
0740-7475/04/$20.00 © 2004 IEEE Copublished by the IEEE CS and the IEEE CASS March–April 2004

TESTBENCHES play one of the most important roles

in simulation-based design verification. Given a simula-

tion scenario, a testbench provides specific vectors to sim-

ulate the design, then collects responses from the design

to monitor whether the simulation has satisfied the sce-

nario.1 The major bottleneck in writing testbenches is

generating valid simulation vectors. Traditionally, test-

bench engineers generate these vectors manually—a

time-consuming and troublesome task. Moreover, manu-

ally generated simulation vectors rarely cover all simula-

tion scenarios. Automated generation of simulation

vectors is therefore vital for effective simulation.

Many current automatic-vector-generation methods

focus on exploring a design’s state space. Due to mem-

ory or runtime limitations, these methods cannot keep

up with the rapid growth of design complexity. We pro-

pose a novel algorithm based on the divide-and-con-

quer paradigm that helps these methods decompose

the design’s complexity. The algorithm uses a parti-

tioning method that recursively divides a design into

smaller, more manageable components. Other

approaches handle the divided components while

maintaining the entire design’s proper

functioning. Experimental results demon-

strate that vector generation methods,

with the help of our algorithm, improve

the coverage of simulation scenarios.

Automatic simulation vector
generation

Researchers have proposed many

techniques for automatic simulation vec-

tor generation. These techniques generally fall into

three categories: random simulation, symbolic solvers,

and hybrid solvers.

Random simulation generates sets of simulation vec-

tors by randomly assigning the logic values to the

design’s primary inputs (PIs) one cycle at a time.

Random simulation’s strengths are that it allows easy

acquisition of simulation vectors, and it offers a deep

state-space search distance. Its weakness is that it uses

only one trace to explore the state space. Because ran-

dom simulation is easy to implement and can generate

useful simulation vectors, most vector generation

engines use this technique.

Unlike random simulation, which uses only a single

trace, symbolic solvers attempt to simultaneously enu-

merate all possible primary inputs to explore the entire

state space.2-6 They typically use binary decision diagrams

(BDDs) or satisfiability (SAT) solvers as their core engine.

A symbolic solver’s main feature is its exhaustive search

ability. Furthermore, a symbolic solver obtains simula-

tion vectors that are much more compact than those

obtained by random simulation. As the state space

A Divide-and-Conquer-
Based Algorithm for
Automatic Simulation
Vector Generation

Editor’s note:
Divide-and-conquer is a natural way to cope with the complexity of automatic
testbench generation. The key to developing an effective divide-and-conquer
approach is to identify the partitioning boundaries where interactions among
divided components are minimized. The authors propose a novel design
decomposition scheme and show how it can help improve the performance
of constraint solving for test generation.

—Magdy S. Abadir, Motorola

Chia-Chih Yen and Jing-Yang Jou
National Chiao Tung University

Kuang-Chien Chen
Cadence Design Systems

111

search distance grows deep, however, the size of BDDs

and the clauses representing the design’s symbolic for-

mulas also grow, causing time and memory limitations

when symbolic solvers are used for vector generation.

Consequently, in large designs, symbolic solvers have

only bounded search capability of state space.

Hybrid solvers apply random simulation as their

basic engine to handle easy simulation scenarios and

enhance the state space search depth.7,8 They then use

several symbolic solvers to locally explore all possible

conditions. By tightly integrating random simulation

and symbolic solvers, hybrid solvers improve simula-

tion vector generation. However, a design’s state space

can grow exponentially as its complexity increases,

making it impossible for either random simulation or

symbolic solvers to explore more than a small bit of it,

and thus reducing the efficiency of hybrid solvers.

We focus on helping these vector generation tech-

niques decompose a design’s state space. Rather than

create a more powerful solver, we use a hybrid solver

as the embedded engine in our approach. Our algo-

rithm’s divide-and-conquer approach attempts to recur-

sively partition the entire design into smaller

components, which it then handles independently. We

believe this is the only way to keep pace with design

complexity’s rapid growth.

We use a (variable, value) pair to represent a given

simulation scenario; that is, we monitor the design vari-

able with a specific value during simulation. This pair is

our algorithm’s target. In other words, our algorithm aims

to generate valid simulation vectors for the targets from

a given initial state. Initially, the algorithm uses the

embedded solver to solve the target directly. If the solver

determines that solving the target for the entire design

will require many resources, the algorithm divides the

design into two cascaded components, restricting the tar-

get to the rear component. The algorithm can therefore

handle the rear component regardless of the front one.

