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Abstract—Read disturb-induced erase-state threshold voltage
instability in a localized trapping storage Flash memory cell with a
poly-silicon–oxide–nitride–oxide–silicon (SONOS) structure is in-
vestigated and reported. Our results show that positive trapped
charge in bottom oxide generated during program/erase (P/E) cy-
cles play a major role. Both gate voltage and drain voltage will ac-
celerate the threshold voltage ( ) drift. Hot-carrier caused disturb
effect is more severe in a shorter gate length device at low temper-
ature. A model of positive charge-assisted electron tunneling into
a trapping nitride is proposed. Influence of channel doping on the

drift is studied. As the cell is in an “unbiased” storage mode,
tunnel detrapping of positive oxide charges is responsible for the
threshold voltage shift, which is insensitive to temperature.

Index Terms—Cycling-induced oxide charges, Flash EEPROM,
hot-carrier effect, MXVAND, NROM, PHINES, positive charge-
assisted electron tunneling, read disturb, poly-silicon–oxide–
nitride–oxide–silicon (SONOS), tunnel detrapping, threshold
voltage ( ) instability.

I. INTRODUCTION

RECENTLY, localized charge-trapping storage,
two-bits-per-cell Flash memory technology with a

poly-silicon–oxide–nitride–oxide–silicon (SONOS) structure
has attracted much attention [1]–[6]. In addition to its simpler
fabrication process, the smaller cell size and higher packing den-
sity, the absence of drain turn-on and overerase are considered
to be the advantages over current floating-gate Flash memory
technologies [7]. Fig. 1 shows a typical SONOS memory cell,
which is an nMOSFET with an oxide–nitride–oxide (ONO)
stack as the gate dielectric. Based on this device structure,
various methods of operation have been proposed. For example,
NROM [2], multiplex virtual-grained AND (MXVAND) [3]
(hot-electron programming and hot-hole erasing) and program-
ming by hot hole injection nitride electron storage (PHINES)
[5] [hot-hole programming and Fowler–Nordheim (FN) tunnel
erasing] have been demonstrated to be promising candidates
for Flash EEPROM technology. Charge loss characteristics of
these cells have been discussed, and corresponding models
have been proposed [3], [8]–[11]. Various ONO processing
technologies [12] and alternative trapping layer materials [13]
have been investigated to further improve their charge retention.
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Fig. 1. Schematic representation of the cell structure and localized charge
storage. Concept of reverse read is depicted by the depletion region in which
the effect of injected charges is screened out.

The unique feature of two-bits-per-cell storage is due to the
localized charge injection, nonconducting property of charge
storage material, and a reverse read scheme [2]. As depicted in
Fig. 1, a drain bias ( ) is necessary to read out the information
stored in bit-S. The applied must be large enough to “screen”
out the injected charges at the drain bit (Bit-D). The read cur-
rent (or threshold voltage) is then controlled by the charge state
near the source (Bit-S), almost regardless of the charges at Bit-D.
Typically, the applied bit-line voltage at read is around 1.6 V,
which is higher than the read voltage in a floating-gate Flash
memory cell (typically around 1 V). Fig. 2 shows the threshold
voltage ( ) shift of a 10-K program/erase (P/E) cycled cell
during read operation, whereas the drift is not observed in a
noncycled cell. In the figure, the applied gate bias ( ) is 2.5 V,
and the drain bias is 1.6 V. This shift, which will degrade the
memory window and result in failure of cell operation, however,
is rarely explored [14]. The purpose of this work is to find the
dominant mechanisms that cause such erase-state instability.

II. EXPERIMENTAL

The samples used in this paper are made of an nMOSFET-like
device, with an ONO gate dielectric structure, in a virtual ground
array. The source and drain are formed by buried-diffusion bit-
lines [2]. The thickness of each ONO layer is 9 (top oxide),
6, and 7 nm. Devices with gate length from 0.5– 0.3 m and
initial threshold voltage ( ) from 1.2–3 V are characterized.
The gate width is around 0.35 m. Temperature effect from

C to 85 C is studied. Channel hot-electron injection and
band-to-band tunneling-induced hot-hole injection are utilized
for programming and erasing, respectively. Read operation is
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Fig. 2. Read-disturb characteristics of a fresh cell and a 10-K P/E cycled cell.
L = 0:5 �m and V =V =V = 2:5V; =1:6V; =0 V.

