
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 20, 391-400 (2004)

391

Receiveed June 24, 2002; revised November 15, 2002; accepted April 21, 2003.
Communicated by Chi Sung Laih.
* An earlier version of this paper has been published in the RSA Conference 2002, USA. This work is supported

in part by Ministry of Education, National Science Council of Taiwan, and Lee & MTI Center, National Chiao
Tung University.

+ This work was done while the first author was with National Chiao Tung University.

Short Paper___

Secure Key-Evolving for Public Key Cryptosystems Based

on the Discrete Logarithm Problem*

CHENG-FEN LU+ AND SHIUHPYNG SHIEH

+Department of Computer Science and Information Engineering
Ta Hwa Institute of Technology

Hsinchu, 307 Taiwan
Computer Science and Information Engineering Department

National Chiao Tung University
Hsinchu, 300 Taiwan

This paper addresses the security and efficiency of key-evolving protocols in public

key encryption and signature schemes, where the security assumption is the intractability
of the discrete logarithm problem. We identify the key-independence property as the se-
curity goal of key-evolving, so that each periodic secret key is independent of each other.
The first protocol operates in Zp

* and is efficient for the secret-key holder; the second
operates in Zn

* , and is efficient for the public-key holder. For both protocols, we provide
proofs and analysis for correctness, security and efficiency.

Keywords: provable security, discrete logarithm, key management, key evolving, key
independence

1. INTRODUCTION

Over the past 20 years, public key cryptography has provided many signature and
public key encryption schemes. However, if a signing key or decryption key is compro-
mised, it is regarded a total break of the system. To avoid this undesirable situation, one
common practice is to assign each key a certain usage period and update the key when
entering a new period. Therefore, the security and efficiency of key updating or
key-evolving becomes an important topic for key management [1].

Key-evolving, or the synchronized updating of a shared key, is commonly employed
for symmetric cryptosystems. When the sender and the receiver of a message share a
common master key, they do not use this shared key directly. Instead, they use it to de-
rive a set of sub-keys where each sub-key is valid for a certain period of time or for a
specific application [2].

CHENG-FEN LU AND SHIUHPYNG SHIEH

392

For asymmetric cryptosystems, the key-evolving technique was first employed in
research on forward-secure signature schemes [3]. Recently, asymmetric key-evolving
have been proposed for both signature schemes and public key encryption schemes
[4-10]. Asymmetric key-evolving considers the scenario where the sender and receiver
do not possess the same master key, but rather some asymmetric system parameters. With
the initial parameters, the secret key holder (the signer or the decryptor) and the public
holder (the verifier or the encryptor) update their corresponding key without further
communication.

Without a key-evolving protocol, certificate retrieval and verification must be per-
formed periodically. With a key-evolving protocol, the certificate retrieval and verifica-
tion operation is performed only for the initial parameters. Thereafter, both parties update
their corresponding public or secret keys for future periods.

The asymmetric key-evolving protocol aims to reduce the damage in case a secret
key is compromised. This is also a goal of the research of key management and key
agreement [11, 12]. In those papers, the concepts of forward-secrecy, backward-secrecy,
and key-independence were defined. Informally, forward-secrecy refers to the situation
that the compromise of one or several secret keys does not compromise previous secret
keys. Likewise, backward-secrecy refers to the situation that the compromise of one or
several secret keys does not compromise future secret keys. Key-independence means
that the secret keys used in different periods are basically independent. Thus, even if the
attacker discovers the secret key of a certain period, it gives him little advantage in find-
ing the secret keys of other periods.

Two other related properties include perfect forward-secrecy and resistance to
known-key attacks. Perfect forward-secrecy assures that the “compromise of long-term
keys does not compromise past session keys” [13]. Resistance to known-key attacks as-
sures that the compromise of past session keys will allow neither a passive adversary to
compromise future session keys nor an active adversary to forge them [14-16].

Recently, two more related properties such as z-resilient/key-insulated public en-
cryption schemes or intrusion-resilient signatures have been proposed [6, 9, 10]. The
forward-secrecy and backward-secrecy properties in this paper are defined for
key-evolving protocols, while z-resilient/key-insulated or intrusion-resilient properties
are defined for specific public encryption schemes or signatures. Therefore, the proposed
key-evolving protocols in this paper are applicable to both public key encryption
schemes and signature schemes based on the discrete logarithm problem.

