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This paper addresses the security and efficiency of key-evolving protocols in public 

key encryption and signature schemes, where the security assumption is the intractability 
of the discrete logarithm problem. We identify the key-independence property as the se-
curity goal of key-evolving, so that each periodic secret key is independent of each other. 
The first protocol operates in Zp

*  and is efficient for the secret-key holder; the second 
operates in Zn

* , and is efficient for the public-key holder. For both protocols, we provide 
proofs and analysis for correctness, security and efficiency. 

 
Keywords: provable security, discrete logarithm, key management, key evolving, key 
independence 

 
 

1. INTRODUCTION 
 

Over the past 20 years, public key cryptography has provided many signature and 
public key encryption schemes. However, if a signing key or decryption key is compro-
mised, it is regarded a total break of the system. To avoid this undesirable situation, one 
common practice is to assign each key a certain usage period and update the key when 
entering a new period. Therefore, the security and efficiency of key updating or 
key-evolving becomes an important topic for key management [1]. 

Key-evolving, or the synchronized updating of a shared key, is commonly employed 
for symmetric cryptosystems. When the sender and the receiver of a message share a 
common master key, they do not use this shared key directly. Instead, they use it to de-
rive a set of sub-keys where each sub-key is valid for a certain period of time or for a 
specific application [2]. 
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For asymmetric cryptosystems, the key-evolving technique was first employed in 
research on forward-secure signature schemes [3]. Recently, asymmetric key-evolving 
have been proposed for both signature schemes and public key encryption schemes 
[4-10]. Asymmetric key-evolving considers the scenario where the sender and receiver 
do not possess the same master key, but rather some asymmetric system parameters. With 
the initial parameters, the secret key holder (the signer or the decryptor) and the public 
holder (the verifier or the encryptor) update their corresponding key without further 
communication. 

Without a key-evolving protocol, certificate retrieval and verification must be per-
formed periodically. With a key-evolving protocol, the certificate retrieval and verifica-
tion operation is performed only for the initial parameters. Thereafter, both parties update 
their corresponding public or secret keys for future periods. 

The asymmetric key-evolving protocol aims to reduce the damage in case a secret 
key is compromised. This is also a goal of the research of key management and key 
agreement [11, 12]. In those papers, the concepts of forward-secrecy, backward-secrecy, 
and key-independence were defined. Informally, forward-secrecy refers to the situation 
that the compromise of one or several secret keys does not compromise previous secret 
keys. Likewise, backward-secrecy refers to the situation that the compromise of one or 
several secret keys does not compromise future secret keys. Key-independence means 
that the secret keys used in different periods are basically independent. Thus, even if the 
attacker discovers the secret key of a certain period, it gives him little advantage in find-
ing the secret keys of other periods. 

Two other related properties include perfect forward-secrecy and resistance to 
known-key attacks. Perfect forward-secrecy assures that the “compromise of long-term 
keys does not compromise past session keys” [13]. Resistance to known-key attacks as-
sures that the compromise of past session keys will allow neither a passive adversary to 
compromise future session keys nor an active adversary to forge them [14-16]. 

Recently, two more related properties such as z-resilient/key-insulated public en-
cryption schemes or intrusion-resilient signatures have been proposed [6, 9, 10]. The 
forward-secrecy and backward-secrecy properties in this paper are defined for 
key-evolving protocols, while z-resilient/key-insulated or intrusion-resilient properties 
are defined for specific public encryption schemes or signatures. Therefore, the proposed 
key-evolving protocols in this paper are applicable to both public key encryption 
schemes and signature schemes based on the discrete logarithm problem. 

This paper is organized as follows. Section 2 describes the model and definitions. 
Section 3 presents the protocol based the difficulty of computing discrete logarithm in Zp

*. 
Section 4 presents the protocol based on the difficulty of factoring a large composite n 
and section 5 concludes this paper.  

2. MODEL AND DEFINITIONS 

The initial public/secret parameter or key base is denoted as (PKB, SKB). The pub-
lic/secret key base is used to derive the periodic key of the i-th period, (PKi, SKi), respec-
tively. 

Definition 1  A key-evolving protocol consists of three algorithms (KG, g, f): 
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1. Public/Secret Key Base Generation Algorithm KG(k) 
Given a security parameter k, the secret key holder generates the public/secret key base 
(PKB, SKB). SKB is kept secret at the secret key holder and PKB is then distributed to 
the users in the form of a public certificate. 

2. Public Key-Evolving Algorithm g() 
Given the period i and PKB, the public key holder computes PKi = g(PKB, i).  

3. Secret Key-Evolving Algorithm f() 
Given the period i and SKB, the secret key holder computes SKi = f(SKi-1) or f(SKB, i).  

