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A Family of Low-Complexity Blind Equalizers
Cheng-I Hwang and David W. Lin, Senior Member, IEEE

Abstract—Two important topics in equalizer design are its com-
plexity and its training. We present a family of blind equalizers
which, by incorporating a decomposition finite-impulse response
filtering technique, can reduce the complexity of the convolution
operation therein by about one half. The prototype algorithm in
this equalizer family employs the prevalent Godard cost function.
Several simplified algorithms are proposed, including a sign al-
gorithm which eliminates multiplications in coefficient adaptation
and a few delayed versions. We also study the convergence proper-
ties of the algorithms. For the prototype algorithm, we show that, in
the limit of an infinitely long equalizer and under mild conditions
on signal constellations and channel characteristics, there are only
two sets of local minima on the performance surface. One of the sets
is undesirable and is characterized by a null equalized channel re-
sponse. The other corresponds to perfect equalization, which can
be reached with proper equalizer initialization. For the simplified
algorithms, corresponding cost functions may not exist. Some un-
derstanding of their convergence behaviors are obtained via exam-
ination of their adaptation equations. Simulation results are pre-
sented to demonstrate the performance of the algorithms.

Index Terms—Adaptive filtering, blind equalization, decomposi-
tion convolution.

I. INTRODUCTION

I N DIGITAL transmission, the problem of intersymbol inter-
ference (ISI) is most often mitigated by receiving-end equal-

ization. Two important issues in equalizer design and imple-
mentation are its complexity and its training. Regarding com-
plexity, the equalizer is frequently the most complicated ele-
ment in the receiver. Hence, simplification of the equalizer can
reduce the receiver cost effectively. Regarding training, conven-
tional equalizers rely on the use of a training sequence for ini-
tial convergence. However, in some situations, it may be costly
to send a training sequence, or the training sequence may be
unavailable at the receiver. Then blind equalization (or more
exactly, blind adaptation) is needed, where the equalizer coef-
ficients are adapted, employing some known statistics of the
transmitted data, but not the (unknown) data values. Blind or
nonblind, the equalizer switches to decision-directed operation
after initial convergence.
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An adaptive filter contains two major sections: a convolution
section and a coefficient adaptation section. Studies on com-
plexity reduction for blind and nonblind algorithms alike have
thus far largely concentrated on the coefficient adaptation sec-
tion. A common technique is to use an adaptation step size
which has a simple binary representation. In the case of nonblind
adaptive filtering, various “sign-least mean square (LMS) algo-
rithms” have also been studied [1], [3]. Compared to the funda-
mental LMS algorithms, these sign versions reduce (or totally
eliminate) the number of multiplications in coefficient adapa-
tion. Taking a different route, Chen et al. recently introduced
a technique for convolution computation which could reduce
the amount of multiplications therein by about 50% [2], [3].
We shall refer to this technique as the decomposition method.
Elsewhere, it is sometimes referred to as the algebraic reduction
method.

In the case of blind equalization, Godard’s method for
quadrature amplitude modulation (QAM) signals [4] is a
frequently referenced adaptation technique. Due to its carrier
independence, the convergence of the equalizer and the carrier
recovery circuit can be more easily assured. For complexity
reduction, sign algorithms for blind equalization have also
been developed [5], [6]. All these blind techniques concern
linear equalization. But decision-feedback equalization can be
introduced when the equalizer has finished the blind adaptation
and switched to decision-directed operation [7].

In this paper, we present several low-complexity blind
equalization algorithms. In particular, we incorporate the
decomposition convolution technique into blind equalization,
and we investigate the equalizer performance both analytically
and through computer simulation. The equalizer adaptation
technique is based on the Godard cost function. (A
separate paper considers joint operation of the blind equalizer
with carrier and timing recovery [7].) Several simplified
versions of the resulting algorithm are also derived. Moreover,
typical algorithm studies assume that the coefficient adaptation
employs the convolution result of the current time. But practical
hardware designs are sometimes obliged to use the result of an
earlier time, giving rise to the so-called delayed algorithms [8].
We also consider such algorithms.