This paper is organized as follows. Section 2 describes the model and definitions.
Section 3 presents the protocol based the difficulty of computing discrete logarithm in Zp

*.
Section 4 presents the protocol based on the difficulty of factoring a large composite n
and section 5 concludes this paper.

2. MODEL AND DEFINITIONS

The initial public/secret parameter or key base is denoted as (PKB, SKB). The pub-
lic/secret key base is used to derive the periodic key of the i-th period, (PKi, SKi), respec-
tively.

Definition 1 A key-evolving protocol consists of three algorithms (KG, g, f):

SECURE KEY-EVOLVING PROTOCOL FOR DISCRETE LOGARITHM CRYPTOSYSTEMS

393

1. Public/Secret Key Base Generation Algorithm KG(k)
Given a security parameter k, the secret key holder generates the public/secret key base
(PKB, SKB). SKB is kept secret at the secret key holder and PKB is then distributed to
the users in the form of a public certificate.

2. Public Key-Evolving Algorithm g()
Given the period i and PKB, the public key holder computes PKi = g(PKB, i).

3. Secret Key-Evolving Algorithm f()
Given the period i and SKB, the secret key holder computes SKi = f(SKi-1) or f(SKB, i).

Next, the desirable properties of the key-evolving protocols are as follows:

Definition 2 A key-evolving protocol is forward-secret if the compromise of SKi does
not compromise SKj for all j < i.

Definition 3 A key-evolving protocol is backward-secret if the compromise of SKi does
not compromise SKj for all j > i.

Definition 4 A key-evolving protocol is key-independent if it is forward-secret and
backward-secret.

Definition 5 A key-evolving protocol is t-bounded key-independent if a set of periodic
keys C are compromised and the following conditions hold.

1. If C is large enough (|C| > t), all the periodic secret keys will be compromised.
2. If C is not large enough (|C| ≤ t), the remaining periodic secret keys are still secret.

3. PROTOCOL 1

The first protocol is based on the difficulty of computing the discrete logarithm in
Zp

*. It employs the construction of a non-interactive verifiable secret sharing scheme pro-
posed by Feldman [17], which is based on the secret sharing scheme of Shamir [18]. The
following properties of polynomials are the basis of the Shamir’s scheme.

I. Given t + 1 distinct points on the polynomial m(x) of degree t, namely (x0, y0), (x1,

y1), …, (xt, yt) and yi = m(xi), all the t + 1 coefficients can be determined. In other
words, the polynomial can be uniquely determined.

II. Given t distinct points on the polynomial m(x) of degree t, namely (x1, y1), (x2, y2), …,
(xt, yt) and yi = m(xi), the t + 1 coefficients cannot be uniquely determined.

The protocol, presented in Fig. 1, consists of three algorithms. First, the secret key

holder executes the key base generation algorithm and publishes the public key base PKB
= (P0, P1, … Pt) = (ga

0, ga
1, …, ga

t), where a0, a1, …, at are the coefficients of a polyno-
mial f(x). In contrast, the secret key base SKB = (a0, a1, … at) is kept secret. Also, the
secret key holder publishes a hash function h, which works as a randomizer of the index i.
For example, this h(.) can be a permutation in Zq.

CHENG-FEN LU AND SHIUHPYNG SHIEH

394

1. Public/Secret Key Base Generation Algorithm KG(1n, t)
(1) The secret key holder chooses an n-bit prime p = 2q + 1 where q is a prime of at least

160-bits, i.e. q > 2160. Let Gq denote the subgroup of the quadratic residues modulo p
and g is the generator of Gq.

(2) The secret key holder chooses a t-degree polynomial f(x) with coefficients randomly

chosen from Zq, and f x a xj
j

j

t
() ()=

=
Â 0

(mod q). SKB = (a0, a1, …, at), the coeffi-

cients of f(x), will be kept secret and used to derive the secret keys for later periods.
(3) The secret key holder publishes the public key base information and a hash function,

including

PKB = (P0, P1, … Pt) = (ga
0, ga

1, …, ga
t), and h: N → Zq.