 
Next, the desirable properties of the key-evolving protocols are as follows: 

 
Definition 2  A key-evolving protocol is forward-secret if the compromise of SKi does 
not compromise SKj for all j < i. 

 
Definition 3  A key-evolving protocol is backward-secret if the compromise of SKi does 
not compromise SKj for all j > i. 
 
Definition 4  A key-evolving protocol is key-independent if it is forward-secret and 
backward-secret. 
 
Definition 5  A key-evolving protocol is t-bounded key-independent if a set of periodic 
keys C are compromised and the following conditions hold.  
 
1. If C is large enough (|C| > t), all the periodic secret keys will be compromised.  
2. If C is not large enough (|C| ≤ t), the remaining periodic secret keys are still secret.  

3. PROTOCOL 1 

The first protocol is based on the difficulty of computing the discrete logarithm in 
Zp

*. It employs the construction of a non-interactive verifiable secret sharing scheme pro-
posed by Feldman [17], which is based on the secret sharing scheme of Shamir [18]. The 
following properties of polynomials are the basis of the Shamir’s scheme. 
 
I. Given t + 1 distinct points on the polynomial m(x) of degree t, namely (x0, y0), (x1, 

y1), …, (xt, yt) and yi = m(xi), all the t + 1 coefficients can be determined. In other 
words, the polynomial can be uniquely determined.  

II. Given t distinct points on the polynomial m(x) of degree t, namely (x1, y1), (x2, y2), …, 
(xt, yt) and yi = m(xi), the t + 1 coefficients cannot be uniquely determined. 

 
The protocol, presented in Fig. 1, consists of three algorithms. First, the secret key 

holder executes the key base generation algorithm and publishes the public key base PKB 
= (P0, P1, … Pt) = (ga

0, ga
1, …, ga

t), where a0, a1, …, at are the coefficients of a polyno-
mial f(x). In contrast, the secret key base SKB = (a0, a1, … at) is kept secret. Also, the 
secret key holder publishes a hash function h, which works as a randomizer of the index i. 
For example, this h(.) can be a permutation in Zq. 
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_______________________________________________________________________ 

1. Public/Secret Key Base Generation Algorithm KG(1n, t) 
(1) The secret key holder chooses an n-bit prime p = 2q + 1 where q is a prime of at least 

160-bits, i.e. q > 2160. Let Gq denote the subgroup of the quadratic residues modulo p 
and g is the generator of Gq.  

(2) The secret key holder chooses a t-degree polynomial f(x) with coefficients randomly  

chosen from Zq, and f x a xj
j

j

t
( ) ( )=

=
Â 0

(mod q). SKB = (a0, a1, …, at), the coeffi- 

cients of f(x), will be kept secret and used to derive the secret keys for later periods. 
(3) The secret key holder publishes the public key base information and a hash function, 

including 

PKB = (P0, P1, … Pt) = (ga
0, ga

1, …, ga
t), and h: N → Zq. 

2. Public Key-Evolving Algorithm 
Given index i, the public key holder will update its public key of period i as  

).(mod)(
0

)( pPPK
t

j

ih
ji

j∏
=

=  

3. Secret Key-Evolving Algorithm 
Given index i, the secret key holder will update the key of period i as  

SKi = f(h(i)) (mod q).   
_______________________________________________________________________ 

Fig. 1. Key-evolving protocol using the Feldman’s technique. 

 
The public key holder retrieves and verifies PKB and h(.). Suppose that he needs the  

public key of period i. He would then perform PK Pi j
h i

j

t j

=

=
’ ( ) ( )

0
(mod p). 

SKB is the long-term system secret, protected separately from SKi at the secret-key 
holder. Its protection follows the paper of Shamir’s secret-sharing scheme [18]. At the 
beginning of the period i, the secret key holder evaluates the secret key as SKi = f(h(i)) 
(mod q). The analysis of this protocol is as follows: 

Correctness  The relation of iSK
i gPK = is established because 
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Security  The following lemmas summarize the relationship between compromising a 
secret key for a given public key and solving a discrete logarithm problem. It is straight-
forward to solve the discrete logarithm problem, given a successful attacker.  
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Lemma 1  The attacker, who is able to compute the corresponding SK of a given PK, is 
able to solve of the Discrete Logarithm problem in Zp

*.  

