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Abstract. Let k be an integer with k > 2. The Odd graph O, has the (k — 1)-subsets of
{1,2,...,2k — 1} as vertices, and two vertices are adjacent if and only if their corresponding
subsets are disjoint. We prove that the odd graphs O, (k < 6) are characterized by their spectra
among connected regular graphs.

1. Introduction

We shall consider only finite undirected graphs without loops and multiple
edges. Now assume I'is a connected graph with diameter 4, let I'y(x) = {y|ly € V(I')
and d(x,y) = i}, where V(I') is the vertex set of I" and d(x,y) is the distance
between vertices x and y. A distance-regular graph is one for which the param-
eters ¢; = |1, (x)N T, a; = |L(x)NTy(y)| and b; = | I3, (x) N T(y)| depend
not on particular vertices we choose, but only on the distance i = d(x, y) between
them. It is clear that ¢y =gy =b;=0, ¢, =1, a; = by — b; — ¢;. The following
array

a, a; a; ... a4

bo by by by

is called the intersection array of I.

The adjacency matrix A(F") of a graph I" is a square (0, 1) matrix whose rows
and columns are indexed by vertices of I, and A(x,y) =1 if and only if the
vertices x and y are adjacent. The spectrum of A is also called the spectrum of the
graph I". It is worth mentioning here that the spectrum of a distance-regular
graph is determined by its intersection array, refer to [1] and [2, p. 141-143] for
details.

Let k be an integer with k > 2. The Odd graph O, of characteristic k has the
(k — 1)-subsets of {1,2,...,2k — 1} as vertices, an two vertices are adjacent if and
only if their corresponding subsets are disjoint. The small odd graphs are the triangle
K; (k =2), and the Petersen graph (k = 3). In general, the odd graphs O, are
distance-regular graphs of diameter k — 1 with intersection array
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0 1 1 2 2 k—1/2 (k-1)2

0 0 0 0 0o ... 0 (k + 1)/2 { for odd k, and
kK k=1 k=1 k=2 k-2 (k +1)/2 0
(0 1 1 2 2 k/2)—1 (k/2)—1 k/2

0 0 0 0 0 0 0 k/2 | for even k.
k k—1 k=1 k=2 k-2 k/2)+1 *k/2)+1 0

The eigenvalues of O, are the integers 6; = (— 1)’(k — i) with multiplicity m; =
2k — 1 2k—1

( ; > - ( i1 >for0 <i<k— 1(referto[1], or [3]). A. Moon [6, Theorem
3] proved that all distance-regular graphs with the same intersection arrays as those
of 0, are isomorphic to O,. Under a weaker condition, i.e., distance-regularity, this
confirmed a conjecture made by N. Biggs [3] that any distance-transitive graph I"
which has the same spectrum as that of O, is isomorphic to O,. Based on the above
result of A. Moon, we will show in this note that

Main Theorem. If I is a regular connected graphs with the same spectrum as that of
Oy, k < 6, then it is isomorphic to O,.

The main theorem is proved in Section 3. Its basic idea is to derive all informa-
tion about c;(x, y), a;(x, y) and b,(x, y), defined in Section 2, for x, y € V(I') at distance
i,1 <i<k-—1,from A/(x,y), where 1 <j < k — 1, and A4 is an adjacency matrix of
T, and then to conclude that I" must be a distance-regular graph.

Remark.

(1) Cubic lattice graphs [4] and Tetrahedral graphs [5] are characterized by their
spectra under extra conditions on the second valency.

(2) We suspect that the cospectral matres of O, (k > 7) may exist, though we did
not succeed in constructing any one of them yet.

2. Some Notation and Preliminaries

Throughout the rest of this note, we assume that I” is a connected, regular graph
with valency k which has the same spectrum as that of odd graph 0,, i.e., exactly
as mentioned in Section 1. Let 4 be an adjacency matrix of I". The following
notations are used.

(1) ki(x) = |I(x)|, i.e., the number of all vertices at distance i from x € V(I'). In
particular, k,(x) = k for all x € V(I") by the regularity of I".
(2) If x and y € V(I') at distance i, define

cilxy) ifj=i-1
IGENT()) = alx,y) ifj=i
bix,y) ifj=i+1
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We note that I" is distance-regular whenever all c¢;(x,y), a;(x,y) and b,(x,y) are
functions of d(x, y} = i, independent of the choice of xand y,0 < i< k — 1.

