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Abstract. Let k be an integer with k > 2. The Odd graph Ok has the (k - 1)-subsets of 
{ 1, 2 . . . . .  2k - 1} as vertices, and two vertices are adjacent if and only if their corresponding 
subsets are disjoint. We prove that the odd graphs Ok (k < 6) are characterized by their spectra 
among connected regular graphs. 

1. Introduction 

We shall consider  only finite undirected graphs  wi thout  loops and  mult iple  
edges. N o w  assume F i s  a connected g raph  with d iamete r  d, let F~(x) = {YlY e V(F) 
and d(x,y) = i}, where V(F) is the vertex set of  F and  d(x,y) is the distance 
between vertices x and  y. A distance-regular graph is one for which the p a r a m -  
eters cl = I F i - t ( x )  A FI(y)[, ai = If/(x) fl FI(y)I and  bi = IF~+l(x) A Ft(y)I  depend 
not  on par t icular  vertices we choose,  but  only on the distance i = d(x, y) between 
them. I t  is clear tha t  c o = a o = b a = 0, c 1 = 1, a i = b o - bi - c~. The  following 
a r ray  

C C 1 C 2 Cd 1 
a o  a l  a 2  . . .  a d 

bo bl b2 bd 

is called the intersection array of F. 
The  adjacency mat r ix  A(F) of  a g raph  F is a square  (0, 1) mat r ix  whose rows 

and  columns  are indexed by vertices of  F, and  A(x,y) = 1 if and only if the 
vertices x and  y are adjacent.  The  spec t rum of  A is also called the spec t rum of the 
g raph  F. I t  is wor th  ment ion ing  here tha t  the spec t rum of a dis tance-regular  
g raph  is de te rmined  by its intersection array,  refer to [1] and  I2, p. 141-143]  for 
details. 

Let  k be an integer with k > 2. The  O d d  graph  O k of characterist ic  k has the 
(k - 1)-subsets of  {1, 2 . . . .  ,2k - 1} as vertices, an  two vertices are adjacent  if and  
only if their cor responding  subsets are disjoint. The  small  odd  graphs  are the triangle 
K 3 (k = 2), and  t h e  Petersen g raph  (k --- 3). In  general,  the odd  graphs  Ok are 
dis tance-regular  g raphs  of d iameter  k - 1 with intersect ion a r r a y  
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Ii 1 2 2 1 0 0 0 0 ... 0 (k 1)/2 

k - 1  k - 1  k - 2  k - 2  ( k + 1 ) / 2  

for odd k, and 

[ i O1 O1 02 02 ... (k/2) - I (k/2) - i k / k i l O  0 

k - 1  k - - 1  k - 2  k - 2  ( k / 2 ) + !  ( k /2 )+1  

for even k. 

The eigenvalues of Ok are the integers 0~ = ( -  1)i(k - i) with multiplicity m~ = 

- for0  < i < k - 1 (refer to [11 or [3]). A. Moon l6, Theorem 
i - 1  

3] proved that all distance-regular graphs with the same intersection arrays as those 
of Ok are isomorphic to 04. Under a weaker condition, i.e., distance-regularity, this 
confirmed a conjecture made by N. Biggs [3] that any distance-transitive graph 1, 
which has the same spectrum as that of O~ is isomorphic to Ok- Based on the above 
result of A. Moon,  we will show in this note that 

Main Theorem. I f  1" is a re#ular connected #raphs with the same spectrum as that of 
Ok, k < 6, then it is isomorphic to Ok. 

The main theorem is proved in Section 3. Its basic idea is to derive all informa- 
tion about c~(x, y), a~(x, y) and b~(x, y), defined in Section 2, for x, y ~ V(F) at distance 
i, 1 < i < k - 1, from Ai(x,y), where 1 < j  < k - 1, and A is an adjacency matrix of 
F, and then to conclude that 1, must be a distance-regular graph. 

Remark. 

(1) Cubic lattice graphs I-4] and Tetrahedral graphs 15] are characterized by their 
spectra under extra conditions on the second valency. 

(2) We suspect that the cospectral matres of Ok (k > 7) may exist, though we did 
not succeed in constructing any one of them yet. 

2. Some Notation and Preliminaries 

Throughout  the rest of this note, we assume that F is a connected, regular graph 
with valency k which has the same spectrum as that of odd graph Ok, i.e., exactly 
as mentioned in Section 1. Let A be an adjacency matrix of F. The following 
notations are used. 

(1) ki(x ) = I~(x)l, i.e., the number of all vertices at distance i from x e V(F). In 
particular, kl(x ) = k for all x ~ V(F) by the regularity of F. 

(2) If x and y E V(F) at distance i, define 

~ cl(x,y) i f j = i - 1  

I~(x)nFl(y)l = Jai(x,y) i f j  = i 
I 

[.b~(x,y) i f j = i + l  
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We note that F is distance-regular whenever all ci(x, y), ai(x, y) and bi(x, y) are 
functions of d(x, y) = i, independent of the choice of x and y, 0 < i < k - 1. 