Given t + 1 sets of keys of (SKi0, i0), (SKi1, i1), …, (SKit, it), the attacker can deter-
mine the coefficients of f(x) and thus the secret keys of all periods. In contrast, if less 
than t + 1 secrets keys are compromised, then the polynomial for the secret key-evolving 
cannot be uniquely determined. Therefore, even if t secret keys are compromised, it 
seems difficult to derive even one additional secret key out of the t secret keys. It seems 
that the only way to compute one extra secret key is to compute the discrete logarithm in 
Zp

* directly. Therefore, we have the following conjecture.  

Conjecture 1  The protocol in Fig. 1 is t-bounded key-independent.  

Efficiency  This protocol is efficient for the secret key holder, requiring only the 
evaluation of a t-degree polynomial over Zq. The computational complexity is the same 
as that of Tzeng’s work. In contrast, other related key-evolving protocols for the secret 
key require modular exponentiations [8-10]. 

For a public key holder, he needs to compute t modular exponentiations and t 
modular multiplications, which is the same as in Tzeng’s scheme. However, the on-line 
computational load is reduced if pre-computation is employed. 

4. PROTOCOL 2 

This protocol is based on the difficulty of computing the discrete logarithm (DL) in 
Zn

* , where n is the product of several large primes. It uses the same technique of 
Maurer-Yacobi in the design of non-interactive public-key distribution systems [19]. All 
operations are performed in Zn

* , where the factoring of n is hard and g is the generator of 
QRn, the quadratic residues of Zn

* . QRn = (g) is employed because it is a large cyclic sub-
group of Zn

* , where the computing of the discrete logarithm is hard.  
This protocol is presented in Fig. 2 and consists of three algorithms. First, the secret 

key holder executes the key base generation algorithm and publishes the public key base 
PKB = (n, g, H, PK0), where n and g are defined as above, H is a cryptographical hash 
function, and PK0 is a random number. The secret key base SKB, consisting of the factors 
of n, is kept secret.  

The public key holder retrieves and verifies the public key base PKB. Suppose that 
he needs the public key of period i. He would perform a series of hash-and-square opera-
tions to get PK1 = (H(PK0))

2, PK2 = (H(PK1))
2, …, PKi = (H(PKi-1))

2. All operations are 
performed in the group of Zn. If he could store some of these intermediate values, he can 
reduce the hash-and-square computations. 

SKB is the long-term system secret, protected separately from SKi at the secret 
holder. Its protection follows the paper of Maurer and Yacobi [19]. At the beginning of 
period i, the secret key holder performs the hash-and-square PKi = (H(PKi-1))

2 (mod n) 
and then calculates the corresponding secret key SKi = logg (PKi). This task can employ 
the Pohlig-Hellman algorithm as follows. First, the secret key holder computes the dis-
crete logarithm of PKi in QRp

i
 and then uses the Chinese Remainder Theorem (CRT) to 

construct the discrete logarithm of PKi in QRn (≡ QRp1
 × QRp2

 … × QRp
r 
). 
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_______________________________________________________________________ 

1. Public/Secret Key Base Generation Algorithm 
The secret key holder chooses a k-bit composite n = p1 p2 … pr where the factoring of 
n is intractable and q1 = (p1 − 1)/2, q2 = (p2 − 1)/2, …, qr = (pr − 1)/2 are pairwise rela-
tively prime. 
Then he broadcasts the public key base PKB = (n, g, H, PK0), where the following re-
quirements are met.  
(a) SKB = (p1, p2, …, pr), the set of factors of n, is kept secret to the secret key holder,  
(b) g is the generator of the quadratic resides QRn. 
(c) H (⋅): {0, 1}* → Zn

*  is a cryptographical hash function, 
(d) PK0 is a random number.  

 
2. Public Key-Evolving Algorithm 

Given period i, the public key holder evaluates for j = 1 to i,  
 
PKj = (H(PKj-1))

2 (mod n) ∈ QRn. 
 
3. Secret Key-Evolving Algorithm 

At the beginning of period i, the secret key holder first computes the public key by 
one hash-and-square 
 
PKi = (H(PKi-1))

2 (mod n) ∈ QRn.  
 
With the factoring knowledge of n, the secret key holder computes  
 
SKi = logg (PKi). 

_______________________________________________________________________ 

Fig. 2. Key-evolving based on Maurer-Yacobi scheme. 

Correctness  PKi = gSK
i is established because SKi is computed by the secret key holder 

with the trapdoor knowledge of factoring.  

Security  The security analysis consists of two computational reductions. The first re-
duction (proposition 1) shows that in the random oracle model a successful attacker can 
be used to construct a DL oracle in Zn

* . The second reduction (proposition 2) shows that a 
DL-oracle can be used to construct a factoring oracle. The two reductions are summa-
rized in Theorem 1. 

Proposition 1  The successful attacker can be turned into a discrete logarithm (DL) 
oracle in the random oracle model. 

Proof: The goal of attacker A is to break the key-independence property. In other words, 
when the periodic secret SKi is compromised, the successful attacker will compromise 
one additional signing key SKj and j ≠ i. By the following simulation, we will use the 
successful attacker to compute x = logg y. 
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First, we generate a set of secret/public key pairs 

{(SKi, PKi) | PKi = gSK
i, SKi is even, i = 1, 2, …, T, i ≠ k}.  

Also, we control the output of the hash query as follows. If attacker A makes a hash  

query of period i, i ≠ k, the hash returns .)( 2
iSK

gPKH i =  If attacker A makes a hash 
query of period k, the hash returns H(PKk) = yga.  

Next, we simulate the case of key-compromise by revealing some (PKi, SKi) to the 
attacker. If A succeeds in breaking the forward-secret and forward-secret properties, A 
would eventually return (PKj, SKj) for some j ≠ i. 

The chance that j = k is .1
T  If this happens, we have SKj = SKk = logg PKk = logg 

y2g2a = 2logg y + 2a = 2x + 2a. Note that SKj is even. Though the order of QRn is un-
known, the discrete logarithm of y can be computed as follows:  

x SK aj= -

1

2
.                                                      � 

Proposition 2  A discrete logarithm (DL) oracle in Zn
*  can be turned into a factoring 

oracle for n.  
 
Proof: Fig. 3 presents this algorithm. It basically follows the work of Maurer and Yacobi 
[19] but uses a different cyclic group in Zn

* . In their paper, g is the generator of the maxi-
mal cyclic group of order λ(n) = 2q1 q2 … qr. In this paper, g is the generator of QRn of 
order λ(n)/2. We denote λ(n)/2 as QRn. DL is the discrete logarithm oracle that returns 
logg y < Qn when the input is y. Given n, g, and access to DL, this algorithm returns the 
factors of n. 
 

_______________________________________________________________________ 

Algorithm DL-Factoring 
Input: DL oracle, n, g: the generator of QRn,  
Output: the factors of n 
1. Repeat (a)-(c) m times 

(a) Find ti such that Qn ≤ ti ≤ n. 
Since Qn is unknown, ti is chosen not far from n.  

(b) Send gt
i to DL.  

(c) DL computes the discrete logarithm of gt
i and outputs t'i < Qn . 

2. Compute Qn = GCD(t1 − t'1 , t2 − t'2 , …, tm − t'm ). 
3. Given Qn, compute the factors of n using the Miller algorithm and return the results.  
_______________________________________________________________________ 

Fig. 3. Algorithm DL-factoring: build a factoring oracle using a DL oracle. 

 
The following iteration is repeated m times (i.e. i = 1 to m). We choose random ti, 

not far from n, compute gt
i and submit it to DL. As the input gt

i arrives, DL computes its 
discrete logarithm and outputs logg g

ti = t'i  < Qn. 
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In each iteration, ti and t'i  satisfy gt
i = gt′

i . In other words, gt
i
− t′

i  = 1 and Qn, the order 
of g, divides ti − t'i  . As ti − t'i   is a small multiple of Qn, Qn can be computed as the great-
est common divisor of all ti − t'i  . Once we know Qn, the factors of n can be computed 
using Miller’s algorithm [20].                                             � 

The above two propositions are summarized in the following theorem. 

Theorem 1  In the random oracle model, the key-evolving protocol in Fig. 2 is 
key-independent if the factoring of n is hard.  

Efficiency  This protocol is efficient for the public key holders, requiring only one 
hash-and-square operation per period. In comparison, the related cryptosystems need 
modular exponentiations either in key-evolving protocols [6, 10] or in the encryption 
scheme [9]. Thus, this is suitable for public key holders with low computation power 
such as mobile devices or smart cards. 

 However, the computation load for the secret key holder increases. It requires the 
secret key holder to compute the discrete logarithm in several smaller cyclic groups, 
which requires moderate computation power [19]. 

5. CONCLUSIONS 

In this paper, we first presented the security notions of key-evolving protocol, in-
cluding forward-secrecy, backward-secrecy and key-independence. Next, two concrete 
constructions were proposed. One protocol is based on a scheme of Feldman and is effi-
cient for the secret-key holder; the other is a variant of the Maurer-Yacobi protocol, and 
is efficient for the public-key holder. Also, we provide proofs and analysis for correctness, 
security and efficiency.  
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