A main contribution of this paper consists in the discovery
of a family of blind equalization algorithms with significantly
reduced complexity over their conventional counterparts. The
reduction is up to about one half the complexity in the equal-
izer’s convolution operation. Depending on the choice of the
equalizer’s coefficient adaptation scheme, this is tantamount to
between approximately 25% and 50% of the overall equalizer
complexity.

The rest of this paper is organized as follows. In Section II, we
derive the family of low-complexity blind equalizers. Section III
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studies their convergence property. Section IV presents some
computer simulation results. And Section V draws the conclu-
sion.

II. DECOMPOSITION BLIND EQUALIZATION ALGORITHMS

We treat the convolution section and the coefficient adapta-
tion section in separate subsections.

A. Decomposition Technique for Convolution

Conventional transversal filters perform convolution as

(1)

where is the time index, is the filter input, is
the th filter coefficient, and is the filter output. Chen and
Tsay [9] observed that (1) can be rearranged as follows:

(2)

where, without significant loss of generality, we have assumed
to be even for convenience. This is the decomposition ap-

proach to computing convolution.
In the right-hand side (RHS) of (2), the first term requires

multiplications and additions at each time. Let
denote the second RHS term in (2). It can be computed

recursively as

(3)

The computation takes two multiplications and two additions.
Alternatively, we can save the value of in a delay
line for later use. Then a multiplication is saved at the cost of
some memory space and operations. The last RHS term, in the
case of constant-coefficient filters, can be computed at the de-
sign stage. In summary, for constant-coefficient filters, the de-
composition formulation (2) can obtain the output at each time
with on the order of multiplications and additions.
Compared with the order of multiplications and additions
for the conventional method, the decomposition method reduces
the amount of multiplications by about 50% at the cost of about
a 50% increase in number of additions. But the complexity of
digital multiplication can be much greater than that of addi-
tion, especially for complex signals such as those encountered in
baseband processing of QAM signals. Thus, the decomposition
technique offers significant complexity reduction for convolu-
tion computation.

In adaptive filtering, however, the coefficients are time
varying, and the last RHS term in (2) cannot be computed in

advance. A straightforward computation of this term would re-
quire multiplications and additions at each time,
making the computation according to (2) more complicated than
the conventional method. To avoid this problem, Chen et al. de-
fined a new variable in its place; i.e., they modified (2) into

(4)

where the variable is adapted to estimate
. This way, the complexity advantage

of the decomposition technique is maintained. Experience
shows that, with proper adaptation, can track

closely. It is this decomposition filtering
method that we use in our blind equalizers.

Another complexity issue regarding the decomposition tech-
nique is that the power levels of and may be quite
different. Hence, the arithmetic operations in (4) may need to be
carried out using greater wordlengths than in the conventional
method, offsetting the benefits of reduced multiplications. This
problem can be alleviated by scaling the filter input to make the
power level of approximately equal to that of , so as
to minimize the impact on multiplier size.

Note that, for equalizers, the above equations apply equally
well to synchronous and fractionally spaced structures—only let
the index refer to the sample number rather than the symbol
number.

B. Coefficient Adaptation

By far, the most common coefficient adaptation algorithms
for either blind or nonblind adaptive filtering are of the sto-
chastic gradient type. For this, one typically first defines a cost
function (on equalizer output ) whose global minimum cor-
responds to the desired filter coefficient setting. For example, in
the case of nonblind adaptive filtering, the most common cost
function is the mean-square error (MSE), i.e., ,
where is the desired filter output. Taking the stochastic gra-
dient of this cost function yields the well-known least mean
square (LMS) algorithm. For blind equalization, it is customary
to construct cost functions such that the global minima corre-
spond to perfect equalization in the limit of infinitely long equal-
izers. Consider Godard’s cost function [4]. Let denote
the cost function and its sample value at time , that
is, . Godard let

(5)

where is some positive integer. Taking the stochastic gra-
dient approach, one obtains the following adaptation equation
for equalizer coefficients in the conventional transversal struc-
ture:

(6)
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where

(7)

and the gradient operator is defined as
. A popular choice for

is . In fact, if , then the dynamic range of
becomes too big, degrading the performance.

When the equalizer assumes the decomposition filter struc-
ture (4), the stochastic gradient approach yields the following
coefficient adaptation formulas:

(8)

(9)

(10)

where and are the adaptation step sizes. These formulas
constitute the prototype algorithm in our study.

Now consider the situation where the adaptive equalizer has
converged and the equalization is nearly perfect. In this situa-
tion, and the output of the
decomposition equalizer and that of a conventional transversal
equalizer will be about equal. Therefore, the values of
from both equalizer structures will be close. By the smoothness
of , we expect that the values of for
both structures be also similar. Hence, (8) and (9) should be-
have similar to (6). And we may consider using (6) in place of
(8) and (9), which results in a simplified algorithm for coeffi-
cient adaptation as

(11)

(12)

We term this the reduced algorithm. Simulation results indicate
that, interestingly, the convergence behavior of the reduced al-
gorithm is statistically similar to that of the original, even if used
from the beginning, i.e., not just after convergence.

For further complexity reduction, we consider the following
sign algorithm to reduce the number of multiplications:

(13)

(14)

where the signum function for a complex number is defined
as . The adaptation equa-
tion for is not changed, since it does not contain multi-
plications to start with (except for a scaling by ), and since
taking the sign of would make the adaptation of
too coarse. We remark that the sign algorithm in [6] employs a
different , given by

for some , which is derived from a modified

cost function of that of Godard, and hence, is not exactly the
sign version of Godard’s algorithm.

The above algorithms assume that the coefficient adaptation
employs the convolution result of the current time. As men-
tioned previously, hardware-efficient designs are sometimes
obliged to use the result of an earlier time, giving rise to delayed
algorithms such as the delayed reduced algorithm

(15)

(16)

Replacing the in (15) by yields
the delayed sign algorithm.

III. CONVERGENCE PROPERTIES

Convergence behaviors of blind equalizers have so far defied
a complete analysis. Researchers often resort to an examination
of the performance surface associated with infinitely long equal-
izers under the given cost function to get some grasp. For con-
ventional transversal equalizers, Godard studied the stationary
points of his cost function, and showed that the global
minima correspond to perfect equalization [4]. Foschini fur-
ther demonstrated that all other stationary points are either local
maximum or saddle points, and hence, the global minima are
the only attractors [10]. Convergence behaviors of finite-length
blind equalizers are more complicated, and there may exist local
minima [11]. For simplicity, we only consider the limiting case
of infinitely long equalizers.

We first examine the stationary points associated with the pro-
totype algorithm. Following a somewhat similar route to that
of Godard [4], we show that perfect equalization defines local
minima, which are outperformed only by another set of local
minima whose cost value is exactly zero, and which correspond
to a completely null equalized channel response. The derivation
also appears in a more condensed form in [7]. Then, by studying
the eigenvalue structure of the Hessian matrices of the cost func-
tion at the stationary points, we show that all other stationary
points are either local maximum or saddle points. Therefore,
with proper initialization and suitable choice of the adaptation
step sizes, the algorithm can approach perfect equalization.

Next, we consider the reduced and the sign algorithms. Un-
fortunately, we are unable to show whether there exist corre-
sponding cost functions. Thus, for these algorithms, the notion
of performance surface is (as yet) ill defined, and we are unable
to conduct a convergence analysis based on study of the perfor-
mance surface. But some understanding of the convergence be-
haviors can still be attained by examining the coefficient adap-
tation equations. And the analysis of the average convergence
properties also applies to the delayed algorithms, although they
have different dynamic behaviors.

A. Stationary Points of the Prototype Algorithm

Let denote the convolution of the channel impulse re-
sponse with . Then, in the case of a noiseless channel, the
decomposition equalizer output is given by

(17)
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where denotes the channel input at time , and we have
omitted the time indexes from and to signify the fact
that we are interested in the performance surface defined by
these quantities, rather than their time variation. For our study,
parametrization of in terms of or in terms of
makes no difference if the channel response is invertible, for, in
this case, and are related by a nonsingular linear trans-
form. Hence, although the stationary points of the cost function
appear in different locations in the two spaces, their curvature
types (minimum, maximum, saddle, etc.) are not changed.

Treat as a function of and . A stationary point on the
performance surface corresponding to the Godard cost
function satisfies and .
The former leads to

(18)

whereas the latter

(19)

where, for convenience, we have defined

(20)

By (18), (19) can be simplified to

(21)

Consider the situation of perfect equalization, that is,
for some , and . Substituting these

conditions into (18) and (21), we see that a sufficient condition
for the equalities to hold is that and ,
which is true for common square QAM constellations with
equal symbol probabilities. Thus, perfect equalization defines
stationary points. We now prove that these points are local
minima.

Some manipulation of (21) yields

(22)

where, in addition to and , we have as-
sumed that is independent and identically distributed (i.i.d.),
and that . (The last condition holds for common
square QAM constellations with equal symbol probabilities.)
Therefore, at any stationary point, if there are nonzero el-
ements in the sequence , then all these elements have the
same magnitude.

On the other hand, (18) leads to

(23)

under the same set of conditions on . Therefore, either

(24)

(25)

If , then the situation is equivalent to that of a common
transversal equalizer already dealt with by Godard, who showed
that the cost function value is given by ([4, Eq. (34)])

(26)

It is easily seen that . Go-
dard proved that, for , the value increases with if

, a condition satisfied by common square
QAM constellations. Hence, attains its minimum at

, i.e., at perfect equalization. Moreover, at perfect equal-
ization, we have ([4, Eq. (32)]). On the other hand, if
satisfies (25), then substituting it into (22), we obtain

(27)

and thus

(28)

The corresponding cost function value is then given by

(29)

It is straightforward to show that, if ,
then for all . Unfortu-
nately, , which obviously gives the absolute
minimum of the cost function. Hence, the global minima of
the performance surface correspond to a completely null equal-
ized channel impulse response. The desired condition of perfect
equalization corresponds to stationary points whose cost value
is the second lowest among all stationary points.

Fortunately, as shown immediately below, the second-lowest
stationary points that correspond to perfect equalization are
local minima. Further, it is shown in the Appendix that, in
fact, all other stationary points except that corresponding
to null filtering are either local maximum or saddle points.
Thus, convergence to perfect equalization can be attained by
a stochastic gradient algorithm with suitable initialization and
proper choice of the adaptation step sizes.
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To show that perfect equalization corresponds to local
minima, note from the Godard cost function (5) with
that we have

(30)

It is then not difficult to show that, at perfect equalization, any
perturbation in and would lead to an increase in the value
of . Thus, perfect equalization defines local minima.

Although the above derivation has assumed zero-mean data,
slight modification of the algorithm will make it capable of oper-
ating under nonzero-mean data. Transmission of nonzero-mean
data may arise, for example, when it is desirable to send a pilot
tone at the carrier frequency. Such a tone may be effected by
adding a direct current (DC) bias to an otherwise symmetric
baseband data constellation. In conventional transversal equal-
izers, such a bias in data may pose a problem, because it may
result in a particularly large eigenvalue in the equalizer’s input
autocorrelation matrix, to the detriment of its adaptation [12].
A way to handle this problem in conventional adaptive filters is
to add a DC tap to estimate and cancel the DC bias. In the case
of our prototype blind equalizer algorithm, let the mean of the
transmitted data be , and define . Then will
have zero mean, and we have

(31)

To address the situation of a nonzero , all we need to do is to
redefine

(32)

It can be shown that the stationary points of again
exhibit the above-discussed properties, with the value of at the
second-lowest minima now equal to
to take care of the effect of nonzero automatically. There-
fore, the decomposition equalizer easily handles data with
nonzero DC.

B. Simplified Algorithms

As noted before Section III-A, cost functions corresponding
to the simplified algorithms are not found and may not exist. We
attempt to gain some understanding of the convergence behav-
iors by examining the coefficient adaptation equations.

Consider first the reduced algorithm. It is not difficult to
show that the average behavior of the algorithm is similar to
the prototype algorithm when is converged, thus providing
additional justification to the reduction, in addition to that
discussed in the last section. For this, we see from (10) that

when is fully converged in the prototype algorithm, we
should have . From (7) with , this is
exactly the stationarity condition (18). If the adaptation step
size in (8) and (9) is small, then we may presume that
is only weakly dependent on , and thus

(33)

(34)

Therefore, the average behavior of the reduced algorithm is sim-
ilar to the prototype algorithm when is converged.

For the sign algorithm, we noted earlier that our algorithm is
different from that in [6], in that the former is a simplification of
the prototype algorithm, while the latter has a well-defined cost
function different from Godard’s. Concerning the convergence
behaviors, a peculiar property of our sign algorithm is that, un-
like the prototype and the reduced algorithms, perfect equaliza-
tion does not necessarily define equilibrium points (where the
average adaptations of the equalizer coefficients are zero). To
see this, let denote the original channel impulse response.
Then . Now consider a situation of perfect
equalization, where for some . The expected value
of coefficient adjustment in (13), disregarding the scaling by ,
is given by

(35)

where denotes expectation over all with ,
denotes expectation over , and we have assumed to be
zero-mean and i.i.d. The RHS in (35) can be interpreted as fol-
lows.

The quantity serves to attach different
signs to , according to whether lies within
a circle of radius around the origin on the complex
plane. The expectation, therefore, classifies the points in the
constellation of into these two categories, takes the sum
of for each category, obtains their difference,
and divides the result by the constellation size of . Now,
the quantity is a negation of the phase of
through complex conjugation, followed by a rotation in angle
by (and a scaling of the magnitude
by ) through multiplication by , where is the
quadrant lies in. By this, the constellation of is
folded into a segment spanning between in phase about
the real axis on the complex plane, as illustrated in Fig. 1 for
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Fig. 1. Folded constellation of 64-QAM given by sgn(a )a .

the common square 64-QAM constellation. In the figure, we
have also sketched an arc at from the origin. Now, if the
original constellation of is vertically symmetric (i.e., sym-
metric about the real axis), then the folded constellation is also
vertically symmetric, resulting in a null imaginary part upon
taking the expectation in (35). However, it is straightforward to
show that the real parts of
do not average to zero for a number of common constellations,
such as the 16-, 64-, and 256-QAM, no matter whether we let

be equal to or . We also see that this condition
cannot be rectified by using a different value for , because,
for these constellations, no value of can make the real
parts average to zero. Therefore, perfect equalization does not
define equilibrium points for the sign algorithm in these cases.
Rather, residual ISI or noise must be present in at an
equilibrium point. As blind equalization usually serves only
to facilitate the initial convergence of an equalizer (to open
the eye) before switching to decision-directed operation, the
above peculiarity does not pose a problem, as long as it does
not prevent such convergence. This is indeed the case observed
in our simulation.

IV. SIMULATION RESULTS

As mentioned, blind equalization usually serves only to fa-
cilitate the initial convergence of an equalizer. We consider a
two-stage blind-adaptation procedure as follows: 1) adaptation
with a larger step size for fast convergence; and 2) adaptation
with a smaller step size to reduce the residual ISI. Then the
equalizer enters decision-directed operation. As this simulation
study is geared at investigating the performance of the blind
equalization algorithms, we limit ourselves to consideration of
linear equalization only, even in the stage of decision-directed
operation. For simplicity, we let the channel be noise free. This
is not expected to degrade the usefulness of the results, for as
we shall see, there is already an amount of residual ISI in the

Fig. 2. Block diagram of the transmission system, where thin arrows indicate
real signals and thick arrows indicate complex signals.

Fig. 3. Magnitude response of the simulated channel.

equalizer output. Such residual ISI already plays the role of ad-
ditive noise.

We simulate digital coaxial-cable transmission using 64- and
256-QAM signals. The overall transmission system is as shown
in Fig. 2. The channel bandwidth is 6 MHz and the signaling
rate is 5.38 Mbaud. The two square-root raised-cosine (SRRC)
filters each contain 64 taps. The magnitude response of the sim-
ulated (equivalent baseband) channel, including the two SRRC
filters, is as shown in Fig. 3. The equalizer is -spaced with
16 “linear taps” (i.e., the ) plus the bias tap (i.e., ). It is
initialized to have . The input to the equalizer is manu-
ally scaled (“gain controlled”) to have a peak-to-peak magnitude
variation of approximately 16 (resp. 32) in the two quadrature
channels for 64-QAM (resp. 256-QAM), so that in the absence
of ISI, the minimum distance between neighboring signal points
would be approximately two. The quantity is also defined
based on a minimum distance of two between nearest neighbors
in each signal constellation. Each stage of blind adaptation con-
tains 30 000 symbols. For convenience, the adaptation step sizes
will be described in vector form, with the th element giving the
step size employed in the th stage of equalizer operation.

First, consider 64-QAM with zero-mean data. We first ex-
amine the performance of the prototype algorithm and the re-
duced algorithm. Fig. 4 compares the MSE convergence of these
algorithms with that of the Godard algorithm, where the adap-
tation step sizes in the two blind-adaptation stages are set some-
what arbitrarily to for the linear taps for all the al-
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Fig. 4. MSE convergence of the Godard algorithm, the prototype algorithm,
and the reduced algorithm under 64-QAM.

gorithms, and that for the bias tap set to for the
prototype and the reduced algorithms. The MSE is computed
by averaging over 1000 symbols and plotted one point per 10
symbols. We see that the three algorithms have almost iden-
tical convergence characteristics. Hence, the reduced algorithm,
being the simplest of all, is the preferred choice. Therefore, in
the following, we shall be concerned primarily with the reduced
algorithm and its simplified versions. Fig. 5 depicts the conver-
gence curve of for the reduced algorithm, which shows that
converges to , as desired.

We now examine the performance of two simplified versions
of the reduced algorithm, namely, the delayed algorithm (with

) and the (undelayed) sign algorithm. Fig. 6 plots the
MSE convergence of these algorithms together with that of the
reduced algorithm. The adaptation step sizes are the same as
given previously, except for the linear taps in the sign algorithm,
which are . These step sizes have been chosen to
make the sign algorithm’s convergence speed visually approxi-
mately the same as the other two. Smaller step sizes can lower
the steady-state MSE of the sign algorithm, but at the price of a
slower convergence. From the figure, we see that, in this case,
one-symbol delayed adaptation does not degrade the perfor-
mance, while, as mentioned, it may have some hardware ben-
efit. Note also that, since the most important purpose of blind
equalization is to cut the decision-point error to the extent that
equalizer convergence in decision-directed operation can be en-
sured, some degradation in the steady-state performance of the
blind-adaptation stage can be accepted if such convergence is
not hampered. On this ground, the sign algorithm has a com-
plexity advantage, as it does not need multiplications in coeffi-
cient adaptation.

Before considering the combined use of delayed and sign
adaptation, let us briefly look into the effects of input–output
scaling and that of nonzero DC in data. Recall that the purpose of
equalizer input–output scaling is to approximately equalize the
peak signal magnitude in the equalizer delay line and the peak
equalizer tap values, to attain some hardware complexity merit.
We have observed that the maximum magnitude of the equal-

Fig. 5. Convergence of the new variable h under 64-QAM in the reduced
algorithm. Curve shows 10 log jh� w w j =j w w j
where the overlines denote time averages.

Fig. 6. MSE convergence of several simplified algorithms under 64-QAM.

izer tap values lies around 0.5–1. Therefore, a 16-fold down-
scaling of the equalizer input, which has been approximately
normalized to a maximum magnitude of eight in both quadrature
branches as noted previously, will achieve the purpose. Simula-
tion results show that the input–output scaling leads to a frac-
tional-decibel penalty in MSE, compared with the basic reduced
algorithm, but the convergence curve is otherwise quite similar.
For algorithm performance in nonzero-mean data, we consider
a DC bias of 0.5 in both the quadrature branches of the trans-
mitted QAM symbols. The modified target power level of (32)
is used. Simulation results show that the MSE convergence is
similar to the case of zero-mean data.

We now consider the combined use of delayed and sign
adaptation and input–output scaling. Fig. 7 compares the
convergence of the blind-adapted delayed sign algorithm
(with ) with input–output signal scaling (by 16) with
that of the training-sequence-based sign LMS algorithm. The
latter employs the conventional transversal filter structure. In
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Fig. 7. MSE convergence under 64-QAM of the training-sequence-based
conventional sign LMS equalizer under zero-mean data and the blind-adapted
delayed sign decomposition equalizer with input–output scaling under
nonzero-mean data.

Fig. 8. Equalizer output signal constellation after convergence in stage-2
blind adaptation of the delayed sign algorithm with input–output scaling under
64-QAM with nonzero mean.

the blind-adapted case, a DC bias of 0.5 is present in both
quadrature branches of the transmitted data, while in the case
of training-sequence-based sign LMS, the data have zero
mean. Decision-directed operation is entered after 60 000
symbols for blind-adapted equalization and after 30 000 sym-
bols for training-sequence-based equalization. The adaptation
step sizes employed in the blind-adapted equalization are

for the linear taps and
for (where the third vector elements are the step sizes for
decision-directed operation). These adaptation step sizes have
been chosen heuristically to achieve relatively fast convergence,
while yielding a low steady-state MSE. The step size for the
training-sequence-based sign LMS is throughout. We
see from Fig. 7 that, although the MSE values of the delayed
sign algorithm during blind adaptation are larger than that of
the conventional sign LMS during training-sequence-based

Fig. 9. MSE convergence under 256-QAM of the training-sequence-based
conventional-sign LMS equalizer under zero-mean data and the blind-adapted
delayed sign decomposition equalizer with input–output scaling under
nonzero-mean data.

Fig. 10. Equalizer output signal constellation in blind-adaptation stage 2, after
5000 symbols into it, of the delayed sign algorithm with input–output scaling
under 256-QAM with nonzero mean.

adaptation, the final performance in decision-directed operation
is comparable. Fig. 8 shows the equalizer output constellation
after convergence in stage two of blind adaptation. The eyes
are clearly open.

A simulation of 256-QAM transmission is shown in Fig. 9,
where the simulation conditions are the same as for Fig. 7, ex-
cept those noted below. First, the input–output scaling in the
delayed sign algorithm is by a factor of 32, due to the dif-
ferent input scale. And second, the adaptation step sizes for the
blind-adapted equalization are for the linear
taps and for . These step sizes have been
chosen, likewise, to achieve relatively fast convergence while
yielding a relatively low steady-state MSE. The step size for the
training-sequence-based sign LMS is again throughout.
Observe that the blind-adapted equalizer again converges under
such conditions and ends in similar MSE performance as the
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training-sequence-based conventional sign LMS in decision-di-
rected operation. Fig. 10 shows the equalizer output constella-
tion in stage two of blind adaptation after 5000 symbols into it.
The eyes are not as cleanly open as in the case of 64-QAM, but
they can be discerned.

V. CONCLUSION

We presented a family of blind equalization algorithms which
employ a decomposition FIR filtering technique to carry out the
convolution therein. By this, the complexity of convolution can
be reduced to about one half. A stochastic-gradient-based proto-
type algorithm for equalizer coefficient adaptation was derived.
The algorithm can handle both zero-mean and nonzero-mean
data by varying an algorithm parameter which controls the ex-
pected output magnitude of the equalizer. Several simplified
algorithms were also obtained, including a reduced algorithm
which behaves similarly to the prototype algorithm at near-per-
fect equalization, a sign algorithm which eliminates multipli-
cation in equalizer coefficient adaptation, and several delayed
versions thereof.