2. Public Key-Evolving Algorithm
Given index i, the public key holder will update its public key of period i as

).(mod)(
0

)(pPPK
t

j

ih
ji

j∏
=

=

3. Secret Key-Evolving Algorithm
Given index i, the secret key holder will update the key of period i as

SKi = f(h(i)) (mod q).

Fig. 1. Key-evolving protocol using the Feldman’s technique.

The public key holder retrieves and verifies PKB and h(.). Suppose that he needs the

public key of period i. He would then perform PK Pi j
h i

j

t j

=

=
’ () ()

0
(mod p).

SKB is the long-term system secret, protected separately from SKi at the secret-key
holder. Its protection follows the paper of Shamir’s secret-sharing scheme [18]. At the
beginning of the period i, the secret key holder evaluates the secret key as SKi = f(h(i))
(mod q). The analysis of this protocol is as follows:

Correctness The relation of iSK
i gPK = is established because

PK P p g p

g g g

i j
h i

j

t
a h i

j

t

a h i q f h i q SK

j
j

j

j
j

j

t

i

= =

= = =

= =

◊

’ ’

=
Â

() (mod) () (mod)

.

() ()

() (mod) (()) (mod)

0 0

0

Security The following lemmas summarize the relationship between compromising a
secret key for a given public key and solving a discrete logarithm problem. It is straight-
forward to solve the discrete logarithm problem, given a successful attacker.

SECURE KEY-EVOLVING PROTOCOL FOR DISCRETE LOGARITHM CRYPTOSYSTEMS

395

Lemma 1 The attacker, who is able to compute the corresponding SK of a given PK, is
able to solve of the Discrete Logarithm problem in Zp

*.

Given t + 1 sets of keys of (SKi0, i0), (SKi1, i1), …, (SKit, it), the attacker can deter-
mine the coefficients of f(x) and thus the secret keys of all periods. In contrast, if less
than t + 1 secrets keys are compromised, then the polynomial for the secret key-evolving
cannot be uniquely determined. Therefore, even if t secret keys are compromised, it
seems difficult to derive even one additional secret key out of the t secret keys. It seems
that the only way to compute one extra secret key is to compute the discrete logarithm in
Zp

* directly. Therefore, we have the following conjecture.

Conjecture 1 The protocol in Fig. 1 is t-bounded key-independent.

Efficiency This protocol is efficient for the secret key holder, requiring only the
evaluation of a t-degree polynomial over Zq. The computational complexity is the same
as that of Tzeng’s work. In contrast, other related key-evolving protocols for the secret
key require modular exponentiations [8-10].

For a public key holder, he needs to compute t modular exponentiations and t
modular multiplications, which is the same as in Tzeng’s scheme. However, the on-line
computational load is reduced if pre-computation is employed.

4. PROTOCOL 2

This protocol is based on the difficulty of computing the discrete logarithm (DL) in
Zn

* , where n is the product of several large primes. It uses the same technique of
Maurer-Yacobi in the design of non-interactive public-key distribution systems [19]. All
operations are performed in Zn

* , where the factoring of n is hard and g is the generator of
QRn, the quadratic residues of Zn

* . QRn = (g) is employed because it is a large cyclic sub-
group of Zn

* , where the computing of the discrete logarithm is hard.
This protocol is presented in Fig. 2 and consists of three algorithms. First, the secret

key holder executes the key base generation algorithm and publishes the public key base
PKB = (n, g, H, PK0), where n and g are defined as above, H is a cryptographical hash
function, and PK0 is a random number. The secret key base SKB, consisting of the factors
of n, is kept secret.

The public key holder retrieves and verifies the public key base PKB. Suppose that
he needs the public key of period i. He would perform a series of hash-and-square opera-
tions to get PK1 = (H(PK0))

2, PK2 = (H(PK1))
2, …, PKi = (H(PKi-1))

2. All operations are
performed in the group of Zn. If he could store some of these intermediate values, he can
reduce the hash-and-square computations.