After solving the target for the rear component, the

algorithm obtains the internal simulation vectors.

Because the divided components are cascaded, the rear

component’s inputs are simply the front component’s

outputs. Hence the internal simulation vectors are also

the front component’s output values; we view these vec-

tors as the front component’s targets. In other words, the

algorithm transfers the original target from the rear to

the front component. Of course, we must set up con-

straints from the rear component to the front compo-

nent to guarantee that the entire design functions

correctly. Finally, the algorithm handles the front com-

ponent and combines the results of both parts to form

the actual simulation vectors for the target.

Because our algorithm takes a divide-and-conquer

approach, the manipulations described here are recur-

sive. Therefore, if some divided components are still too

complex for the embedded solver to handle, the algo-

rithm partitions them into tiny parts.

Deducing the algorithm
Figure 1 illustrates an examination of the relation-

ship among the simulation’s target, the state transition

sequence, and the locations of registers in a design.

Figure 1a shows the design under verification. The

design contains six flip-flops (FFs): three located at the

front, and three in the rear. PI and PO are the design’s

primary input (PI) and primary output (PO).

Observations
Assume the design contains code fragment if (T ==

`IDLE), PO <= 0, and a given simulation scenario requests

that we trigger condition if (T == `IDLE) in simulation

from an initial state. In other words, the simulation sce-

nario asks us to generate some simulation vectors for PI

such that variable T has value `IDLE. We refer to T and

`IDLE as a target for the vector generation problem input.

In Figure 1a, the target is in the rear part of the design.

Assume we know the target’s simulation vectors.

Figure 1b shows the corresponding state transition

sequence after applying these vectors to the design. We

define the final state that fires the target as the target state.

If we observe only the state variations shown in

Figure 1b, we obtain no results. However, because the

values of two groups of FFs concatenate each state, we

attempt to observe each group’s state transition

sequence. We therefore attempt to divide the design

into two cascaded components, as Figure 1c illustrates.

We denote the front component CKTM, the rear com-

ponent CKTS, and the net connection between the two

components PI_S, which is not only the PI of CKTS but

also the PO of CKTM. Both CKTM and CKTS have three

FFs, but the target is only located at CKTS. Based on the

cascaded partition, the design’s state transition

sequence is also split into two parts.

Figure 1d and 1e depict the state transition sequences

of CKTM and CKTS. The states in Figure 1d and 1e are the

former and the latter three bits of the state in Figure 1b.

The state in Figure 1d changes frequently, whereas the

state in Figure 1e seems to retain the same value until

some condition occurs that causes it to go to the target

state. Actually, CKTS has only two different states in the

Functional Verification and Testbench Generation

112 IEEE Design & Test of Computers

state transition sequence: initial state 000

and target state 010. In most cases, CKTS

performs self-transition, meaning a state

transfers to itself. The PI_S value influ-

ences the state transition of CKTS because

PI_S is the PI of CKTS. Figure 1e also shows

that if PI_S equals value r, CKTS transfers

from state 000 to state 010; if PI_S equals

value c, CKTS stays in state 000. If we treat

CKTS as an independent design, assign-

ment r for input PI_S is the target’s simu-

lation vector. However, PI_S is just the

design’s internal net, and we cannot

directly control its value.

We calculate the value of PI_S using

the value of PI and the current state of

CKTM. More specifically, CKTM generates

the value of PI_S. Thus, if we know the

relationship between the value of PI_S

and the state transition of CKTS, as Figure

1e depicts, we can control the value of PI

in CKTM to let the state of CKTS either per-

form self-transition or go to the target

state. In other words, we can control the

value of PI such that CKTM must generate

value c for PI_S before it generates value r

for PI_S. This manipulation causes CKTS

to retain the same state, 000, until PI_S

obtains value r from CKTM.

Using these observations, we begin to

deduce the flow for the generation of

simulation vectors.

Divide and conquer
Because we focus on reducing a

design’s complexity to assist vector gen-

eration engines, our method uses a pro-

posed hybrid solver as its embedded

engine. Moreover, the (variable, value)

pair represents the target and the con-

straints in our algorithm. Hence, pair (T,

`IDLE) represents the target in Figure 1a.

