Chaos Synchronization and Chaos Anticontrol
of a Rotationally Supported Simple Pendulum*
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Chaos synchronization and anticontrol of a rotationally supported simple pendu-
lum was studied in this paper. Différent kinds of coupling terms are used to synchro-
nize the two identical chaotic systems with different initial conditions. An observed-
based scheme is also used to achieve synchronization. The results are demonstrated
by phase portrait, Lyapunov exponent, Poincaré maps and synchronization time.
Next, in order to analyze the transient behavior of the synchronized systems, Eu-
clidean distance is used to plot a figure with coupling strength versus the distance. The
chaotic signals are used to mask the message function in the secure communication
system. Finally, anticontrol of chaos is achieved by adding constant term, periodic
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term, impulse term, time-delay term and adaptive control.
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1. Introduction

There has been growing interest in the investiga-
tion of chaos synchronization in the physical, mechani-
cal, electrical, optical and biological field~®. Chaos
synchronization has been achieved by some
approaches. The research has been motivated by this
concept and has demonstrated some potential for
using chaos in real-world applications such as secure
communication and information processing™.

In this paper, chaos synchronization and chaos
anticontrol of a rotationally supported simple pendu-
lum are researched. In Chapter 2, two identical cha-
otic systems are synchronized by adding different
kinds of coupling terms. An observed-based scheme
is also used to achieve synchronization®. Euclidean
distance is used to analyze the influence to transient
behavior of the synchronized systems®. In Chapter 3,
we demonstrate the application of chaos synchroniza-
tion by a new secure communication system™. In
Chapter 4, anticontrol of chaos by adding different
kinds of terms is used to enhance the chaotic range.
Finally, adaptive control is also adopted for the same
purpose to control systems from periodic motion to
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chaotic systems.
2. Chaos Synchronization for the Coupled Systems

2.1 Description of the system model and
differential equations of motion

The physical system considered here is depicted

in Fig:1. It is a pendulum suspended on a rotating

Z4

Fig. 1 The pendulum on rotating arm
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arm system. The shaft rotates about the y1-axis with
the angular rate w. The pendulum is pivoted (axis
A~ A) on an arm rigidly attached to the shaft. This
rotation of the pendulumv is described by the angle 4.

The gravitational vector is.in the negative zi-direc-:

tion. The length of the arm is K& and the length of the
pendulum is . The motion is described by Lagrange’s
equation :

2
mr? C:;tf -+ cri,—?-f-sin O(mRrw*+ mrie’ cos 0

+mrg sin wt)=0 (1)
where o is the angular rate of the shaft, ¢r is the
damping coefficient, ¢ is the gravitational constant,
is the mass of the pendulum, # is the length of the
pendulum, R is the length of the arm which is the
distance from the pivot to the center of the shaft. The
system Eq.(1) can be expressed in the form:

CZQ +2<§%+sin Bla*(o+cos 8)+ v sin wt]=0
, . (2)
where 26= nj;z, ,0:5;, y= *Z Let 0=ux1, =13, the
state equations of the system can be written as:
Z1=X2 ‘
{J&z: —2&r,—sin o[ w*(p+cos z1)+ v sin wt]

(3)
The parameter values and initial conditions in Eq.
(2) are (& w,p0,7)=00.2,20,05,14.3) and (8(0),
6(0))=(z+0.02, 0.02).
2.2 Chaos synchronization of unidirectional cou-
pled systems
2.2.1 Coupling by linear term In this subsec-
tion, we consider that two identical unidirectional-
coupled systems are the drive (master) system X=
(1, 22) and the response (slave) system (Y (y1, v2).
Two subsystems begin with two different initial condi-
tions that will be synchronized by adding a linear
coupling term. The systems can be expressed as
{33‘1:1’2 ‘
TZo=—2&x—sin m[w*(p+cos x1)+ ¥ sin wt]
(drive system) (4)

1=
{y'zz —2&y,—sin y1[ w?(o+cos y1)+ v sin wt]
+k(x1—y1)

(response system) (5)
where % is the coupling strength. The two identical
systems have different initial conditions, which are
(2:(0), 22(0)) =(7+0.02, 0.02), (:(0), y2(0))=(3, 0.05).
The error dynamics is expressed by e;=x:—y,, (i=1,
2). When £<8.35, the two systems are not synchro-
nized. When £2=8.35, the two systems begin to be
synchronized, and the error dynamics approaches to
zero finally.