SKB is the long-term system secret, protected separately from SKi at the secret
holder. Its protection follows the paper of Maurer and Yacobi [19]. At the beginning of
period i, the secret key holder performs the hash-and-square PKi = (H(PKi-1))

2 (mod n)
and then calculates the corresponding secret key SKi = logg (PKi). This task can employ
the Pohlig-Hellman algorithm as follows. First, the secret key holder computes the dis-
crete logarithm of PKi in QRp

i
 and then uses the Chinese Remainder Theorem (CRT) to

construct the discrete logarithm of PKi in QRn (≡ QRp1
 × QRp2

 … × QRp
r
).

CHENG-FEN LU AND SHIUHPYNG SHIEH

396

1. Public/Secret Key Base Generation Algorithm
The secret key holder chooses a k-bit composite n = p1 p2 … pr where the factoring of
n is intractable and q1 = (p1 − 1)/2, q2 = (p2 − 1)/2, …, qr = (pr − 1)/2 are pairwise rela-
tively prime.
Then he broadcasts the public key base PKB = (n, g, H, PK0), where the following re-
quirements are met.
(a) SKB = (p1, p2, …, pr), the set of factors of n, is kept secret to the secret key holder,
(b) g is the generator of the quadratic resides QRn.
(c) H (⋅): {0, 1}* → Zn

* is a cryptographical hash function,
(d) PK0 is a random number.

2. Public Key-Evolving Algorithm

Given period i, the public key holder evaluates for j = 1 to i,

PKj = (H(PKj-1))

2 (mod n) ∈ QRn.

3. Secret Key-Evolving Algorithm

At the beginning of period i, the secret key holder first computes the public key by
one hash-and-square

PKi = (H(PKi-1))

2 (mod n) ∈ QRn.

With the factoring knowledge of n, the secret key holder computes

SKi = logg (PKi).

Fig. 2. Key-evolving based on Maurer-Yacobi scheme.

Correctness PKi = gSK
i is established because SKi is computed by the secret key holder

with the trapdoor knowledge of factoring.

Security The security analysis consists of two computational reductions. The first re-
duction (proposition 1) shows that in the random oracle model a successful attacker can
be used to construct a DL oracle in Zn

* . The second reduction (proposition 2) shows that a
DL-oracle can be used to construct a factoring oracle. The two reductions are summa-
rized in Theorem 1.

Proposition 1 The successful attacker can be turned into a discrete logarithm (DL)
oracle in the random oracle model.

Proof: The goal of attacker A is to break the key-independence property. In other words,
when the periodic secret SKi is compromised, the successful attacker will compromise
one additional signing key SKj and j ≠ i. By the following simulation, we will use the
successful attacker to compute x = logg y.

SECURE KEY-EVOLVING PROTOCOL FOR DISCRETE LOGARITHM CRYPTOSYSTEMS

397

First, we generate a set of secret/public key pairs

{(SKi, PKi) | PKi = gSK
i, SKi is even, i = 1, 2, …, T, i ≠ k}.

Also, we control the output of the hash query as follows. If attacker A makes a hash

query of period i, i ≠ k, the hash returns .)(2
iSK

gPKH i = If attacker A makes a hash
query of period k, the hash returns H(PKk) = yga.

Next, we simulate the case of key-compromise by revealing some (PKi, SKi) to the
attacker. If A succeeds in breaking the forward-secret and forward-secret properties, A
would eventually return (PKj, SKj) for some j ≠ i.

The chance that j = k is .1
T If this happens, we have SKj = SKk = logg PKk = logg

y2g2a = 2logg y + 2a = 2x + 2a. Note that SKj is even. Though the order of QRn is un-
known, the discrete logarithm of y can be computed as follows:

x SK aj= -

1

2
. �

Proposition 2 A discrete logarithm (DL) oracle in Zn
* can be turned into a factoring

oracle for n.