After we give a design’s target and initial

state, several steps attempt to generate

valid simulation vectors. Figure 2 demon-

strates these steps for the design shown

in Figure 1a.

Step 1: Divide the design. Initially, we apply the

embedded solver to the entire design. However, the

solver is less efficient if the design is too complex. We

therefore establish a maximum number of times that the

solver can employ symbolic techniques in the design. If

113March–April 2004

PI_S

CKTM CKTS

CKTM CKTS

(c)

(d) (e)

000

001

101

011

110

000

010

PI_S = c

PI_S = r=

Initial
state

Target
state

Initial
state

Target
state

PO

Design under verification

PI

3 flip-flops
(FFs)

Target

(a) (b)

3 FFs

POPI

3 FFs

Target

3 FFs

000-000

000

000

000

000

010

Initial
state

Target
state

001-000

101-000

011-000

110-010

Figure 1. Examining the relationship between the state transition

sequence of a design and the locations of the target and flip-flops (FFs): a

design under verification (a), its state transition sequence (b), two

cascaded components after design partitioning (c), and the state

transition sequences of the front component (CKTM) (d) and the rear

component (CKTS) (e).

the solver exceeds this number while handling the

design, we divide the design into two cascaded compo-

nents. Figure 2a depicts this partitioning

step. Note that the original target is always

located at the rear component (CKTS).

Step 2: Conquer the rear compo-
nent. After dividing the design, we can

view the rear component as an indepen-

dent design. Because the original target is

in the rear component, we apply the

embedded solver to solve the target. As

Figure 2b shows, we obtain a simulation

vector PI_S = r for target (T, `IDLE). That

is, if we assign value r to input PI_S from

the initial state, variable T has value

`IDLE in CKTS.

Step 3: Generate the rear compo-
nent’s state transition sequence.
Because the rear component’s input val-

ues are not the exact simulation vectors

for the design, we transfer the results to

the front component. Thus, we need to

know the rear component’s state transi-

tion sequence. We learn this by simulat-

ing the obtained simulation vectors in

the rear component. Figure 2c shows the

result of applying vector PI_S = r to CKTS.

We obtain target state 010 from initial

state 000. According to the state transi-

tion sequence for CKTS, we can set up

the target and constraints for CKTM.

Step 4: Set up the target and con-
straints for the front component.
From our observations, we know that the

rear component must retain the same

state until the front component generates

some desired input values. Therefore, we

constrain the front component to gener-

ate some specific output values. The self-

transition state characteristic in the rear

component fulfills this purpose. For exam-

ple, Figure 2d shows that value c for PI_S

lets CKTS perform self-transition. Because

PI_S is also the PO of CKTM, we set up pair

(PI_S, r) as the CKTM target, and pair (PI_S,

c) as its constraint. The setup means that

before CKTM generates output value r for

PI_S, it must generate value c for PI_S such that CKTS can

keep the same state, 000.

Functional Verification and Testbench Generation

114 IEEE Design & Test of Computers

(b)

(d)

(a)

PI_S

CKTM CKTS

PO

Design under verification

PI

Target

POPI
Target

PI_S

PI_S = r

CKTS

Target

Solver

(c)

000

010

PI_S = r

PI_S = r

CKTS

Target

Simulation

000

010

Target =
(PI_S, r)
Constraint =
(PI_S, c)

PI_S = c

PI_S

PI_S = r

CKTM

PI

000

010

PI_S = r

CKTSCKTS

(e)

CKTM

PI0 = u1
PI1 = u2
PI2 = u3

Solver

Target =
(PI_S, r)
Constraint =
(PI_S, c)

PI_S

PI

Figure 2. Deducing the vector-generation algorithm: partitioning (a),

solving the first target (b), generating a state transition sequence (c),

setting up targets and constraints (d), and generating results (e).

Step 5: Conquer the front compo-
nent. After setting up the target and con-

straints for the front component, we can

treat it as an independent design and

apply the embedded solver to generate

results. Figure 2e depicts the obtained

simulation vectors for CKTM. We obtain

the assignments of PIi in the result, where

i is the cycle time for the values applied

to PI. We therefore need to apply vector

PI = u1 at cycle time 0, PI = u2 at cycle

time 1, and PI = u3 at cycle time 2 for sim-

ulation.