We studied the convergence properties of the algorithms.
For the prototype algorithm, we showed that in the limit of an
infinitely long equalizer and under mild conditions on signal
constellations and channel characteristics, there are only two
sets of local minima on the performance surface. One of the
sets is undesirable and corresponds to completely null equal-
ized channel responses. The other set corresponds to perfect
equalization. Other stationary points are either local maximum
or saddle points. Thus, convergence to perfect equalization
can be obtained with suitable initialization. For the simplified
algorithms, some understanding of their convergence behaviors
were obtained via examination of their adaptation equations.

We presented some simulation results to demonstrate the per-
formance of the algorithms. In these examples, setting one of the
equalizer’s central tap to unity made it converge successfully.

For future work, a subject of interest is the theoretical anal-
ysis of the convergence properties of the prototype algorithm as-
suming finite-length equalizers. For the simplified algorithms,
it would be interesting to show definitely if corresponding cost
functions (or approximate ones) exist. It would also be inter-
esting to consider the performance of the proposed algorithms
on fading multipath channels.

APPENDIX

CURVATURE AT THE STATIONARY POINTS

The eigenvalue structure of the Hessian matrix at a stationary
point bears information on the type of stationarity there. For
notational convenience, let denote the expected value of a
quantity , and let and denote the real and the imaginary
parts, respectively, of a complex quantity . Though somewhat
tedious, it is not difficult to derive the following second-order
derivatives (where or ):

(36)

(37)

(38)

(39)

(40)

(41)

Before proceeding, we note that most of the Hessian matrices at
the stationary points will be found to possess zero eigenvalues.
However, since the Godard cost (30) contains no odd powers of

or , no stationary point can be reflexive along the direc-
tion of any Hessian eigenvector associated with a zero eigen-
value. Thus, a stationary point can only be a local extremum or
a saddle point.
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A. Case Where

When , let and be two nonzero equalized
channel coefficients. Then from (36)–(41), the Hessian subma-
trix associated with , and is given by

same

same

same

same (42)

where is the two-element zero vector, is the 2 2 identity
matrix, , and

(43)

. Note that all the vectors in the four outer products in (42)
are pairwise linearly independent. Note also that the coefficient
of the second outer product is negative when .
Thus, the Hessian submatrix has at least one negative eigen-
value. Therefore, the overall Hessian matrix at the stationary
point is not nonnegative definite ([13, Sec. X.4]), and the point
cannot be a local minimum. In fact, the Hessian matrix pos-
sesses both positive and negative eigenvalues. Consequently, the
stationary point is a saddle point.

When , let be the nonzero equalized channel coeffi-
cient and consider any zero equalized channel coefficients

. Then the Hessian submatrix associated
with , and , , is given by

same (44)

where is the 2 2 zero matrix and we have used the fact
that ([4, Eq. (32)]). We see that the coefficients of all

three matrix terms are positive, provided . Thus,
the Hessian submatrix is nonnegative definite, and since is
arbitrary, so is the overall Hessian matrix at this stationary point.
Therefore, the stationary point is a local minimum.

When , again consider any zero-equalized channel
coefficients . The Hessian submatrix associ-
ated with and these coefficients is given by

same

(45)

As the coefficients of the two matrix terms are both negative, the
Hessian submatrix is nonpositive definite and so is the overall
Hessian matrix at this point. Hence, the point is a local max-
imum.

B. Case Where

The condition corresponds to the undesired global
minima. For , let be a nonzero equalized channel
coefficient. The Hessian submatrix associated with is given
by

same (46)

from which we can calculate its determinant as

(47)

Thus, the Hessian submatrix is not nonnegative definite. Hence,
the overall Hessian matrix is not nonnegative definite ([13, Sec.
X.4]), and this stationary point cannot be a local minimum. By
considering Hessian submatrices which include derivatives with
respect to and , and using an eigenvalue argument as that
done previously for the condition under the case ,
we can show that the overall Hessian matrix possesses both pos-
itive and negative eigenvalues, and hence, the stationary point is
a saddle point.
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