TABLE I
OPERATION PRINCIPLES AND BIAS CONDITIONS UTILIZED

DURING CELL OPERATIONS

achieved with a reverse read scheme. The bias conditions are
summarized in Table I. Program time is around 5 s, and erase
time is about 5 ms. With such conditions, 2-V difference be-
tween program-state and erase-state can be obtained. Three
disturb modes are investigated for P/E cycled cells in erase state.
In the first one, gate and drain biases are applied and the source
is grounded. It is the conventional read disturb (RD) mode. The
second one has an applied gate bias, and the source and drain are
grounded. It is referred to as gate disturb (GD) mode, which is to
emulate the gate bias effect on cells sharing the same word-line
with the cell to be read. Finally, the room temperature drift (RT)
mode, in which the drift is insensitive to temperature [10],
is the special case in which the cell is in “unbiased” storage
(without any applied bias).

III. MODELING OF POSITIVE OXIDE CHARGE EFFECT

ON READ DISTURB

Fig. 3 shows the shift of a 10-K P/E cycled cell in a two-
phase measurement, e.g., RT and RD are measured in sequence
or vice versa. It is found that after RT (or RD), the following
RD (or RT) is reduced. This gives us a hint that RT and RD
may have the same cause, since they influence each other. It also
means that shift due to RD is dependent on the sampled time.
Since positive oxide charge detrapping (with the coexistence
of residual negative charges in nitride) has been clarified to be
the major cause of RT [3], [10], these positive oxide charges
created during P/E cycling are considered to affect RD also. It
also explains the cycling effect on the observed erased-state
instability [3]. Table II shows the drift models at various bias
conditions and the corresponding time evolutions. In each case,
the cycling-induced positive oxide charge plays a major role.

As the cell is stored without applied and (RT mode), tunnel
detrapping of the cycling-generated positive oxide charges (

Fig. 3. Two-phase measurement of the temporal evolution V shift of a 10-K
P/E cycled cell. In curve (a), the cell is at RT in the first 10 s and is at RD in
the following 10 s. The sequence is reversed in curve (b). Bias condition of
RT and RD are V =V =V = 0V; 0V; 0 V and V =V =V = 3V; 1:6V;0 V,
respectively. L = 0:5 �m.

in Table II) is the dominant mechanism. According to the tunnel
front model [15], this detrapping current follows a time de-
pendence. Its evolution would have a logarithmic time de-
pendence accordingly.

If a sufficiently high is applied (e.g., for cells belonging
to the same word-line of a selected-reading cell, GD mode), an
inversion layer is induced beneath the gate. The positive oxide
charges will cause the inversion electrons to tunnel into the trap-
ping nitride at such high vertical field. According to the pos-
itive charge-assisted tunneling (PCAT) model [16], this injec-
tion current ( in Table II) will follow the law where is
the elapsed time, and p is around 0.7. The shift, thus, has a
power-law time dependence with .

As for the read cell, in which the read and are applied
(RD mode), channel electrons will be accelerated by the lateral
field near the drain region. Both the high drain field and the pos-
itive oxide charges will enhance electron injection into nitride.
This positive oxide charge-enhanced hot-electron injection will
cause a positive drift with the same time dependence as GD,
i.e., .

IV. RESULTS AND DISCUSSIONS

A. Bias Dependence of Read Disturb

Fig. 4 shows the GD characteristics of a 10-K P/E cycled cell.
The applied gate bias is from V (RT mode) to V.
It is found that shift shows linear dependence on log(t) at

V. This has been well modeled by hole tunnel detrapping
[15]. However, accelerated drift, which exhibits a power-law
time dependence , is observed at V. It would be clear
if we show the versus disturb time on a log-log plot, as in-
dicated by the open square and the right-axis in Fig. 4. Since
the time evolution of drift would show a power-law time de-
pendence if PCAT dominates, the accelerated drift with its
unique time dependence confirms that positive charge-assisted
electron tunneling into the trapping nitride takes place at high
vertical field, in addition to hole tunnel detrapping. The de-
pendence of is shown in Fig. 5.

Fig. 6 shows the RD characteristics of a 10-K P/E cycled cell
with m. The drain bias is from 1.7–2.3 V, and the gate
bias is 3 V. shift versus drain bias is shown in Fig. 7. Since the



436 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 3, MARCH 2004

TABLE II
SCHEMATICS OF BAND DIAGRAMS AND CARRIER TRANSPORT MECHANISMS AT VARIOUS BIAS CONDITIONS. SOLID CIRCLES REPRESENT THE RESIDUAL

ELECTRONS IN TRAPPING NITRIDE AND CHANNEL ELECTRONS IN SILICON, AND OPEN CIRCLES REPRESENT THE POSITIVE TRAPPED CHARGES IN BOTTOM OXIDE.
� AND � REPRESENT THE HOLE AND ELECTRON TUNNELING BARRIER HEIGHTS, RESPECTIVELY. m AND m REPRESENT THE HOLE AND ELECTRON

TUNNELING EFFECTIVE MASSES, RESPECTIVELY. N IS THE EFFECTIVE POSITIVE OXIDE CHARGE VOLUME DENSITY. THREE CARRIER TRANSPORT PATHS ARE

ILLUSTRATED. (a) POSITIVE OXIDE CHARGE-TUNNEL DETRAPPING AT LOW OXIDE FIELD (J ). (b) POSITIVE OXIDE CHARGE-ASSISTED ELECTRON INJECTION

INTO NITRIDE (J ), IN ADDITION TO J , AT HIGH OXIDE FIELD. (c) POSITIVE OXIDE CHARGE-ASSISTED ELECTRON INJECTION INTO NITRIDE (J ), IN

ADDITION TO J , AT HIGH LATERAL FIELD. HOT CARRIERS ARE GENERATED VIA LATERAL FIELD HEATING. TIME EVOLUTIONS

OF THEIR INJECTION CURRENTS AND V SHIFTS ARE ALSO FORMULATED

Fig. 4. V shift versus disturb time of a 10-K P/E cycled cell at various gate
biases. The drain and source are grounded and L = 0:5 �m.

nitride conduction band edge is 2.1 eV above the silicon con-
duction band edge, sufficient lateral-field heating is necessary
to make the channel electrons inject into the trapping nitride, if
the vertical field is low. The drastically enhanced RD found at
high drain bias V can be explained by the channel
hot-electron injection into the trapping nitride. In addition, the

time dependence of drift also indicates that PCAT process
is involved. As decreases, the hot-carrier effect is too weak to
make the electrons inject into the trapping nitride. The shift
is then dominated by hole tunnel detrapping, which is the same
as RT (Fig. 4, V). It is shown that for V, the
shift due to read disturb is almost the same (Fig. 7), and is
proportional to (Fig. 6). Furthermore, a smaller shift
at V V than at 3 V/0 V can be explained by
reduced vertical field in the former case [17].

Fig. 5. V shift versus applied gate bias of a 10-K P/E cycled cell. The drain
and source are grounded, and the disturb time is 10 s L = 0:5 �m.

acceleration is widely used for hot-carrier lifetime projec-
tion. As shown in Fig. 8, acceleration effect is observed at
high . However, gate-enhanced read disturb, instead, domi-
nates at low drain bias where the hot-carrier effect is insignif-
icant. The shift is almost independent of in this regime
(e.g., V with m). The extrapolated lifetime
based on the results at high regime will be overestimated
if we use a low drain voltage during read operation, where the
hot-carrier effect is very weak.

B. Channel Length Scaling Effect

It is known that the hot-carrier effect will become more serious
in a short-channel device. Fig. 9 shows the RD results of three
cells with gate length ( ) of 0.5, 0.4, and 0.3 m, respectively.
Increased RD is observed in a shorter gate length cell. In addi-
tion, the temporal evolution of the shift follows a time
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Fig. 6. V shift versus disturb time of a 10-K P/E cycled cell at various drain
biases. V =V = 3 V=0 V and L = 0:5 �m.

Fig. 7. Read disturb-induced V shift versus applied drain bias of a 10-K P/E
cycled cell. The disturb time is 10 s V =V = 3 V=0 V and L = 0:5 �m.

Fig. 8. Lifetime projection by V -acceleration approach. Lifetime is defined
as the disturb time resulting in a V shift of 0.2 V. V =V = 3 V=0 V and
L = 0:5 �m. As shown in the figure, lifetime is overestimated in the low-V
regime where gate-enhanced disturb dominates.

dependence for m, and exhibits a time dependence
for m. It implies that strong hot-carrier enhanced RD
dominates the shift as the channel length is scaled down.

C. Temperature Effect

We also investigate the temperature effect on RD. It is re-
ported that hot-carrier-induced gate current injection increases
with decreasing temperature, even with a low drain bias (e.g.,

V) [18]. Fig. 10 shows that RD is almost independent of
temperature in a long-channel device m , in which

Fig. 9. V shift versus disturb time of 1-K P/E cycled cells with different
channel lengths. V =V =V = 3 V=1:6 V=0 V.

Fig. 10. Temperature effect on read disturb of 1-K P/E cycled cells. Devices
with gate lengths of 0.5 �m, 0.4 �m, and 0.3 �m are characterized. The applied
gate and drain biases are 3 and 1.6 V, respectively, and the disturb time is 10 s.

hole tunnel detrapping dominates [so it is termed as room-tem-
perature drift (RT)]. On the other hand, enhanced RD is ob-
served at low temperature in a shorter device ( m),
where hot-carrier-enhanced degradation dominates.

D. Channel Doping Effect

Channel doping is usually used to control short-channel effect
and to improve hot-electron injection efficiency. It is reported
that GD is worse in a high- cell [19]. RT, GD, and RD are
characterized for cells with initial threshold voltages of 1.2, 2,
and 3 V, respectively, in our study. During GD and RD mea-
surements, we use V, which is the same gate
overdrive that conducts the same read current for each cell. The
read drain bias is 1.6 V. The results are plotted in Fig. 11.

As shown in Fig. 11, two major features are observed. First,
RT is almost the same for these three cells, while GD and RD
increase with increased (channel doping). Second, shift is
strongly enhanced by in high- cells; however, it is less
affected by in a low- cell. More severe RD in a high-
cell is due to a stronger hot-carrier effect, since the channel
doping concentration is higher. As tunneling detrapping of pos-
itive oxide charges is responsible for the drift in low ver-
tical/lateral field, RT is expected to be almost the same in these
three cells (solid squares in Fig. 11). Since the same gate over-
drive implies the same inversion charge density in these cells,
we need to find out the cause that results in the enhanced GD in
a high- cell.
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Fig. 11. Initial threshold voltage versus room-temperature drift, gate disturb,
and read disturb. The cells undergo 10-K P/E cycles. The bias conditions for
GD and RD are V � V =V =V = 1:5 V=0 V=0 V and 1.5 V/1.6 V/0 V,
respectively, and V = V = V = 0 V for RT. The disturb time is 10 s and
L = 0:5 �m.

The oxide (vertical) field can be formulated as (without
trapped charges)

in strong inversion, where is the oxide field, is the
equivalent oxide thickness of the ONO stack, is the effective
channel doping concentration, and is the potential difference
between the Fermi level (with acceptor concentration of )
and the intrinsic Fermi level. and are the dielectric con-
stants of oxide and silicon, respectively. Obviously, even with
the same gate overdrive – , the vertical field is stronger
in a cell with higher channel doping . The higher vertical
field will enhance the charge tunneling rate [17]. This explains
the larger shift in a high- cell.

V. CONCLUSION

RD-induced instability is investigated in this work. It is
found that at low vertical/lateral field, tunneling detrapping of
cycling-induced positive oxide charges dominates the shift,
which is insensitive to temperature. A hot-carrier effect (drain
field heating) dominates the shift in a short-channel device,
especially at low temperature. Gate voltage-enhanced drift
occurs even in a long-channel device, and it is much worse in a
high- cell. All of the results are attributed to positive oxide
charges, which are created during P/E stress, that enhance elec-
tron injection into the trapping nitride. Process improvements
and operational optimizations have been shown effective in sup-
pressing these disturbs [20], [21].
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