Step 6: Combine the results. Because

we have conquered both the front and

rear components, we can combine their

results. In the example shown in Figure 2,

all PIs are located at CKTM, so we don’t

need to extract the values from the CKTS

inputs. In some designs, however, the rear

component might contain several PIs. In

this case, we should extract those assign-

ments and concatenate them behind the

values obtained from the front compo-

nent. The last PIs assigned in a design are

the desired simulation vectors.

The front and rear components can

share PIs, but this can cause the com-

bining step to fail because the inputs have conflicting

value assignments. In other words, step 6 fails when the

front and the rear components try to assign different val-

ues to the shared inputs at the same cycle time. To

avoid this situation, we add constraints in step 4. That

is, we consider the values of the shared PIs obtained

from the rear component in step 2 as constraints when

handling the front component. These constraints force

the front component to generate the same values of the

shared inputs as those generated by the rear compo-

nent. Therefore, we guarantee success when we com-

bine the results.

Figure 3 shows how we validate our algorithm by sim-

ulating the obtained vectors in the design. At cycle time

0, we apply vector PI = u1. CKTM generates value c for out-

put PI_S, and its state transfers from 000 to 001. The FF

feature causes value c for PI_S generated at cycle time 0

to transfer to CKTS at cycle time 1. Therefore, CKTS uses

the initial PI_S value to proceed to the next state.

The algorithm checks the initial CKTS values in step

2. If the initial PI_S value cannot keep CKTS in its origi-

nal state, we move to another initial state by applying

random simulation to the entire design and then per-

form step 2 again. At cycle time 1, we apply vector PI =

u2. CKTM transfers from state 001 to state 101, while CKTS

performs self-transition from state 000 to state 000

because CKTM passed the vector PI_S = c to it.

At cycle time 2, we apply vector PI = u3. CKTM solves

its target at state 101 and generates value r for PI_S while

CKTS retains state 000. Because vector PI_S = r naturally

appears in CKTS at cycle time 3, assigning PI at this time

is trivial. Therefore, we apply random vectors for PI at

cycle time 3, and thus the CKTM state at cycle time 4 is

not always 110. However, CKTS goes to target state 010

at cycle time 4, giving variable T its desired value, ̀ IDLE.

Typically, the rear component produces more than

one simulation vector, and therefore more than one tran-

sition occurs in the rear component’s state transition

sequence. In the example in Figure 4, CKTS generates two

simulation vectors, PI_S = r1 and PI_S = r2. In this case, the

algorithm operates steps 4 and 5 repeatedly. It first han-

dles the state transition from state 000 to state 100, and

115March–April 2004

Design under verification

Target

Simulation

PI0 = u1
PI1 = u2
PI2 = u3

PI3 = don't care

CKTM

000

001

101

011

110

PI0 = u1 / PI_S1 = c

PI1 = u2 / PI_S2 = c

PI2 = u3 / PI_S3 = r

PI3 = don't care

CKTS

000

000

000

000

010

PI_S0 = c (initial value)

PI_S1 = c

PI_S2 = c

PI_S3 = r (target solved)

Figure 3. Validating the obtained simulation vectors.

sets up target (PI_S, r1) and

constraint (PI_S, c1) for

CKTM. After solving the tar-

get in CKTM, it reapplies

step 4. At the same time,

the algorithm sets up target

(PI_S, r2) and constraint

(PI_S, c2) for CKTM accord-

ing to the state transition,

100 to 111, in CKTS. Finally,

it joins the two results and

performs step 6.

Vector generation
algorithm

Figure 5 shows the

basic procedures and

flows for our vector gener-

ation algorithm.

The Gen_Sim_Vec pro-

cedure is our algorithm’s

interface. It accepts a given design under verification, an

initial design state, a target representing a simulation sce-

nario, and the design constraints. Both the target and the

constraints use (variable, value) for manipulation.

Gen_Sim_Vec solves only one target at a time.

The Solve_Target procedure is the algorithm’s

embedded hybrid solver, combining random simula-

tion and symbolic solvers, which apply BDDs and SAT

techniques. To maintain efficiency, we limit the num-

ber of times Solve_Target can use the symbolic tech-

niques. In the beginning of our algorithm, we use the

embedded solver to solve the target in the design. If

Solve_Target exceeded the limit in handling the entire

design, it stops and the algorithm performs the follow-

ing functions.

The codes in lines 9 to 30 in Figure 5 illustrate the

algorithm’s major operations, which correspond to the

steps described in the previous section. The

Partition_CKT procedure divides the design into two

cascaded components: CKTM and CKTS. After partition-

ing the design, the algorithm performs Gen_Sim_Vec for

CKTS to generate its simulation vectors, SIM_VECS.