In the proof of the main theorem, we need some essential properties of the graph
I" which are reflected on the spectrum of I'. It is well known that

(1) A'(x,y) is the number of walks of length i in I" joining x and y, [2, p. 11], and
k-1
(2) Tr(4") = ), m6/ is equal to the number of closed walks in I of length i, [7,

p. 310]. In particular, Tr(A3) is equal to six times the number of triangles in I".
Further,

Lemma 2.1. If d(x,y) = i, then
At (x,y) = Y Al(x,z) + Y Al(x,z) + Y Al(x, z)

ze (N1 (%) ze ()N 1i(x) ze IO Ti4q(x)

Proof. 1t follows from A/*!(x,y) = (4/A)(x,y) = Y Ai(x,z), and the fact that
ze I(y)

I(x)NTIy(y)isemptyifj#i—1,iori+ 1. O

Lemma 2.2.

(1) 4%*Y(x,x) =0 fori <k —2,
(2) A**i(x,y) =0 foryeI(x),1<j<iand
3) ai(x,y)=0forallyeI(x), i<k —2.

Proof. (1) follows from the fact that the parameters a;, i < k — 2, of O, are zero, O,

has no cycles of length 2i + 1,i < k — 2,50 Tr(4**) = Y m;6%*! = 0.(2) and (3)
=0
are immediate from (1). d

Lemma 23 [2,p. 15]. Let q(x) = ][] (x — 6,), and p(x) = |V(I')| q(x)/q(k), then
1gi<k-1

p(x) is the unique polynomial of smallest degree such that p(A) = J, where J is the all

I’s square matrix of order |\V(I')|.

Lemma 24. For each x e V(I ),

(1) A%(x,x) = Z A(x y) =
@ Y A2(x y) k2 —k> kz(x), and

ye Dx)

3) A“(x x) =2k —k

Proof. The first claim is obvious, while the second follows from ), A%(x,y) =
ye I(x)
(A*D)(x,x) — A%(x,x) ~ ¥, A%(x,y), A*(x,y) = O for x and y at distance 1 by
ye Ii(x)
Lemma 2.2(3), and 4%J = k2J. Also, from A?%(x,y) > 1 for x and y at distance 2, we
have Y  A%(x,y) > ky(x).

ye (x)
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Toprove(3),let B = A% — kI, then B> = A* — 2kA* + k*I,and so, Y. (B(x,y))?
. ally
= B%(x,x) = A*(x,x) — k2. Since

Bxx))+ ¥ BEyP+ X Bxy)—-D*+ > (Bxy)

ye I(x) ye {x) ye I 3(x)

= a;, Bx,»)P? -2 Y B(Xxy) +k(x)=0

ye [(x)

replacing ; (B(x,y))* by B?(x,x) = A*(x,x) — k?, we have
ally

A*x,x) =2 Y A%(x,y) — ky(x) + k2 = 2k* — k

ye N(x)

as required. O

3. Proof of the Main Theorem
It is obvious for the case k = 2. We give a proof for the case k = 6 only. Similar and

somewhat simpler arguments work for cases k = 3, 4, 5. Let k = 6, in this case,

6 |6 4 2 -1 -3 -5
Spec(r)“(mi 1 4 165 132 110 10)

and p(x) = (1/12)(x> + 3x* — 23x3 — 51x2 + 94x + 120), i.e.,
A% +3A4% —23A4% — 5142 + 944 + 1201 = 12J (**)

The following are immediate consequences of the previous lemmas:

(3.1) Fori <4, A¥*'7i(x,y) = 0for x, y € V(I') at distance j, 0 < j < i, by Lemma
2.2(1). .

(3.2) a/x,y) =0 for x, y e V(I') at distance i, i < 4, by Lemma 2.2(3).

(3.3) by(x,x) = 6 and b,(x,y) = 5 for x, y € V(I'} at distance 1, by (3.2).

(3.4) A%(x,x) = 6, by Lemma 2.4(1).

(3.5) Y A*(x,y) =30, by Lemma 2.4(2).

ye I{x)
(3.6) A*(x, %) > 96 — k,(x) > 66, by Lemma 2.4(3).

Lemma 3.7.

(1) A*(x,x) = 66, and k,(x) = 30 for all x e V(I").
(2) c,(x,y) = A%(x,y) = 1 and b,(x,y) = 5 for x, y € V(I') at distance 2.
(3) A3(x,y) = 11 for x, y € V(I') at distance 1.

Proof. (1) follows from (3.6) and the fact that the average of 4*(x,x) is equal to
Y mie;‘) / 462 = 66.

