traffic arrival
is by packets, not by bytes. Our assumption is that even if
traffic arrives in packets, in the long run, it will still exhibit
some steady arrival pattern that can be modeled by a byte
arrival process. It is based on this model that we derive
our results. For simplicity, we may use numbers 1/3/5 to
represent DH1/DH3/DH5 packets.

A polling pattern is a sequence of packet types that
will be exchanged by a master–slave pair. Let k be a
positive integer. A length-k pattern consists of two k-tuples:
(H1, H2, . . . , Hk) and (L1, L2, . . . , Lk), where Hi, Li = 1,
3, or 5, each representing a packet type. The former are packet
types used by unit NH, and the latter by NL. Intuitively, the
sequence of packets (H1, L1, H2, L2, . . . , Hk, Lk) will be
exchanged by NH and NL, and the sequence will be repeated
periodically, as long as the ratio ρ is unchanged and there is
no bursty traffic. For instance, when length k = 1, there are
four available patterns, as shown in Figure 2a, which offers
four different traffic ratios. Note that other patterns not listed
in the figure also exist, such as H1 = 3 and L1 = 3. However,
since the offered ratio will be equal to that of H1 = 5 and
L1 = 5 and the bandwidth efficiency will be lower, we omit
such a possibility in the figure. By increasing the pattern
length to k = 2, Figure 2b summarizes all possible patterns.
Figure 3 illustrates this concept.
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FIGURE 2. Traffic ratios supported by pattern lengths (a) k = 1 and (b) k = 2.

FIGURE 3. Illustration of our PMP policy with pattern length = k.

As k grows, the number of offered traffic ratios ρ will
increase exponentially. On the other hand, the computational
complexity to obtain all available traffic ratios also increases
exponentially for larger k. In reality, we would not use
a k value that is too large. This issue will be further
investigated through simulations. Figure 4 illustrates the
distribution of all supported traffic ratios for k = 1, . . . , 10.
As can be expected, with a larger k, our PMP policy
could be more flexible. However, note that the set of
traffic ratios supported by a larger k is not necessarily a
superset of that of a smaller k. Hence, a longer pattern
does not necessarily match the traffic need better than a
shorter one.

Let K be a system parameter, which represents the largest
allowable pattern length that can be used. Below, we derive
the bandwidth efficiency β given a pattern (H1, H2, . . . , Hk)

and (L1, L2, . . . , Lk), where k ≤ K . First, we need to
define a period T during which we can execute one iteration
of the pattern. The basic idea is to fill the payloads of all
available packets as much as possible. As a result, we define

T to be (unit = slots)

T = min

{
f (H1) + f (H2) + · · · + f (Hk)

λH

,

f (L1) + f (L2) + · · · + f (Lk)

λL

}
, (2)

where

f (i) =



27, for i = 1,

183, for i = 3,

339, for i = 5.

Here we take a min function because otherwise buffer
overflow may occur after a long time. In a period of T

slots, the expected number of bytes that will be transmitted
is λH ·T +λL ·T . Divided by the total number of slots used,
the bandwidth efficiency is

β = λH · T + λL · T

(H1 + H2 + · · · + Hk) + (L1 + L2 + · · · + Lk)
.

(3)
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FIGURE 5. The PMP policy given as λH = 20 for the master and as λL = 2 for the slave (K = 3).

3.2. Polling policy for one master–slave pair

We have derived the bandwidth efficiency of a polling pattern.
Given traffic loads λH and λL of a master–slave pair, we
propose to choose the polling pattern that gives the highest
bandwidth efficiency for use. Let (H1, H2, . . . , Hk) and
(L1, L2, . . . , Lk) be the best pattern. Below, we present the
corresponding polling policy. Note that here a time unit is
one time slot, and we assume for simplicity that our protocol
starts from slot 0.

Step 1. Initially, let t = 0 and i = 1.

Step 2. Define j = ((i − 1) mod k) + 1. The next polling is
expected to appear �j time slots after t , where

�j =




max

{
H1 + H2 + · · · + Hj

λH

,
L1 + L2 + · · · + Lj

λL

}
,

for j = 1, . . . , k − 1,

min

{
H1 + H2 + · · · + Hk

λH

,
L1 + L2 + · · · + Lk

λL

}
,

for j = k.

