Graphs and Combinatorics 9 Springer-Verlag 1994

Spectral Characterization of Odd Graphs O_k , $k \leq 6$

Tayuan Huang

Department of Applied Mathematics, National Chiao-Tung University, Hsinchu 30050, Taiwan, R.O.C.

Abstract. Let k be an integer with $k \ge 2$. The Odd graph O_k has the $(k - 1)$ -subsets of $\{1, 2, \ldots, 2k - 1\}$ as vertices, and two vertices are adjacent if and only if their corresponding subsets are disjoint. We prove that the odd graphs O_k ($k \le 6$) are characterized by their spectra among connected regular graphs.

1. Introduction

We shall consider only finite undirected graphs without loops and multiple edges. Now assume *F* is a connected graph with diameter *d*, let $F_i(x) = \{y | y \in V(T)$ and $d(x, y) = i$, where $V(\Gamma)$ is the vertex set of Γ and $d(x, y)$ is the distance between vertices x and y. A *distance-regular graph* is one for which the parameters $c_i = | \Gamma_{i-1}(x) \cap \Gamma_1(y)|$, $a_i = | \Gamma_i(x) \cap \Gamma_1(y)|$ and $b_i = | \Gamma_{i+1}(x) \cap \Gamma_1(y)|$ depend not on particular vertices we choose, but only on the distance $i = d(x, y)$ between them. It is clear that $c_0 = a_0 = b_d = 0$, $c_1 = 1$, $a_i = b_0 - b_i - c_i$. The following array

$$
\begin{bmatrix} c_0 & c_1 & c_2 & c_4 \ a_0 & a_1 & a_2 & \dots & a_d \ b_0 & b_1 & b_2 & b_d \end{bmatrix}
$$

is called *the intersection array* of F.

The adjacency matrix $A(\Gamma)$ of a graph Γ is a square (0, 1) matrix whose rows and columns are indexed by vertices of Γ , and $A(x, y) = 1$ if and only if the vertices x and y are adjacent. The spectrum of A is also called the spectrum of the graph Γ . It is worth mentioning here that the spectrum of a distance-regular graph is determined by its intersection array, refer to $\lceil 1 \rceil$ and $\lceil 2$, p. 141-143] for details.

Let k be an integer with $k \ge 2$. The Odd graph O_k of characteristic k has the $(k-1)$ -subsets of $\{1, 2, ..., 2k-1\}$ as vertices, an two vertices are adjacent if and only if their corresponding subsets are disjoint. The small odd graphs are the triangle K_3 ($k = 2$), and the Petersen graph ($k = 3$). In general, the odd graphs O_k are distance-regular graphs of diameter $k - 1$ with intersection array

236 T. Huang

 $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \dots & 0 & (k+1)/2 \end{bmatrix}$ **f** $k-1$ $k-1$ $k-2$ $k-2$ $(k+1)/2$ for odd k, and *[i O1 O1 02 02 ... (k/2) k/kilO - I (k/2) 0 - i* $k-1$ $k-1$ $k-2$ $k-2$ $(k/2)+1$ $(k/2)+1$ for even k.

The eigenvalues of O_k are the integers $\theta_i = (-1)^i(k - i)$ with multiplicity $m_i =$ $\binom{i-1}{-1}$ for $0 \le i \le k-1$ (refer to [1], or [3]). A. Moon [6, Theorem 3] proved that all distance-regular graphs with the same intersection arrays as those of O_k are isomorphic to O_k . Under a weaker condition, i.e., distance-regularity, this confirmed a conjecture made by N. Biggs [3] that any distance-transitive graph Γ which has the same spectrum as that of O_k is isomorphic to O_k . Based on the above result of A. Moon, we will show in this note that

Main Theorem. *If* Γ *is a regular connected graphs with the same spectrum as that of* O_k , $k \leq 6$, then it is isomorphic to O_k .

The main theorem is proved in Section 3. Its basic idea is to derive all information about $c_i(x, y)$, $a_i(x, y)$ and $b_i(x, y)$, defined in Section 2, for $x, y \in V(\Gamma)$ at distance $i, 1 \le i \le k - 1$, from $A^{i}(x, y)$, where $1 \le j \le k - 1$, and A is an adjacency matrix of Γ , and then to conclude that Γ must be a distance-regular graph.

Remark.

- (1) Cubic lattice graphs $[4]$ and Tetrahedral graphs $[5]$ are characterized by their spectra under extra conditions on the second valency.
- (2) We suspect that the cospectral matres of O_k ($k \ge 7$) may exist, though we did not succeed in constructing any one of them yet.

2. Some Notation and Preliminaries

Throughout the rest of this note, we assume that Γ is a connected, regular graph with valency k which has the same spectrum as that of odd graph O_k , i.e., exactly as mentioned in Section 1. Let A be an adjacency matrix of Γ . The following notations are used.

- (1) $k_i(x) = |F_i(x)|$, i.e., the number of all vertices at distance i from $x \in V(\Gamma)$. In particular, $k_1(x) = k$ for all $x \in V(\Gamma)$ by the regularity of Γ .
- (2) If x and $y \in V(\Gamma)$ at distance *i*, define

$$
| \Gamma_j(x) \cap \Gamma_1(y) | = \begin{cases} c_1(x, y) & \text{if } j = i - 1 \\ a_i(x, y) & \text{if } j = i \\ b_i(x, y) & \text{if } j = i + 1 \end{cases}
$$

Spectral Characterization of Odd Graphs O_k , $k \le 6$ 237

We note that *F* is distance-regular whenever all $c_i(x, y)$, $a_i(x, y)$ and $b_i(x, y)$ are functions of $d(x, y) = i$, independent of the choice of x and y, $0 \le i \le k - 1$.

In the proof of the main theorem, we need some essential properties of the graph Γ which are reflected on the spectrum of Γ . It is well known that

- (1) $A^{i}(x, y)$ is the number of walks of length i in Γ joining x and y, [2, p. 11], and
- (2) $Tr(A^i) = \sum_{j=0}^{k-1} m_j \theta_j^i$ is equal to the number of closed walks in Γ of length i, [7, p. 310]. In particular, $Tr(A^3)$ is equal to six times the number of triangles in Γ . Further,

Lemma 2.1. *If* $d(x, y) = i$, *then*

$$
A^{j+1}(x,y) = \sum_{z \in \Gamma_1(y) \cap \Gamma_{i-1}(x)} A^j(x,z) + \sum_{z \in \Gamma_1(y) \cap \Gamma_i(x)} A^j(x,z) + \sum_{z \in \Gamma_1(y) \cap \Gamma_{i+1}(x)} A^j(x,z)
$$

Proof. It follows from $A^{\prime\prime}(x,y) = (A^{\prime}A)(x,y) = \int_{A}^{x} A^{\prime}(x,z)$, and the fact that $z \in I_1(y)$ $\Gamma_i(x) \cap \Gamma_1(y)$ is empty if $j \neq i - 1$, i or $i + 1$.

Lemma 2.2.

(1) $A^{2i+1}(x, x) = 0$ for $i \leq k - 2$, (2) $A^{2i+1-j}(x, y) = 0$ for $y \in \Gamma_i(x)$, $1 \le j \le i$, and (3) $a_i(x, y) = 0$ for all $y \in \Gamma_i(x)$, $i \leq k - 2$.

Proof. (1) follows from the fact that the parameters a_i , $i \le k - 2$, of O_k are zero, O_k has no cycles of length $2i + 1$, $i \le k - 2$, so $Tr(A^{2i+1}) = \sum_{k=1}^{k-1} m_i \theta_i^{2i+1} = 0$. (2) and (3) j=O are immediate from (1). \Box

Lemma 2.3 [2, p. 15]. Let $q(x) = \prod_{1 \le i \le k-1} (x - \theta_i)$, and $p(x) = |V(\Gamma)| q(x)/q(k)$, then $p(x)$ is the unique polynomial of smallest degree such that $p(A) = J$, where J is the all l's square matrix of order $|V(T)|$.

Lemma 2.4. *For each* $x \in V(\Gamma)$,

(1)
$$
A^2(x, x) = \sum_{y \in \Gamma_1(x)} A(x, y) = k
$$
,
\n(2) $\sum_{y \in \Gamma_2(x)} A^2(x, y) = k^2 - k \ge k_2(x)$, and
\n(3) $A^4(x, x) \ge 2k^2 - k$

Proof. The first claim is obvious, while the second follows from $\sum A^2(x, y) =$ $y \in \Gamma_2(x)$ $(A^2J)(x, x) - A^2(x, x) - \sum A^2(x, y), A^2(x, y) = 0$ for x and y at distance 1 by Lemma 2.2(3), and $A^2J = k^2J$. Also, from $A^2(x, y) \ge 1$ for x and y at distance 2, we have $\sum_{y \in \Gamma_2(x)} A^2(x, y) \ge k_2(x)$.

To prove (3), let $B = A^2 - kI$, then $B^2 = A^4 - 2kA^2 + k^2I$, and so, $\sum_{\text{all } y} (B(x, y))^2$ $= B^2(x, x) = A^4(x, x) - k^2$. Since $(B(x, x))^2 + \sum (B(x, y))^2 + \sum (B(x, y) - 1)^2 + \sum (B(x, y))^2$ $y \in I_1(x)$ $y \in I_2(x)$ $y \in I_{\geq 3}(x)$ $=\sum_{\text{all }y} (B(x, y))^2 - 2 \sum_{y \in \Gamma_2(x)} B(x, y) + k_2(x) \geq 0$ replacing $\sum (B(x, y))^2$ by $B^2(x, x) = A^4(x, x) - k^2$, we have all y $A^4(x, x) \ge 2$ *[A*² $(x, y) - k_2(x) + k^2 \ge 2k^2 - k$ $y \in \overline{\Gamma_2}(x)$ as required. \Box

3. Proof of the Main Theorem

It is obvious for the case $k = 2$. We give a proof for the case $k = 6$ only. Similar and somewhat simpler arguments work for cases $k = 3, 4, 5$. Let $k = 6$, in this case,

$$
\operatorname{Spec}(\Gamma) = \left(\frac{\theta_i}{m_i} \quad \begin{array}{ccc} 6 & 4 & 2 & -1 & -3 & -5 \\ \hline m_i & 1 & 44 & 165 & 132 & 110 & 10 \end{array}\right)
$$
\n
$$
\text{and } p(x) = (1/12)(x^5 + 3x^4 - 23x^3 - 51x^2 + 94x + 120), \text{ i.e.,}
$$
\n
$$
A^5 + 3A^4 - 23A^3 - 51A^2 + 94A + 120I = 12J \quad (*)
$$

The following are immediate consequences of the previous lemmas:

- (3.1) For $i \leq 4$, $A^{2i+1-j}(x, y) = 0$ for $x, y \in V(\Gamma)$ at distance $j, 0 \leq j \leq i$, by Lemma $2.2(1)$.
- (3.2) $a_i(x, y) = 0$ for $x, y \in V(\Gamma)$ at distance i, $i \le 4$, by Lemma 2.2(3).
- (3.3) $b_0(x, x) = 6$ and $b_1(x, y) = 5$ for $x, y \in V(\Gamma)$ at distance 1, by (3.2).
- (3.4) $A^2(x, x) = 6$, by Lemma 2.4(1).
- (3.5) \qquad $A^2(x, y) = 30$, by Lemma 2.4(2).
- $y \in \overline{F_2}(x)$ (3.6) $A^4(x, x) \ge 96 - k_2(x) \ge 66$, by Lemma 2.4(3).

Lemma 3.7.

(1) $A^4(x, x) = 66$, and $k_2(x) = 30$ for all $x \in V(\Gamma)$. (2) $c_2(x, y) = A^2(x, y) = 1$ and $b_2(x, y) = 5$ for $x, y \in V(T)$ at distance 2. (3) $A^3(x, y) = 11$ *for* $x, y \in V(\Gamma)$ *at distance* 1.

Proof. (1) follows from (3.6) and the fact that the average of $A^4(x, x)$ is equal to $\left(2, m_i \theta_i^T\right)/462 = 66.$ (2) Since $\sum A^2(x, y) = 30$ by (3.5), $A^2(x, y) \ge 1$ if $d(x, y) = 2$, and $k_2(x) = 30$. $y \in \overline{F_2}(x)$ It follows that $A^2(x, y) = 1$ whenever $d(x, y) = 2$. Hence $b_2(x, y) = 6 - c_2(x, y) = 5$ by (3.2).

Spectral Characterization of Odd Graphs O_k , $k \leq 6$

(3)
\n
$$
A^{3}(x, y) = \sum_{z \in \Gamma_{1}(y)} A^{2}(x, z)
$$
\n
$$
= A^{2}(x, x) + \sum_{z \in \Gamma_{1}(y) \cap \Gamma_{1}(x)} A^{2}(x, z) + \sum_{z \in \Gamma_{1}(y) \cap \Gamma_{2}(x)} A^{2}(x, z) \text{ by Lemma 2.1}
$$
\n
$$
= 6 + |\Gamma_{1}(y) \cap \Gamma_{2}(x)| \text{ by (3.4) and (3.2)}
$$
\n
$$
= 11, \text{ by (3.3)}
$$
\nis required.

as required.

Lemma 3.8.

(1) $A^5(x, y) = 171$ *for* $x, y \in V(\Gamma)$ *at distance* 1, (2) $A^4(x, y) = 21$ *for* $x, y \in V(\Gamma)$ *at distance* 2.

Proof. $A^4(x, y) = A^2(x, y) = 0$ by (3.1), and $A^3(x, y) = 11$ by Lemma 3.7(3) for x, $y \in V(\Gamma)$ at distance 1. Also, $A^{5}(x, y) = A^{3}(x, y) = 0$ by (3.1) for $x, y \in V(\Gamma)$ at distance 2. Applying these to $(**)$, we obtain both (1) and (2) immediately. \square

Lemma 3.9.