Gen_Sim_Vec proceeds recursively.

Procedure Gen_State_Seq outputs the state transition

sequence by applying SIM_VECS to CKTS. This procedure

corresponds to step 3 (described earlier). For each state

transition of CKTS, the algorithm applies Gen_Tar_Con

to obtain target tM and constraint CM for CKTM, as Figure

2d shows. In addition to ensuring that CKTS retains the

Functional Verification and Testbench Generation

116 IEEE Design & Test of Computers

000

111

PI_S = c1

PI_S = c2

PI_S = r2

100

PI_S = r1

CKTS

100

PI_S = c1

PI_S = r1

000

CKTs

111

PI_S = c2

PI_S = r2

100

CKTS

Target =
(PI_S, r1)
Constraint =
(PI_S, c1)

PI_S

CKTM

PI

Target =
(PI_S, r2)
Constraint =
(PI_S, c2)

PI_S

CKTM

PI

Figure 4. Setting up the target and constraints of CKTM from the state transition

sequence of CKTS.

1 Gen_Sim_Vec (CKT, s0, t, C) {
2
3 // Embedded solver must generate simulation vectors first.
4 // SIM_VEC is the simulation vectors for the design
5 SIM_VEC = Solve_Target (CKT, s0, t, C);
6
7 if (SIM_VEC == φ) {
8
9 // Step 1: Procedure for partitioning circuit,

10 // which returns two cascaded components:
11 // CKTM is the front component
12 // CKTS is the latter component
13 { CKTM, CKTS} = Partition_CKT (CKT, t);
14
15 // Step 2, 3: Procedure for handling CKTS

16 // SIM_VECS is the simulation vectors for CKTS

17 // STATES is the state transition sequence of CKTS

18 SIM_VECS = Gen_Sim_Vec (CKTS, s0, t, C);
19 STATES = Gen_State_Seq (CKTS, s0, SIM_VECS);
20
21 // Step 4, 5: Procedure for handling CKTM

22 // tM, CM are the target and constraint from the state of CKTS

23 // SIM_VECM is the simulation vectors for CKTM

24 for (i = 0; i < num(STATES) – 1; i++) {
25 {tM, CM} = Gen_Tar_Con (CKTS, STATES[i], STATES[i + 1]);
26 SIM_VECM += Gen_Sim_Vec (CKTM, s0, tM, C + CM);
27 }
28
29 // Step 6: Combine the result in SIM_VECM and SIM_VECS

30 SIM_VEC = Combine_Vector (SIM_VECM, SIM_VECS);
31 }
32
33 return SIM_VEC;
34 }

Figure 5. Simulation vector generation algorithm. CKT is the

design under verification, s0 is the initial state of CKT, t is the

target that represents a simulation scenario, and C is the

design constraint.

same state until CKTM solves tM, CM includes the con-

straints of shared PIs to guarantee the success of com-

bining the results When tM and CM are ready, the

algorithm performs Gen_Sim_Vec to generate the simu-

lation vectors for CKTM. Similar to CKTS, we can further

partition CKTM until the embedded solver succeeds.

Finally, the Combine_Vector procedure extracts and

concatenates the obtained results from handling CKTM

and CKTS to form the exact simulation vectors.

Backtracking algorithm
We omitted the backtracking procedures from Fig-

ure 5 to focus on our algorithm’s divide-and-conquer

approach. The algorithm should still function when

the loop (lines 24 to 27) fails. The loop can fail for two

reasons:

� The CKTS states do not have self-transition—that is,

we cannot set up constraints for CKTM.

� CKTM contains no solutions for the target.

In either case, the algorithm returns to line 18 to find

another simulation vector for CKTS and then attempts

to obtain another state transition sequence at line 19. If

the Gen_State_Seq procedure cannot generate a new

state transition sequence for CKTS at line 19, the algo-

rithm should abort and report a failure for the target.

Figure 6 gives the code fragment for the backtrack-

ing procedures. Conquer_CKTS represents the functions

at lines 18 and 19 in Figure 5, and Conquer_CKTM rep-

resents the codes in lines 24 to 27. We use variable

STATE_SEQ_SETS to record the obtained state transition

sequence of CKTS. The condition while (SIM_VECM = =

φ) determines the backtracking conditions.