Then at time slot t + �j , the master polls the slave with a
proper packet type Hj or Lj (depending on whether it has
the higher or lower load). In return, the slave replies with a
proper packet type Hj or Lj .

Step 3. If j = k, then move t ahead by setting t = t + T ,
where T is as defined in Equation (2). Finally, let i = i + 1
and go to Step 2.

The above steps may be repeated infinitely until the master
determines that the traffic loads have changed. Note that in
our protocol, a master and a slave will determine their own
traffic loads λM and λS. This load information can be exch-
anged by a user-defined control packet. Since both the master
and the slave will run the same algorithm to determine the
polling pattern, a consistent polling pattern will be used. So
only the load information needs to be exchanged, and there is
no special packet to notify the chosen polling pattern. When
the traffic rate on either side changes, the master and slave
should exchange with each other by piggybacking the new
traffic load information. This implies that a user-defined
control packet format is needed for this purpose. Then the
best polling pattern for this pair should be re-determined. In
this work, we do not handle misbehaving slaves. Instead, we
assume cooperative slaves, which always follow the polling
algorithm based on computed polling patterns.

In the polling algorithm, index i is the current number of
polls being counted starting from the very beginning, while
index j represents the number of polls in every polling pattern
cycle. For j = 1, . . . , k − 1, �j is the time slot when both
entities already have sufficient data to fill the next predicted
packet type (reflected by the max function). For j = k,
�j = T and then completes one pattern cycle. Figure 5
illustrates how our PMP policy solves the earlier example of
λH = 20 and λL = 2. Assuming K = 3, Equation (3) can be
used to determine the best pattern to be (5, 3) for the master,
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and (1, 1) for the slave. Here, �1 = 16 and �2 = 26. This
gives a bandwidth efficiency of β = 57.2, which is about
23% better than the earlier NGP policy.

The above policy is derived based on an ideal assumption
that the traffic pattern behaves perfectly as we predicted.
However, in practice, traffic may not be as regular as we
expect, and in some cases bursty traffic may appear. For this
reason, we further enhance our policy by defining an overflow
bit to prevent buffer overloading. The overflow bit is set to
TRUE whenever an entity (master or slave) finds its buffer
reaching a pre-defined threshold value. On discovering such
a situation, the entity will ignore the polling pattern and will
immediately send out a DH5 packet to relieve its backlog.
Here we assume that the buffer status is checked whenever an
entity is scheduled to transmit data as requested by our PMP
policy. In such a case, the overflow bit will be piggybacked in
the DH5 packets to inform the other entity. This overflow bit
may be placed in one of the four reserved bits in the 2-byte
payload header of DH5. The entity that does not have the
overflow situation also stops its pre-defined pattern, when
seeing overflow = 1, and selects a packet type that can cover
as many queued data as possible. The polling activity will be
repeated in a back-to-back manner, until both sides’ buffers
are emptied, after which we will reset the polling pattern by
letting i = 1 and goto Step 2. Also, we will move t to the
current time slot.

3.3. Polling policy for multiple master–slave pairs

For an environment with only one master–slave pair,
bandwidth efficiency may not be an important factor, since
we may have plenty of free slots and it may not be desirable
to adopt the PMP policy to save bandwidth at the cost
of longer packet delays due to waiting. However, for an
environment with multiple master–slave pairs, bandwidth
efficiency becomes more critical. How efficiently slots are
utilized will significantly affect the maximum throughput
that can be supported in a piconet. In Section 3.2, we first
proposed a polling policy for a single master–slave pair. In
this section, we describe a polling policy for multiple master–
slave pairs based on the approach for a single pair.

When there are multiple master–slave pairs in an ACL link,
we will choose for each pair, the most bandwidth-efficient
pattern. From the pattern, the polling times are determined as
mentioned earlier. As there are multiple master–slave pairs,
the master should place all polling activities in a time line and
conduct polling one by one. However, the polling activities of
different master–slave pairs may overlap each other in time.
In this case, we adopt the following rules to determine the
polling priorities.

• For two overlapping polling activities, we compare their
leading slots. The one with an earlier leading slot will
be served first. The other one will be queued and served
immediately after the earlier one is completed.

• When the leading slots are the same, the last polling
in a polling pattern has a higher priority. Intuitively,
we consider such polling to be more urgent since it is
supposed to consume all traffic loads of a master–slave

pair in each pattern interval (i.e. T ) to avoid buffer
overflow.

• In case of ties in both the above rules, the AM_ADDRs
of slaves are compared to break the ties such that the
smaller one wins.

4. PERFORMANCE EVALUATION

To demonstrate the effectiveness of the proposed PMP
solution, we develop a C++ simulator to observe the
performance. Two measurement metrics are evaluated:
bandwidth efficiency and average delay time. We adopt
the simulation assumptions suggested in [15] that the master
keeps separate buffers for slaves, and that the buffer size for
each entity is 2048 bytes. The buffer threshold to turn the
overflow bit on is 80%. Each experiment lasts for 80,000 time
slots. Three other policies are compared: NGP (described
in Section 2.2), ERR [13], and StickyAFP [15]. In the
ERR approach, the master can only observe its local queues
without knowledge of slaves’ buffer status. A control bit
indicating buffer emptiness is piggybacked in slave-to-master
packets, so that the master can decide to stop polling or not.
In StickyAFP, the initial polling interval P0 = 14 (slots),
and the maximum allowable polling interval Pmax = 56
(slots). The flow bit is set to TRUE whenever the buffer
exceeds 80%. The parameter num_sticky is set to 16 packets
as suggested in [15]. For both ERR and StickyAFP, whenever
a master/slave decides to send, it will examine its queue and
choose the most appropriate packet type that can consume as
many bytes in its queue as possible. Traffic is modeled by a
byte arrival process with a certain rate. From time to time,
we also inject a large volume of data to model bursty traffic.1

4.1. Single master–slave pair without bursty
traffic

We first simulate one master–slave pair with Poisson traffic
arrival rates λH and λL (bytes/slot) at the master and
slave sides, respectively. By fixing λL = 1, we adjust λH
to observe how different traffic ratios affect the network
performance.

Figure 6 illustrates the bandwidth efficiency and average
delay against various ratios ρ = λH/λL. Four values of
K (3, 5, 7 and 9) for our PMP strategy are simulated.
When ρ ≤ 12.6, our PMP strategy successfully improves
the bandwidth efficiency with moderate average delay. For
NGP, when ρ ≤ 12.6, only three ρs (1, 1.85 and 12.6) can
be handled properly with high bandwidth efficiency. For
ρ > 12.6, our PMP always selects the pattern H1 = 5 and
L1 = 1, and thus acts the same as NGP. StickyAFP and ERR
achieve low bandwidth efficiency due to very frequent polls
and inadequate selections of packet types.

Note that for PMP, the case of K = 7 and K = 9
only slightly improve over K = 5 in terms of bandwidth
efficiency. With K = 3, our PMP already outperforms

1We comment that the ERR and StickyAFP are designed based on a
packet arrival process, but adopting a byte arrival process would not hurt
their performance.
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FIGURE 6. Effect of traffic ratio ρ when there is one master–slave pair: (a) bandwidth efficiency and (b) average delay.

other polling schemes significantly. Hence we conclude that
it suffices to set K between 3 and 5 to balance between
computational cost and performance.

4.2. Single master–slave pair with bursty traffic

In this experiment, on top of the regular (Poisson) traffics at
the master and slave sides, we also inject irregular bursty
traffics. The bursty traffic occurs on average every 3000
slots with instant increase of 2048 × 0.8 = 1638 bytes
to a buffer. As Figure 7a shows, bursty traffic has very
limited impact on our PMP. For NGP, StickyAFP and ERR,
the bandwidth efficiency gets improved, since bursty traffic
helps fill those unfilled payloads. Note that, in Figure 7b, the
delay of NGP increases sharply and remains the highest for
all traffic ratios. The reason is that NGP does not implement
an overflow bit to handle sudden traffic burst. Due to the lack
of overflow indication, NGP is unable to properly adapt to
bulky data arrivals. This phenomenon is especially serious
when traffic rates are low, which implies that NGP keeps
the infrequent polling patterns without realizing that bursty
traffic has occurred, thus resulting in long delays.