- (1) $A^4(x, y) = 4$ for $x, y \in V(\Gamma)$ at distance 4.
- (2) $c_3(x, y) = A^3(x, y) = 2$, $b_3(x, y) = 4$, and $A^5(x, y) = 58$ for x, $y \in V(\Gamma)$ at dis*tance 3.*

Proof. (1) For x, $y \in V(T)$ at distance 4, since $3A^4(x, y) + A^5(x, y) = 12$, and $A^5(x, y)$ $= 0$, we have $A^4(x, y) = 4$.

(2) Since
$$
A^3(x, y) - 23A^3(x, y) = 12
$$
, by $(**)$ and (3.1) ,

$$
A^{5}(x, y) = \sum_{z \in \Gamma_{1}(y)} A^{4}(x, z)
$$

=
$$
\sum_{z \in \Gamma_{1}(y) \cap \Gamma_{2}(x)} A^{4}(x, z) + \sum_{z \in \Gamma_{1}(y) \cap \Gamma_{4}(x)} A^{4}(x, z)
$$
 by Lemma 2.1 and (3.2)
=
$$
21c_{3}(x, y) + 4b_{3}(x, y)
$$
 by Lemma 3.8(2)
=
$$
4(b_{3}(x, y) + c_{3}(x, y)) + 17c_{3}(x, y)
$$

=
$$
4(6 - a_{3}(x, y)) + 17c_{3}(x, y)
$$

=
$$
24 + 17c_{3}(x, y),
$$
 and

$$
A^{3}(x, y) = \sum_{z \in \Gamma_{1}(y)} A^{2}(x, z)
$$

=
$$
\sum_{z \in \Gamma_{1}(y) \cap \Gamma_{2}(x)} A^{2}(x, z)
$$

=
$$
|\Gamma_{1}(y) \cap \Gamma_{2}(x)|
$$
 by Lemma 3.7(2)
=
$$
c_{3}(x, y)
$$

we have $24 + 17c_3(x, y) - 23c_3(x, y) = 12$. Hence $c_3(x, y) = 2$, $b_3(x, y) = 6 - c_3(x, y)$ $= 4$, and consequently $A^5(x, y) = 58$.

Lemma 3.10.

(1) $c_4(x, y) = 2$, $b_4(x, y) = 4$ for $x, y \in V(T)$ at distance 4,

(2)
$$
A^5(x, y) = 12
$$
, and so $c_5(x, y) = 3$, $a_5(x, y) = 3$ for x, $y \in V(\Gamma)$ at distance 5.

Proof. (1) Since $A^4(x, y) = \sum_{x \in A^3(x, z) = 2c_4(x, y) = 4$ by Lemma 3.8, it fol $z \in \Gamma_1(\overline{y}) \cap \Gamma_3(x)$ lows that $c_4(x, y) = 2$ and thus $b_4(x, y) = 4$.

(2) For *x*, $y \in V(T)$ at distance 5, since $A^5(x, y) = 12$ by (**), and $A^5(x, y) = 12$ $\sum_{z \in \Gamma_1(y) \cap \Gamma_4(y)} A^+(x, z) = 4c_5(x, y)$ by (1), we have $c_5(x, y) = 3$ and thus $a_5(x, y) = 3$.

Up to this point, we may conclude that Γ is a distance regular graph of diameter 5 with intersection array

$$
\begin{bmatrix} 0 & 1 & 1 & 2 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 6 & 5 & 5 & 4 & 4 & 0 \end{bmatrix},
$$

indeed, it is exactly the intersection array of O_6 . Hence, Γ is isomorphic to O_6 by Theorem 3 [6]. This completes the proof of the main theorem for the case $k = 6$.

References

- 1. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings Lecture Note Series (1984)
- 2. Biggs, N.: Algebraic Graph Theory, Cambridge Univ. Press, Cambridge, 1974
- 3. Biggs, N.: Some Odd Graph Theory, Proc. Second Internat. Conf. on Comb. Math., Annals of the New York Academy of Science, 319, 71-81 (1979)
- 4. Laskar, R.: Eigenvalues of the Adjacency Matrix of Cubic Lattice Graphs, Pacific J. Math. 29 (3), 623-629 (1969)
- 5. Bose, R.C., Laskar, R.: Eigenvalues of the Adjacency Matrix of Tetrahedral Graphs, Aequationes Math. 4, 37-43 (1970)
- 6. Moon, A.: Characterization of the Odd Graphs O_k by Parameters, Discrete Math. 42, 91-97 (1982)
- 7. Schwenk, A.J., Wilson, R.J.: On the Eigenvalues of a Graph, pp. 307-336 in: Selected Topics in Graph Theory, L.W. Beineke and R.J. Wilson (eds), Academic P., 1981