Proof: Fig. 3 presents this algorithm. It basically follows the work of Maurer and Yacobi
[19] but uses a different cyclic group in Zn

* . In their paper, g is the generator of the maxi-
mal cyclic group of order λ(n) = 2q1 q2 … qr. In this paper, g is the generator of QRn of
order λ(n)/2. We denote λ(n)/2 as QRn. DL is the discrete logarithm oracle that returns
logg y < Qn when the input is y. Given n, g, and access to DL, this algorithm returns the
factors of n.

Algorithm DL-Factoring
Input: DL oracle, n, g: the generator of QRn,
Output: the factors of n
1. Repeat (a)-(c) m times

(a) Find ti such that Qn ≤ ti ≤ n.
Since Qn is unknown, ti is chosen not far from n.

(b) Send gt
i to DL.

(c) DL computes the discrete logarithm of gt
i and outputs t'i < Qn .

2. Compute Qn = GCD(t1 − t'1 , t2 − t'2 , …, tm − t'm).
3. Given Qn, compute the factors of n using the Miller algorithm and return the results.

Fig. 3. Algorithm DL-factoring: build a factoring oracle using a DL oracle.

The following iteration is repeated m times (i.e. i = 1 to m). We choose random ti,

not far from n, compute gt
i and submit it to DL. As the input gt

i arrives, DL computes its
discrete logarithm and outputs logg g

ti = t'i < Qn.

CHENG-FEN LU AND SHIUHPYNG SHIEH

398

In each iteration, ti and t'i satisfy gt
i = gt′

i . In other words, gt
i
− t′

i = 1 and Qn, the order
of g, divides ti − t'i . As ti − t'i is a small multiple of Qn, Qn can be computed as the great-
est common divisor of all ti − t'i . Once we know Qn, the factors of n can be computed
using Miller’s algorithm [20]. �

The above two propositions are summarized in the following theorem.

Theorem 1 In the random oracle model, the key-evolving protocol in Fig. 2 is
key-independent if the factoring of n is hard.

Efficiency This protocol is efficient for the public key holders, requiring only one
hash-and-square operation per period. In comparison, the related cryptosystems need
modular exponentiations either in key-evolving protocols [6, 10] or in the encryption
scheme [9]. Thus, this is suitable for public key holders with low computation power
such as mobile devices or smart cards.

 However, the computation load for the secret key holder increases. It requires the
secret key holder to compute the discrete logarithm in several smaller cyclic groups,
which requires moderate computation power [19].

5. CONCLUSIONS

In this paper, we first presented the security notions of key-evolving protocol, in-
cluding forward-secrecy, backward-secrecy and key-independence. Next, two concrete
constructions were proposed. One protocol is based on a scheme of Feldman and is effi-
cient for the secret-key holder; the other is a variant of the Maurer-Yacobi protocol, and
is efficient for the public-key holder. Also, we provide proofs and analysis for correctness,
security and efficiency.

REFERENCES

1. A. J. Menezes, P. C. van Ooschot, and S. A. Vanstone, Handbook of Applied Cryp-
tography, Boca Raton, 1997.

2. M. Abdalla and M. Bellare, “Increasing the lifetime of a key: a comparative analysis
of the security of re-keying techniques,” in Proceedings of Advances in Cryptology
(ASIACRYPT 2000), Vol. 1976, 2000, pp. 546-559.

3. M. Bellare and S. K. Miner, “A forward-secure digital signature scheme,” in Pro-
ceedings of Advances in Cryptology Conference (CRYPTO ’99), Vol. 1666, 1999, pp.
431-448.

4. M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,” in
Proceedings of Advances in Cryptology (ASIACRYPT 2000), Vol. 1976, 2000, pp.
116-129.

5. H. Krawczyk, “Simple forward-secure signatures from any signature scheme,” in
Proceedings of the 7th ACM Conference on Computer and Communications Security
(CCS ’00), 2000, pp. 108-115.

6. W. Tzeng and Z. Tzeng, “Robust key-evolving public key encryption schemes,”
Record 2001/009, Cryptology ePrint Archive, 2001.

SECURE KEY-EVOLVING PROTOCOL FOR DISCRETE LOGARITHM CRYPTOSYSTEMS

399

7. C. F. Lu and S. P. Shieh, “Secure key-evolving protocols for discrete logarithm
schemes,” in Topics in Cryptology, CT-RSA 2002, LNCS2271, 2002, pp. 300-309.