‘ Figure 2 shows the simulated results. When 2=
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Fig. 2 (a), (b) Phase portrait, (c), (d) Time-

response error and (e), (f) x -y diagram of
coupled systems with &(x:—y1) for £=8.35
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Fig. 3 The Lyapuﬁov exponent of coupled systems with
k(x1—y1) for & between 0 and 10 ‘

8.35, two systems are synchronized. The phase por-
traits of two subsystems are the same, and the error
dynamics approaches to zero finally. The critical
coupling strength % is 8.35. :

We use the Lyapunov exponent method to detect
the synchronization situation. In Fig. 3, the second
Lyapunov exponent is negative in the synchronization
region 2>8.35. At the critical value about £=8.35, it
approaches to zero and then becomes immediately
negative again®. The results assist us in confirming
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Fig. 4 Synchronization time for different % of the coupled
‘ systems with &(z—y1) coupling term

|
the accuracy of critical coupling strength. To sftudy
the efficacy of the synchronization strategy,§ we
numerically computed the value of £ for which s:table
synchronization is achieved, and its dependencje on
synchronization time (ST = tyn— &), where fsm is the
time at which the feedback terms are switched when
the error signal E(¢) is less than 1075, and % is the
initial time. The error signal E(#) is defined as:

o e A )

+%<|xz—@/2|)

When coupling strength is larger, synchronization
time is smaller. It can also assist us in confirming the
accuracy of critical coupling strength. The result of
the system is shown in Fig. 4

2.3 Observed-based synchronization scheme

Besides adding a coupling term, observed-based
synchronizationscheme canbe used®. Inthe observed-
based synchronization scheme, one (or more) signal
of the drive system is used to substitute one (or 1more)
variable in the response system. In this section, the
drive system can be expreésed‘ as:

{£1=xz )

Z2=—2&x,—sin xi[ w¥(p+cos x1)+ ¥ sin wt]
(drive system) (6)
A signal &1 of the drive system is used to substitute the
signal 1 of the cos y1 term of the response system.
Then the response system can be expressed as -
{ vi= Yo
V2=—2&y,—sin yi[ w* (o +cos x1)+ ¥ sin wt]
(response system) (7)
Figure 5 shows the simulated result, two systems are
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Fig. 5 (a), (b) Phase portrait, (c¢), (d) Time-

response error and (e), (f) z-y diagram by
observed-based synchronization scheme
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Fig. 6 (a), (b) Phase portrait, (c), (d) Time-

response error and (e), (f) z -y diagram by
observed-based synchronization scheme

synchronized, and the error dynamics approaches to
zero finally. ‘

In the observed-based synchronization scheme, it
is very important to select an appropriate substituting
signal. When the signal x: of the drive system is used
to substitute the signal 71 of the sin 1 term of the
response system, the response system becomes :

{ Y1=Ys2 . , ‘

Y2=—2&y,—sin x| w*(o+cos )+ 7 sin wit]
(response system) (8)
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Figure 6 shows the simulated results, two systems are
not synchronized. The phase portraits of two systems
are not the same, and the error dynamics does not
approach to zero finally.
2.4 Transient time in unidirectional synchroni-
zation

In this section, in order to analyze the influence on
transient behavior of the synchronized systems by
coupling strength and different initial conditions, we
consider unidirectional coupled chaotic systems by
adding a periodic coupling term®. The Euclidean
distance d=+v(z1—y1)*+ (22— 15)* between the two
trajectories is monitored for various choices of the
coupling parameter %, as shown in Fig.7 with the
same initial conditions (8(0), 6(0))=(r+0.02,0.02).
By increasing the value of the coupling parameter, the
distance d approaches to zero when £=>8.3, then the
two subsystems display the same output. For values
of %k greater than kuw-=8.3 the synchronized state is
stable.

In Fig. 8, two typical curves representing the full
evolution of d(t), for two values of %2 above the
synchronization threshold. Two curves are computed
for identical initial conditions but £=8.361 and 10, so
that the invariant subset has two different types of
stability, and we note that the observed decay is
qualitatively different. The evolution of @(#) when %
=8.361 can be notionally separated into two different
parts. The first evolution (%), until time approximate-
ly 180 seconds, it shows no appreciable change in the
order of magnitude of the distance measure d(7).
After this, in the time interval 7o, the trajectory starts
to decay towards the synchronized state with relative-
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Fig. 7 Plot of several values of the Euclidean distance
d(t) between the trajectories (x(#), £(¢)) and
(y(8), (1)) for different values of .. The transi-
tion to a stable synchronized state is located
approximatively at £u.=8.3
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ly fast rate, and in the logarithmic scale its decay is
almost linear. For the second case £=10, d(1)
becomes a monotonically decreasing function of time.

In Fig. 9, curves presenting the evolution of d(#)
are shown again on linear-log scale, with 2=8.361
fixed, for three different initial conditions. More
precisely (#1(0), 2(0))=(0.05,3) and x2(0)=0.02 are
kept fixed, and we use three different starting points
x1(0), as given in the figure below each end of the three
curves. The slope of the linearly decaying part or the
decaying transient for each of the three curve is
almost the same, corresponding to the intuitive conjec-
ture that the convergence is governed by the strength
of dissipation transverse to the attractor.
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Two curves representing the time evolution of the

Euclidean distance d(#) between the drive and the

response trajectories with different coupling

strength £=8.361, and 10
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Fig. 9 The behavior of d(#) for three cases of conver-
gence onto the synchronized subset for three
different initial conditions xo=3.0, 2.0 and 2.5
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3. Chaotic Secure Communication Systems

In recent years, using chaotic signals to address
the secure communication problem has received a
great deal of attention. Various methods for chaos-
based secure transmission of private information sig-
nals have been proposed by several authors?®tb,
Instead of conventional communication transmission
channel, a new transmission method is adopted for the
purpose of higher security in Ref.(12). Different from
Ref.(12), a more complex encryption function is.used
in this chapter to enhance the sensitivity and security
of the communication system. The chaos-based
scheme for secure communication is composed of
three steps: (1) Signal encryption, (2) System
synchronization and (3) Signal decryption.

In the first step, a highly nonlinear function ¢ is
used to encrypt both the information-bearing signal
s(#) and the chaotic-state signals x(#). Then the
message signal s(#) is hidden in the encrypted signal
s«() which is transmitted to the receiver. In the
second step, the chaotic signal #(x), which is inj gen-
eral a real-valued function of the states x of the
chaotic transmitter, is transmitted in the other chan-
nel. For simplicity, #(x)=2: is used here. In the third
step, we use the estimates y(¢#) generated from the
response system and the decryption function & to re-
produce an approximate estimate sa(#) of the masked
confidential signal. By synchronization of drive and
response systems, recovered signal s4(#) and message
signal s(#) are almost the same. A schematic descrip-
tion of the entire process is depicted in Fig. 10. Now,
we illustrate the secure communication scheme with
the help of the unidirectional-coupled systems. The
drive and response systems are expressed as Eqs.(4)
and (5). We also take the following encryption and
decryption functions :

Channel 1
e
Tranamitier = Receiver
drive gydem responss sy stem
Message
signal &
x o y o
l 5 v
> ¢ A
L |
encrypted decrypted
Channel 2

Fig. 10 The schematic process of the chaotic secure
communication system
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encryption function ¢=x"+ (224 22+ 22" s=5.(¢)
3

X2 | Se
($2+IZZ+IZ4) 1 (xz+x22+xz4)
which are more complex than that in Ref.(12). The
message function s(#)=0.2sin(107¢) is hidden in the
encrypted signal se(#) and transmitted to the receiver.
Then the chaotic signal x1 of the drive system is
transmitted to the response system in the other chan-
nel for synchronization. Finally decrypted signal sa(#)
is recovered by the decryption function. Figure 11
shows the simulated results of encrypted and decrypt-
ed signals in the absence of the noise. By the synchro-
nization of the drive and response systems, the de-
crypted signal s«(#) approaches to the information
signal s(#) and decrypted error s(¢)—sa(¢) approaches
to zero.

decryption function &=

Néxt, we demonstrate sensitivity of the communi-
cation system to synchronization errors made by the
intruder. Assume that the intruder succeeds to inter-
cept an approximate estimate of x(f), in our case,
yt)+d for x:(t). The error d may results in model
errors. Figure 12 shows the simulation results for =
0.01. As seen in Fig. 12, the decrypted error s(f)
—s4(1) is so significant that the recovered signal sq(#)
is quite different from the message signal s(¢).

From Figs. 11 and 12, it shows us that using a
highly nonlinear encryption function, involving all
chaotic states, can yield strong sensitivity to the
encrypted error and therefore guarantee higher secu-
rity and privacy.

information signal encrypted signal
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Fig. 11 The information signal s(¢), encrypted signal
se(t), decrypted signal s«(?), and decrypted error
s(#)—sa(t)
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4. Anticontrol of Chaos

Anticontrol of chaos, in contrast to the control-
ling of chaos, is to make a non-chaotic dynamical
system chaotic or enhance the existing chaos of an
originally chaotic system. It has attracted attention in
recent years due to its great potential applications
such as in the field of physical, mechanical, electrical,
optical and biological system@14, '

encrypted signdl

|

_0.2 : i
26 265 26 265 297
t

Fig. 12 Sensitivity of the secure communization system

for d=0.01

0 2 4 6 g 10 12 14 |8 18 2

Fig. 13 Bifurcation diagram versus y of the original

system
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4.1 Anticontrol of chaos by adding constant
term

The first method to control system dynamics

from periodic motion to chaos is adding a negative

constant term 7. Equation (3) can be rewritten as
{i’ 1= X2 :

Zo=—2&x:—sin x| wp+cos x1)+ 7 sin wt]— T

(9)

where 7 is constant. Figure 13 shows bifurcation

diagram of the original system in Eq.(3). The sys-

tem is chaotic when y=14.3 and 15.1<y<174. Figure

14 shows the bifurcation diagram of the system in Eq.

(9) for T=0.8. The periodic motion becomes chaos

within more parameter ranges. Figure 15 shows the

Lyapunov exponent corresponding to Fig.14. The

L 1 Il L L L 1 L L
B9 10 M 2 1 M & 16 17 18 19 XA
¥

Fig. 14 Bifurcation diagram versus 7 of the adding nega-
tive constant term system for 77=0.8 |

Fig. 15 The Lyapunov exponent versus ¥ of the adding
negative constant term system for 7°=0.8
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Lyapunov exponent is positive in chaotic range. To
see the trend from order to chaos, we vary the param-
eter value o and negative constant term 7" and record
that range of chaos 7 in the bifurcation diagram. A
three~dimensional diagram is showed in Fig. 16.
4.2 Anticontrol of chaos by adding periodic term
We can also control the system from ordgr to
chaos by adding a negative periodic term. The system
can be rewritten as:
T1=22
o= —2&x:—sin x| 0¥ o+ cos 21)+ 7 sin wt]
— T sin w:t
' (10)
where w1=2.5. Figure 17 shows the bifurcation dia-
gram versus 7 of system in Eq.(10) for 7=3.0. When

width of chaos

Fig. 16 A three-dimensional diagram for p, 7 and the
width of chaotic range

T
0 1 2 3 4 5 B 7 B B 00N 12 13 W 5 B 7 ® 19 A
v

1 1 L 1 1 1 1 1 1 1 1 1 1 L 1

o

Fig. 17 The bifurcation diagram versus y of the adding
negative periodic term system for 7=3.0

JSME International Journal

239

T becomes large, the system behaves from regular
motion to chaos. Figure 18 shows the Lyapunov
exponent corresponding to Fig. 17.
4.3 Anticontrol of chaos by adding periodic
impulse term
Like section 4.2, the system also can be added by
a periodic impulse term instead of a periodic term.
The system becomes :
Z1=X2
o= —2&x,—sin x| @*(o+cos z1)+ 7 sin wt]
- Tjgoé\ (t—7kp)
(11)
where 7T is a constant impulse intensity, %» is the

period between two consecutive impulse, and ¢ is
standard delta function. Figure 19 shows the simula-

ns

T F T T T

T

“MW LN
Mg N

.

Lyapunav exporent

- oy e )
g 1 2 3 & 5 6 1 8 5 10 H 12 13 4 5 16 1T 1B 19

y

Fig. 18 The Lyapunov exponent versus 7 of the adding

negative periodic term system for 7°=3.0

PP H S SO TR N T T SO SN S N SR . 1
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14

&

Fig. 19 The bifurcation diagram versus 7 of the adding
negative impulse term system for 7°=1.0 and 4»

=20.5
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Fig. 20 The bifurcation diagram versus 7 of the adding
delay time feedback term system for 7°=0.3 and
=10

tion result of bifurcation diagram. When 4,=20.5 and
T=1.0, the chaotic range increases.
4.4 Anticontrol of chaos by adding delay feed-
back term
In this section, a delay nonlinear (or linear) feed-
back function is added™®. The system can be rewrit-
ten as: ‘
L1=22
Zr=—2&x:—5in ol w*(p+cos x1)+ 7 sin wt]
— Tulx(t—1))

(12)
where T is a constant, « is the delay feedback func-
tion, r is delay time. Here, a simplest function #=
x1(# —7) is used. Figure 20 shows the simulation result
of bifurcation diagram when 7°=0.3 and r=10.

4.5 Adaptive control

An adaptive control algorithm is a control
method utilizing an error signal proportional to the
difference between the goal output and actual output
of the system®®. Generally speaking, an adaptive
controller is one that has adjustable parameters and
the capability of self-adjusting these parameters in
response to changes within the dynamics and environ-
ment of the controlled system. The system motion is
set to the desired state xs by adding dynamics on
control parameter R through the evolution equation :

R=Aulz—xs) (13
where % is a suitable function, and A is the stiffness of
control. In order to control the system in Eq.(3)
from periodic motion to desired chaotic motion xs, we
choose the parameter y perturbed as:

7":A<—(.Z‘1—Z'1s)><(1'z_1'28)) (14)
where A=0.025. Figure 21 shows the simulation
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Fig. 21 From period-2 to chaos by adaptive control

result. We control the: system from period-2 to chaos.
! .

5.

~ Synchronization <!)f two or more dynamical sys-
tems is a fundamental!phenomenon for studying in the
physical, mechanical, electrical, optical and biological
field. In this paper, chaos synchronizatioh and chaos
anticontrol of a rotétionally supported simple pendu-
lum are researched by some methods. In Chapter 2,
chaos synchronization is achieved by feedback-based
and observed-based scheme. In Chapter 3, we utilize
a new communication system to accomplish the appli-
cation of chaos synchronization. In Chapter 4,
anticontrol of chaos is achieved by adding different
kinds of terms. We can make the Lyapunov exponent
of the control system positive in more range. Finally,
adaptive control is also adopted to control the system
from order to chaos.
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