Partitioning algorithm
Because our algorithm’s core technique is reducing

input complexity for the embedded solver while keep-

ing the design functioning correctly, the partitioning

approach is especially important. The Partition_CKT

procedure’s major goal is to divide a design into two

cascaded components, CKTM and CKTS, where CKTS

does not feed back to CKTM. Furthermore, the fewer

connections between CKTM and CKTS, the easier we can

transfer targets and constraints.

Procedure Partition_CKT includes five steps:

1. Find strongly connected components (SCCs) for the

gate topology in the design and create the SCC

graph. The weight of each vertex in the graph rep-

resents the number of FFs in the SCC. Denote Vt as

the vertex containing the target.

2. Perform topological sort for the SCC graph.

3. Eliminate the vertices behind Vt in topological order.

Compute the total weight (Wtotal) from the first ver-

tex to Vt.

4. Collect the former k vertices in topological order to

form the front component, CKTM. The total weight

of these k vertices ranges from (0.4)Wtotal to about

(0.6)Wtotal. This range aims to balance FF size

between CKTM and CKTS. Collect the remaining ver-

tices to form the rear component, CKTS.

5. If step 4 fails because the kth vertex has too much

weight, perform the topological sort for the gate

topology in this kth vertex. Collect the former m gates

according to the vertex’s topological order and add

them to the (k – 1) vertices collected in step 4 to form

CKTM. The total number of FFs among the (k – 1) ver-

tices and the m gates satisfy the balance criteria in

step 4. Collect the remaining gates in the kth vertex

and add them to the vertices from the (k + 1)th ver-

tex to Vt in the SCC graph to form CKTS.

In step 4, we eliminate the vertices behind Vt

because the gates in these vertices do not influence the

target. In other words, the target’s fan-in cone does not

include these gates. Therefore, CKTM and CKTS are actu-

ally the divided components of the target’s fan-in cone.

We use the SCC graph to guarantee that CKTS does not

have feedback connections to CKTM. Moreover, using a

topological sort guarantees that the target is always

located at CKTS. Nevertheless, SCCs can contain many

FFs, potentially violating the balance criteria in step 4.

For example, assume the algorithm collects the former

117March–April 2004

1 STATE_SEQ_SETS = φ;
2
3 do {
4 // Conquer_CKTS represents the procedure for handling CKTS

5 // Conquer_CKTM represents the procedure for handling CKTM

6 STATES = Conquer_CKTS (CKTS, s0, t, C, STATE_SEQ_SETS);
7 if (STATES = φ)
8 Abort ();
9

10 // STATES ∉ STATE_SEQ_SETS

11 STATE_SEQ_SETS += STATES;
12 SIM_VECM = Conquer_CKTM (CKTS, STATES, CKTM, s0, C);
13
14 } while (SIM_VECM ==φ);

Figure 6. Backtracking procedures. STATE_SEQ_SETS

represents the set of state transition sequences obtained by

CKTS.

(k – 1) vertices with a total weight lower than (0.4)Wtotal.

If we include the kth vertex, however, their total weight

might be higher than (0.6)Wtotal.

Step 5 will generate bidirectional cascaded compo-

nents. Figure 7a illustrates bidirectional partition. As the

figure shows, CKTM has an internal input PI_M, which is

also the output of CKTS. The occurrence of PI_M will

influence the procedure Gen_Tar_Con or the opera-

tions shown in Figure 2d. Figure 7b illustrates the mod-

ification. Because PI_M is the output of CKTS, and

because we need CKTS to retain self-transition states, we

should evaluate the CKTS output values. We then set

these values up as other CKTM constraints. For example,

in Figure 7b we obtain PI_M = cM in the self-transition

operation of state 000 in CKTS. Thus CKTM must satisfy

two constraints, (PI_S, cS) and (PI_M, cM),

while also solving the target (PI_S, r).

Generally speaking, our simulation

vector generation algorithm works

whether or not the partitioning result is

bidirectional. However, because bidi-

rectional partitioning requires many

additional constraints for CKTM, the algo-

rithm can become less efficient.

Experimental results
To demonstrate our algorithm’s effi-

ciency, we implemented it in C++ and

applied it to some real designs. Table 1

lists benchmark information about the

designs as well as the results of comparing

the performance of a hybrid solver with

our algorithm to a hybrid solver without it.