4.3. Multiple master–slave pairs without bursty
traffic

In the following experiments, we enlarge the piconet by
including more slaves. Under such a situation, the low
efficiency of one master–slave pair may deprive the chances
of other pairs using the resource (i.e. slots), which is more

likely to bring the network to the saturated level. Thus, slots
should be used more cautiously. We simulate seven slaves
in a piconet. The arrival rates of the seven master–slave
pairs are denoted as λH1/λL1, λH2/λL2, . . . , and λH7/λL7.
To add heterogeneity, we let λH1/λL1 = 2, λH2/λL2 = 4,
λH3/λL3 = 6, λH4/λL4 = 8, λH5/λL5 = 10, λH6/λL6 = 12
and λH7/λL7 = 14. The total piconet traffic load λ is the sum
of these rates.

Figure 8 plots the piconet throughput and average delay
against various total loads λ. We observe that the throughput
of PMP saturates at the highest level compared to the
other approaches. This is because PMP utilizes bandwidth
more efficiently, thus saving more bandwidth space to
accommodate more traffic. In other words, the proposed
PMP effectively reduces unnecessary bandwidth waste,
which improves piconet throughput. For the cases of K = 3
and K = 5, the differences are almost indistinguishable.
This further confirms that a simple/short pattern length is
sufficient to achieve very good performance. Note that after
the saturation points, a lot of data bytes may be dropped.
However, the delays of dropped bytes are not taken into
account. This is why we do not see significant increase in
delays in Figure 8 after the network is saturated.

4.4. Multiple master–slave pairs with bursty traffic

Again, we add bursty traffic to the regular Poisson traffic
for each master–slave pair. As Figure 9 illustrates, the PMP
saturates at the highest throughputs with the lowest packet
delays.
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FIGURE 10. Comparison of simulation results and analytic values.
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4.5. Comparison of simulation and analytic
results

Recall that analytic predictions have been derived in
Equations (1) and (3). In Figure 10, we compare these
analytic results against simulation results, under a single
master–slave pair, for PMP (K = 3, 5, 7, 9) and NGP.
Note that it is infeasible to do this for bursty traffics. The
result verifies the consistency of our previous analyses with
simulations.

5. CONCLUSIONS

In this paper, we have proposed an efficient PMP policy
for ACL connections in a Bluetooth piconet. For each
master–slave pair, by estimating both sides’ packet arrival
rates, the master judiciously selects a polling pattern that can
best utilize the network bandwidth. Based on the selected
pattern, the master then polls the slave with proper packet
types at proper time slots. In return, the slave also replies
with proper packet types. The ultimate goal is to reduce
the number of NULL packets and unfilled payloads so as to
increase bandwidth efficiency. The PMP policy has properly
addressed the asymmetry of up- and down-link traffics and the
available packet types in Bluetooth. Another merit of PMP
is its simplicity—a pattern length of K = 3 or 4 can already
perform very well. So the computational complexity can be
kept low. Simulation experiments have demonstrated that
the proposed PMP policy improves bandwidth efficiency and
network throughput at the expense of moderate packet delays,
compared with other polling approaches. In our discussion,
only DH1/3/5 are considered. To include DM1/3/5, we
propose to estimate the packet error probability. Whenever
the probability is below a threshold, we will adopt DH1/3/5;
otherwise, we will switch to DM1/3/5, and the derivation of
polling patterns is similar.

In our current model, traffic is simulated by byte arrival,
not packet arrival. So delay is computed based on bytes, not
packets. Since we do not make explicit upper-layer traffic
behavior, we were unable to translate from byte to packet
delay. In order to provide further insight about the packet
delay, higher level traffic behavior must be modeled, and this
may be directed to future work.
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