8. G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing and verify-
ing with gene itkis,” in Proceedings of Advances in Cryptology (CRYPTO ’01), Vol.
2139, 2001, pp. 332-354.

9. Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-insulated public key cryptosystems,”
in Advances in Cryptology (Eurocrypt 2002), Vol. 2332, 2002, pp. 65-82

10. G. Itkis and L. Reyzin, “Intrusion-resilient signatures, or towards obsolation of cer-
tificate revocation,” in Crypto 2002, available from IACR ePrint, 2002.

11. A. Perrig, “Efficient collaborative key management protocols for secure autonomous
group communication,” in International Workshop on Cryptographic Techniques
and E-Commerce (CrypTEC ’99), 1999, pp. 192-202.

12. A. Perrig, Y. Kim, and G. Tsudik, “Simple and fault-tolerant key agreement for dy-
namic collaborative groups,” in Proceedings of the 7th ACM Conference on Com-
puter and Communications Security (CCS ’00), 2000, pp. 235-244.

13. C. G. Guenther, “An identity-based key-exchange protocol,” in Proceedings of Ad-
vances in Cryptology (Eurocrypt ’89), Vol. 434, 1989, pp. 29-37.

14. D. E. Denning and M. S. Sacco, “Timestamps in key distribution protocols,” Com-
munications of the ACM, Vol. 24, 1981, pp. 533-536.

15. Y. Yacobi and Z. Shmuely, “On key distribution systems,” in Advances in Cryptol-
ogy (CRYPTO ’89), 1989, pp. 268-273.

16. Y. Yacobi, “A key distribution ‘paradox’,” in Advances in Cryptology
(CRYPTO ’90), 1990, pp. 268-273.

17. P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,” in
28th Symposium on Foundations of Computer Science (FOCS), 1987, pp. 427-437,
IEEE Computer Society Press.

18. A. Shamir, “How to share a secret,” Communication of ACM, Vol. ___, 1979, pp.
612-613.

19. U. M. Maurer and Y. Yacobi, “A non-interactive public-key distribution system,”
Design, Codes and Cryptography, Vol. 9, 1996, pp. 305-316.

Cheng-Fen Lu (呂正棻) received her M.S. degree in Electrical and Computer En-
gineering Department from the University of Texas at Austin and Ph.D. degree in De-
partment of Computer Science and Information Engineering from National Chiao Tung
University in 2003. There she was with the lab of distributed system and network secu-
rity, directed by Dr. Shiuh-Pyng Shieh. Also she was a NSC/DAAD exchange student at
two German institutes for two years (1998-2000), including the Computer Science De-
partment at University of Saarland and the Mathematics Department at University of
Frankfurt. Currently, she is an assistant professor at the Department of Computer Science
and Information Engineering, Ta Hwa Institute of Technology. Her research interests
include cryptography, coding theory, and network security.

CHENG-FEN LU AND SHIUHPYNG SHIEH

400

Shiuh-Pyng Shieh (謝續平) received the M.S. and Ph.D. degrees in Electrical and
Computer Engineering from the University of Maryland, College Park, in 1986 and 1991,
respectively. He is currently a professor and the chairman of the Department of Com-
puter Science and Information Engineering, National Chiao Tung University; the vice
chairman of Chinese Cryptology & Information Security Association; director of Cisco
Internetworking Technology Lab. From 1988 to 1991 he participated in the design and
implementation of the B2 Secure XENIX for IBM, Federal Sector Division, Maryland,
U.S.A. He is also the designer of Secure Network Protocols (SNP), a popular security
shareware on the Internet. He has been consultants in the areas of network security and
distributed operating systems for many institutes, such as Industrial Technology Re-
search Institute, and National Security Bureau, Taiwan. He was on the organizing com-
mittees of numerous conferences, and is currently an editor of Journal of Computer Se-
curity, and Journal of Information Science and Engineering. Recently, he has received
two outstanding research awards, honored by National Chiao Tung University and Ex-
ecutive Yuan of Taiwan, respectively. His research interests include internetworking,
distributed systems, and network security.