We ran the experiment on a 2.53-GHz

Pentium 4 workstation with 1 Gbyte of

main memory. The benchmarks included

� PS/2, an Opencores.org mouse controller;

� MPEG, an MPEG-I system decoder modified from

Texas-97 benchmarks;9

� BCH, a (63, 51) Bose-Chaudhuri-Hochquenghem

code decoder;

� PTME, a processor for 3D-graphics-perspective tex-

ture mapping; and

� MEP, a programmable MPEG-II system controller.

To obtain the number of targets for each design, we

collected all the branch-enable conditions, all the con-

ditions of state encoding in control FSMs, and several

temporal operations for the simulation scenarios for

each design. We then randomly selected 20 scenarios

and represented them to the targets in (variable, value)

Functional Verification and Testbench Generation

118 IEEE Design & Test of Computers

(a)

PI_M

PI_S

CKTM CKTS

POPI
Target

(b)

000

010

Target = (PI_S, r)
Constraint = (PI_S, cS)
and (PI_M, cM)

PI_S = cS / PI_M = cM

PI_S

PI_S = r

CKTM

PI

CKTS

Figure 7. Bidirectional partition of a design: PI_M has opposite direction to

PI_S (a) and CKTM has another constraint (PI_M, cM) (b).

Table 1. Benchmark information and simulation vector generation results.

 Solver Algorithm

 Number of Total No. of Execution No. of Execution

Flip- Primary Primary no. of targets time targets time Improvement

Benchmark Gates flops inputs outputs targets solved (hours) solved (hours) (%)

PS2 1,153 90 5 24 20 12 24 20 5.23 66.7

MPEG 4,475 358 15 77 20 14 24 20 3.69 42.9

BCH 10,089 288 4 64 20 10 24 19 24 90.0

PTME 31,340 1,789 18 54 20 7 24 15 24 114.2

MEP 217,264 20,605 30 22 20 3 24 8 24 166.7

form. Several variables in the design can concatenate

the target. For example, if we want to enable condition

if (a= =2’b10 && b= =3’b111), then pair ({a, b}, 5’b10111)

represents the target, where {a, b} represents the con-

catenation of variables a and b, and its value is moni-

tored to be 10111 in binary or 23 in decimal.

We handled the 20 targets simultaneously and limit-

ed the time to 24 hours for each design. We imple-

mented our hybrid solver according to the algorithms

Ganai, Aziz, and Kuehlmann7 proposed. We used

Somenzi’s CU Decision Diagram (CUDD) package.

(http://vlsi.colorado.edu/~fabio/CUDD/) to manipulate

BDDs, and the Generic Search Algorithm for the

Satisfiability Problem (Grasp) package10 for SAT. We

also embedded the hybrid solver in our algorithm. Here

we can see that the hybrid solver cannot solve all 20 tar-

gets within 24 hours, even for the smallest design, PS2.

The hybrid solver cannot finish the PS2 tasks because

it contains many counters and shift registers. Moreover,

these counters and shift registers dominate the greater

part of the PS2 FFs such that the PS2 has deep state

space, which is unfavorable to the symbolic solvers in

the hybrid engine. Consequently, the hybrid solver

spends too much time searching the PS2 state space and

thus cannot solve all the scenarios in 24 hours.

For the smaller cases (PS2 and MPEG), the algo-

rithm finished the simulation vector generation task for

20 targets in 5.23 and 3.69 hours. For the other three

cases, the algorithm greatly improves the coverage, solv-

ing more than twice as many targets in 24 hours than

the hybrid solver.

INSPECTING THE EXPERIMENTS to ascertain why our

algorithm failed to solve some targets, we found the fol-

lowing. First, we didn’t conduct an unreachability

analysis for the targets. Therefore, we can waste many

resources handling a target that cannot be solved.

Eliminating unsolvable targets before applying the algo-

rithm can improve the results. Second, our algorithm

might be less efficient for designs with many feedback

loops, possibly causing large SCCs in the designs. In our

partitioning method, large SCCs can cause the divided

components to be bidirectional, and the bidirectional

partition can generate huge constraints while handling

the front component. Sometimes, constraints prevent

us from obtaining any results. Third, our algorithm can-

not handle rear components without self-transition

states. In other words, we cannot use the rear compo-

nent feature of keeping the same state until the front

component generates the expected values of its inputs.