In the proof of the main theorem, we need some essential properties of the graph 
F which are reflected on the spectrum of F. It is well known that 

(1) A~(x,y) is the number of walks of length i in F joining x and y, [2, p. 11], and 
k--1 

(2) Tr(W)  = ~ mjO] is equal to the number of closed walks in F of length i, [7, 
j = 0  

p. 310]. In particular, Tr(A 3) is equal to six times the number of triangles in F. 
Further, 

Lemma 2.1. I f  d(x, y) = i, then 

AJ+1(x,y) = E A (x, z) + AJ(x, z) + E aJ(x,z) 
z e Fx (y)N G_ x (x) z e F1(y)flG(x) ze Fx(ylfl~+t(x) 

Proof. It follows from A#+t(x,y) = (A#A)(x,y) = ~. A#(x, z), and the fact that 
z~ G(Y) 

Fi(x ) fq Ft(y)  is empty if j  ~ i - 1, i or i + 1. [ ]  

Lemma 2.2. 

(1) ASi+ l (x ,x )  = O for  i ~ k - 2, 
(2) ASi+l-J(x,y) = O for  y E Fj(x), 1 < j < i, and 
(3) ai(x, y) = 0 for  all y ~ Fi(x ), i < k - 2. 

Proof.  (1) follows from the fact that the parameters ai, i < k - 2, of Ok are zero, Ok 
k - 1  

has no cycles of length 2i + 1, i _< k - 2, so Tr(A 2i§ = ~ m.O .2i§ s = 0. (2) and (3) 
j = O  

are immediate from (1). []  

Lemma 2.3 [2, p. 15]. Let q(x) = 1--I (x - 0~), and p(x) = [V(F)I q(x)/q(k), then 
l < i < k - 1  

p(x) is the unique polynomial o f  smallest degree such that p(A) = J, where J is the all 
l 's square matrix of  order IV(F)[. 

Lemma 2.4. For each x ~ V(F), 

(1) AS(x,x) = a(x,y)  = k ,  
y~ F1(x) 

(2) ~ AZ(x, y) = k s - k > kz(x), and 
y ~ G(x )  

(3) A4(x ,x )  > 2k s - k 

Proof. The first claim is obvious, while the second follows from ~ AZ(x, y) = 
ye/'2(x) 

(A2J)(x,x) - A2(x,x) - ~ A2(x,y), A2(x,y) = 0 for x and y at distance i by 
y~ Ft(x) 

Lemma 2.2(3), and AzJ  = kZJ. Also, from AZ(x,y)  ~ 1 for x and y at distance 2, we 
have ~ Aa(x,y)  > kz(x). 

y ~ F2(x) 
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To prove (3), let B = A 2 - kI, then B 2 = A 4 -- 2kA 2 + k2I, and so, ~ (B(x, y))2 
all y 

= B2(x, x) = A4(x, x) - k 2. Since 

(B(x,x)) 2 + ~ (B(x,y)) 2 + ~ (B(x ,y) - -  1) 2 + ~ (B(x,y)) 2 
y~  Ft(x) y~ / '2 (x )  y ~ / ' a  3(x) 

= ~ (B(x,y)) 2 - 2  ~ B ( x , y ) + k z ( x  ) > 0  
all y y ~ F2(x) 

replacing ~ (B(x, y))2 by B 2 ( X ,  x )  = A4(x, x) - k 2, we have 
all y 

h4(X,X) >_ 2 ~ A2(x,y) -- k2(x ) q-" k 2 >_ 2k 2 - k 
y~/'z(x) 

as required. [ ]  

3. Proof of the Main Theorem 

It is obvious for the case k = 2. We give a proof  for the case k = 6 only. Similar and 
somewhat  simpler arguments work for cases k = 3, 4, 5. Let k = 6, in this case, 

S p e c ( F ) = ( 0 ,  I 6 4 2 --1 --3 1 5  ) 
mi 1 44 165 132 110 

and p(x) = (1/12)(x 5 + 3x 4 - 23x 3 - 51x 2 + 94x + 120), i.e., 

A 5 + 3 A  4 - 2 3 A  3 - 5 1 A  2 + 9 4 A + 1 2 0 1 = 1 2 J  (**) 

The following are immediate consequences of the previous lemmas: 

(3.1) For  i < 4, A21+l-J(x,y) = 0 for x, y ~ V(F) at distance j, 0 < j  < i, by Lemma 
2.2(1). 

(3.2) ai(x, y) = 0 for x, y ~ V(F) at distance i, i < 4, by Lemma 2.2(3). 
(3.3) bo(x,x) = 6 and bz(x,y) = 5 for x, y ~ V(F) at distance 1, by (3.2). 
(3.4) A2(x, x) = 6, by Lemma 2.4(1). 
(3.5) ~ A2(x,y) = 30, by Lemma 2.4(2). 

y ~ F2(x) 
(3.6) A4(x,x) >_ 96 -- k2(x ) > 66, by Lemma 2.4(3). 

Lemma 3.7. 

(1) A4(x,x) = 66, and k2(x) = 30for all x ~ V(F). 
(2) c2(x,y ) = A2(x, y) = 1 and b2(x,y ) = 5 for x, y ~ V(F) at distance 2. 
(3) A3(x,y) = 11 for x, y ~ V(F) at distance 1. 

Proof. (1) foUows from (3.6) and the fact that  the average of A4(x, x) is equal to 

( o ~ 5  rn,0~)/462 = 66. 

(2) Since ~ A2(x,y) = 30 by (3.5), A2(x, y) >_ 1 ifd(x,y) = 2, and k2(x ) = 30. 
y ~ F2(x) 

It follows that  A2(x, y) -- 1 whenever d(x, y) = 2. Hence b2(x, y ) = 6 - c2(x, y ) = 5 
by (3.2). 
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(3) 

A3(x,y)= Y~ A~(x,z) 
z �9  FAy) 

= A2(X,X) + ~ A2(x, z) + 
ze FI(y)NFtix) 

= 6 + IFI(y)NFE(X)I 

= 1 1 ,  by  (3.3) 

as required. 

Lemma 3.8. 

(1) AS(x,y) = 171 for x, y �9 V(F) at distance 1, 
(2) A4(x,y) = 21 for x, y �9 V(F) at distance 2. 

z ~ Fl(y)nF2(x) 

by (3.4) and (3.2) 
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a 2 ( x ,  z) by L emma  2.1 

[] 

Proof. A4(x,y) =.A2(x,y) = 0 by (3.1), and AZ(x,y) = 11 by L emma  3.7(3) for x, 
y �9 V(F) at distance 1. Also, AS(x,y) = Aa(x,y) = 0 by (3.1) for x, y �9 V(F) at 
distance 2. Applying these to (**), we obtain bo th  (1) and (2) immediately.  [ ]  

Lemma 3.9. 

(1) A4(x, y) = 4 for x, y �9 V(F) at distance 4. 
(2) c3(x,y ) = A 3 ( x , y ) =  2, b 3 ( x , y ) =  4, and AS(x ,y )=  58 for x, y �9 V(F) at dis- 

tance 3. 

Proof. (1) F o r  x, y �9 V(F) at distance 4, since 3A4(x, y) + AS(x, y) = 12, and AS(x, y) 
= 0, we have A4(x, y) = 4. 

(2) Since AS(x,y) - 23A3(x,y) = 12, by (**) and (3.1), 

AS(x,Y) = ~., A4(x,z) 
z �9 FAy) 

= ~., A4(x,z) + ~ A4(x,z) by L emma  2.1 and (3.2) 
z �9 .rl (y)N F2(x) z �9 El (y)N F4(x) 

= 21c3(x, y) + 4b3(x,y) by Lemma 3.8(2) 

= 4(b3(x,y ) + c3(x,y)) + 17c3(x,y) 

= 4(6 - aa(x,y)) + 17c3(x,y ) 

= 24 + 17c3(x,y), and 

A 3 ( x ' Y )  = Z A 2 ( X ' z )  
z �9 FI(y) 

= Y, A~(x,z) 
z �9 Ft (y)n F2{x) 

= IF~(y) fq F2(x)l by L e m m a  3.7(2) 

= C3(X, y ) 

we have 24 + 17c3(x, y) - 23c3(x, y) = 12. Hence c3(x, y) = 2, ba(x, y) = 6 - c3(x, y) 
= 4, and consequent ly  AS(x,y) = 58. [ ]  
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Lemma 3.10. 

(1) c4(x,y ) = 2, b4(x,y  ) = 4 f o r  x, y ~ V(F)  at distance 4, 
(2) AS(x, y) = 12, and so c~(x, y) = 3, as(x, y ) = 3 for  x, y ~ V(I') at distance 5. 

Proof. (1) Since A4(x,y)  = ~ Aa(x,z)  = 2c4(x,y) = 4 by Lemma 3.8, it fol- 
z ~ F~(y)NF3(x) 

lows that c4(x, y) = 2 and thus b4(x, y) = 4. 
(2) For  x, y ~ V(F) at distance 5, since AS(x,y)  = 12 by (**), and AS(x,y)  = 
~. A4(x,z)  = 4 c s ( x , y ) b y ( 1 ) , w e h a v e c s ( x , y  ) = 3 a n d t h u s a s ( x , y  ) = 3. [] 

z e .FI (y)n  .T'4 (y) 

Up to this point, we may conclude that F i s  a distance regular graph of diameter 
5 with intersection array 

0 0 0 0 

5 5 4 4  

indeed, it is exactly the intersection array of 06. Hence, F is isomorphic to 06 by 
Theorem 3 [61. This completes the proof of the main theorem for the case k = 6. 
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