0<7<5
(2) Since Y A*(x,y) =30by(3.5), A%(x,y) = 1ifd(x,y) = 2, and k,(x) = 30.
ye [3(x)

It follows that A%(x,y) = 1 whenever d(x, y) = 2. Hence b,(x,y) = 6 — c,(x,}) =5
by (3.2).
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3)
Ay = Y A%x2)
ze I(y)
= A%(x,x) + Y Aix2)+ Y. A4%*x,z) byLemma2.1l
ze N(MNN(x) ze I (Y)Nix)
=6+ |I(y)NTI,(x)] by(3.4)and (3.2)
=11, by(33)
as required. O
Lemma 3.8.

(1) A3(x,y) = 171 for x, y € V(I') at distance 1,

(2) A*(x,y) =21 for x, y € V(I') at distance 2.

Proof. A%(x,y) =.A%(x,y) = 0 by (3.1), and A3(x,y) = 11 by Lemma 3.7(3) for x,
y € V(I') at distance 1. Also, A3(x,y) = A*(x,y) =0 by (3.1) for x, ye V(I') at
distance 2. Applying these to (**), we obtain both (1) and (2) immediately. a

Lemma 3.9.

(1) A*(x,y) = 4 for x, y € V(I') at distance 4.

(2) C3(X,y) = Aa(x,}’) = 2’ b3(x3Y) = 4’ and As(x,}’) = 58 fO" X, V€ V(F) at diS-
tance 3.

Proof. (1) For x, y € V(I') at distance 4, since 34*(x, y) + 43(x,y) = 12, and 4°(x, y)

= 0, we have A*(x,y) = 4.
(2) Since 4(x, y) — 2343(x, y) = 12, by (**) and (3.1),

Axyy= Y A*xz2)

ze I1(y)
= Y A*x2) + Y A*x,z2) byLemma 2.1and(3.2)
ze (N Iix) ze N(NT(x)

= 21c;(x, y) + 4b5(x,y) by Lemma 3.8(2)
= 4(bs(x,y) + c3(x,)) + 17¢5(x, y)

=4(6 — a3(x,))) + 17c5(x, y)

24 + 17¢4(x, y), and

A= Y A*x2)

ze Ii(y)

A?(x,2)

ze N(p)NIx)

[F(»NIh(x)] by Lemma 3.7(2)

= C3(X, y)

wehave 24 + 17¢5(x,y) — 23c5(x, y) = 12. Hence c3(x, y) = 2,b3(x,y) = 6 — c5(x, y)
= 4, and consequently 4°(x, y) = 58. O
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Lemma 3.10.

(1) cafx,¥) = 2, by(x,y) = 4 for x, y € V(I') at distance 4,

(2) A3(x,y) = 12, and so cs(x,y) = 3, as(x,y) = 3 for x, y € V(I') at distance 5.

Proof. (1) Since A*(x, y) = Y A3(x,2) = 2c,4(x,y) = 4 by Lemma 3.8, it fol-
ze Ii{(y)NI3(x)

lows that c,(x, y) = 2 and thus b, (x, y) = 4.

(2) For x, y € V(I') at distance 5, since A%(x,y) = 12 by (**), and A°(x,y) =
A*(x,z) = 4cs(x,y) by (1), we have c5(x, y) = 3and thus as(x,y) = 3. O
ze NN ILL(»)

Up to this point, we may conclude that I"is a distance regular graph of diameter

5 with intersection array
011223
00 O0O0O0 3
6 55 440

indeed, it is exactly the intersection array of Og. Hence, I” is isomorphic to O4 by
Theorem 3 {6]. This completes the proof of the main theorem for the case k = 6.

b

References

1. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings

Lecture Note Series (1984)

Biggs, N.: Algebraic Graph Theory, Cambridge Univ. Press, Cambridge, 1974

Biggs, N.: Some Odd Graph Theory, Proc. Second Internat. Conf. on Comb. Math.,,

Annals of the New York Academy of Science, 319, 71-81 (1979)

4. Laskar, R.: Eigenvalues of the Adjacency Matrix of Cubic Lattice Graphs, Pacific J.
Math. 29 (3), 623-629 (1969)

5. Bose, R.C, Laskar, R.: Eigenvalues of the Adjacency Matrix of Tetrahedral Graphs,
Aequationes Math. 4, 37-43 (1970)

6. Moon, A.: Characterization of the Odd Graphs O, by Parameters, Discrete Math. 42,
91-97 (1982)

7. Schwenk, A.J., Wilson, R.J.: On the Eigenvalues of a Graph, pp. 307-336 in: Selected
Topics in Graph Theory, L.W. Beineke and R.J. Wilson (eds), Academic P., 1981

w