Although our algorithm suffers from these limita-

tions, we believe that the merits obtained from the

divide-and-conquer approach outweigh the defects. Our

algorithm for simulation vector generation can save

engineers time writing testbenches and thus enhances

design verification. In addition, the embedded solver is

changeable; thus, if more powerful solving techniques

are available in the future, we can simply embed them

into our algorithm without changing our flows. Future

work will focus on refining the partitioning method to

reduce the complexity of the connections between

components. Furthermore, we will conduct unreacha-

bility analysis for the targets to avoid executing unnec-

essary operations. �

References
1. J. Bergeron, Writing Testbenches: Functional

Verification of HDL Models, Kluwer Academic, 2000.

2. K. Ravi and F. Somenzi, “High-Density Reachability

Analysis,” Proc. Int’l Conf. Computer-Aided Design

(ICCAD 95), IEEE CS Press, 1995, pp. 154-158.

3. R. Ho and M. Horowitz, “Validation Coverage Analysis

for Complex Digital Designs,” Proc. Int’l Conf. Computer-

Aided Design (ICCAD 96), IEEE CS Press, 1996,

pp. 146-151.

4. J.P. Bergmann and M. A. Horowitz, “Improving

Coverage Analysis and Test Generation for Large

Designs,” Proc. Int’l Conf. Computer-Aided Design

(ICCAD 99), ACM Press, 1999, pp. 580-583.

5. F. Fallah, P. Ashar, and S. Devadas, “Simulation Vector

Generation from HDL Descriptions for Observability-

Enhanced Statement Coverage,” Proc. 36th Design

Automation Conf. (DAC 99), ACM Press, 1999,

pp. 666-671.

6. F. Fallah, S. Devadas, and K. Keutzer, “Functional Vec-

tor Generation for HDL Models Using Linear

Programming and Boolean Satisfiability,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 20, no. 8, Aug. 2001, pp. 994-1002.

7. M.K. Ganai, A. Aziz, and A. Kuehlmann, “Enhancing Sim-

ulation with BDDs and ATPG,” Proc. 36th Design Automa-

tion Conf. (DAC 99), ACM Press, 1999, pp. 385-390.

8. P.-H. Ho et al., “Smart Simulation Using Collaborative

Formal and Simulation Engines,” Proc. Int’l Conf. Com-

puter-Aided Design (ICCAD 00), ACM Press, 2000, pp.

120-126.

9. A. Aziz et al., “Examples of HW Verification Using VIS,”

http://www-cad.eecs.berkeley.edu/Respep/Research/

Vis/texas-97.

119March–April 2004

Functional Verification and Testbench Generation

120 IEEE Design & Test of Computers

10. J.P. Marques-Silva and K.A. Sakallah, “Grasp: A Search

Algorithm for Propositional Satisfiability,” IEEE Trans.

Computers, vol. 48, no. 5, May 1999, pp. 506-521.

Chia-Chih Yen is a PhD candidate
in the Department of Electronics Engi-
neering at the National Chiao Tung
University, Hsinchu, Taiwan. His
research interests include formal and

semiformal design verification. Yen has a BS in elec-
trical engineering from National Taiwan University and
an MS in electronics engineering from National Chiao
Tung University.

Jing-Yang Jou is a professor at
National Chiao Tung University,
Hsinchu, Taiwan. His research inter-
ests include behavioral, logic, and
physical synthesis; design verification;

and CAD for low power. Jou has a BS in electrical
engineering from National Taiwan University, Taiwan,

R.O.C., and an MS and PhD in computer science from
the University of Illinois at Urbana-Champaign.

Kuang-Chien (KC) Chen is a
senior architect at Cadence Design
Systems. His research interests include
logic synthesis, verification, and phys-
ical synthesis techniques. Chen has a

BS in electrical engineering from National Taiwan Uni-
versity and an MS and PhD in computer science from
the University of Illinois at Urbana-Champaign.

Direct questions and comments about this article
to Chia-Chih Yen, Dept. of Electronics Engineering,
National Chiao Tung University, 1001 Ta-Hsueh Rd.,
Hsinchu 300, Taiwan, ROC; jackr@eda.ee.nctu.
edu.tw.

For further information on this or any other computing

topic, visit our Digital Library at http://computer.org/

publications/dlib.

WE’RE ONLINE
Submit your manuscript to D&T on the Web!

Our new Manuscript
Central site lets you

monitor your submission
as it progresses through
the review process. This
new Web-based systems
helps our editorial board

and reviewers track
your manuscript.

For more information, see us at http://cs-ieee.manuscriptcentral.com

	footer1:

