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Spin-dependent Hall effect in semiconductor quantum wells
H. C. Huang, O. Voskoboynikov,a) and C. P. Lee
National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu, 300, Taiwan, Republic of China

~Received 21 July 2003; accepted 21 November 2003!

We present a theoretical study of the spin-dependent scattering of electrons from screened attractive
and repulsive impurities in III-V semiconductor quantum wells. The effective one-band Hamiltonian
and the Rashba spin–orbit interaction are used. We demonstrated that the asymmetry of the
spin-dependent skew-scattering and side-jump effect can lead to a quite large spin-dependent
~anomalous! Hall effect at zero magnetic field in all-semiconductor quantum well structures. Our
theory predicts a measurable spin-dependent Hall angle that reaches about 2.531023 rad for a
CdTe/InSb/CdTe quantum well with impurities doped in the center of the well. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1641147#

I. INTRODUCTION

The extra degree of freedom provided by the electron
spin may open up further enhancements for semiconductor
devices. The spin-transistor proposed by Datta and Das1 is an
example of a spin-controlled device based on semiconductor
two-dimensional~2-D! channels. For this reason, theoretical
studies of spin-dependent electron processes in 2-D semicon-
ductor structures have attracted a lot of interest since a par-
ticular branch of semiconductor electronics~so-called spin-
tronics! has become a focus of study.2–4

Recently, detection of the electron polarization in para-
magnetic metals5,6 and semiconductors7 through the spin-
dependent Hall effect~SDHE! has been proposed. This is
quite similar to the exploitation of the anomalous Hall effect
~AHE!, which can be observed in magnetic metals or semi-
conductors without external magnetic field~see, for instance
Ref. 8, and references therein!. The key point of the expla-
nation of those effects is the presence of the spin–orbit in-
teraction ~SOI!. Considerable work on the AHE has been
done in the last 50 years since the pioneering work of Kar-
plus and Luttinger.9 It is generally recognized that two
mechanisms contribute to the AHE. Those are the side-jump
effect ~SJ! proposed by Karplus and Luttinger9 and Berger,10

and the skew-scattering~SS! proposed by Smit.11 It is com-
monly believed that the first mechanism can be more signifi-
cant in metal alloys or semiconductors with relatively large
resistivity, while the second one prevails in systems with low
resistivity.

In the absence of magnetic impurities and at low tem-
peratures, the main source of the spin-dependent scattering
processes is the SO coupling to local defects. The effect of
the SOI on the electron transport and relaxation in 2-D semi-
conductor systems has been studied for a long time.12–15We
recently investigated the spin-dependent scattering processes
in the bulk of nonmagnetic semiconductors in the presence
of the SOI.16 In semiconductor quantum wells~QWs! the
effect of the SOI on the processes of scattering becomes even
more stronger that in the bulk. This is a result of the local-

ization of electrons’ wave functions in the conduction
channel.17,18

In this article, we present a model of the spin-dependent
electron scattering from impurities located in the center QWs
of nonmagnetic III-V semiconductors. We calculate contribu-
tions from the SS and SJ mechanisms to the SDHE. Our
calculation is based on the effective-one-band
Hamiltonian19,20 and Rashba-type model of the SOI.12,21,22

For QWs of narrow-gap semiconductors~systems with large
SO coupling parameters! and with impurities located in the
center of the wells, we obtained relatively large spin-
dependent Hall angles~SOHAs!.

The article is organized as follows. Section II describes
the method we use to calculate the spin-dependent~Mott!
cross section for 2-D electrons scattered from impurities in
semiconductor QWs. Section III presents the method of cal-
culation of the off-diagonal element of the conductivity ten-
sor in QWs with account of the Mott scattering. The calcu-
lation results are presented in Sec. IV and conclusions are
given in Sec. V.

II. BASIC EQUATIONS AND DESCRIPTION OF THE
SPIN-DEPENDENT SCATTERING

We consider III-V semiconductor QWs with charged im-
purities and use the approximate one-electron-band effective
Hamiltonian in the following form:19,20

Ĥ5Ĥ01V̂im~r !, ~1!

whereH0 is the Hamiltonian of the system without impuri-
ties:

Ĥ052
\2

2
“ rF 1

m~E,r !G“ r1V~r !.

V̂im(r ) is the impurity potential,“ r stands for the spatial
gradient,m(E,r ) is the energy, and position-dependent elec-
tron effective mass isa!Electronic mail: vam@cc.nctu.edu.tw
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1

m~E,r !
5

2P2

3\2 F 2

E1Eg~r !2V~r !

1
1

E1Eg~r !1D~r !2V~r !G ,
whereE is the electron energy,V(r ) is the confinement po-
tential of the well,Eg(r ) and D~r ! stand for the position-
dependent band gap and the SO splitting in the valence band,
respectively, andP is the momentum matrix element.

The impurity potential consists of two parts,

V̂im~r !5Vc~r !1Vso~r !,

whereVc(r ) is the Coulomb potential of the charged impu-
rity and Vso(r ) describes the SO coupling with the impurity

Vso~r !5 ia~E,r !“Vc~r !•@ŝ3“ r#,

where12,18,21,22

a~E,r !5
P2

3 F 1

@E1Eg~r !2V~r !#2

2
1

@E1Eg~r !1D~r !2V~r !#2G . ~2!

We describe symmetrical QWs of thicknessL and denote by
z the direction perpendicular to the well interfaces. For sys-
tems with sharp discontinuity in the conduction band edge
between the QW~material 1! and the barrier region~material
2!, the confinement potential can be presented as

V~r !5H 0, 2L/2<z<L/2;~rP1!

V0 , uzu.L/2;~rP2!
. ~3!

We assume that an isolated impurity is located in the center
of the wells (z50), and the unscreened Coulomb potential
of the impurity is given as

Vc
0~r !52

Ze2

4pes@r21z2#1/2
, ~4!

wherer5(x,y) is the position vector parallel to the inter-
faces,es5(e11e2)/2 is the average permittivity of the sys-
tem, Z is the charge of the impurity, ande is the electron
charge. For most III-V semiconductor QWs, we can neglect
the image potential, and we assume that for simplicity.

The Rashba term inĤ0 does not occur due to the reflec-
tion symmetry of the quantum well.21,22Considering only the
electrons’ elastic scattering within the first subband of the
well, we present the solution of the confinement problem
with the HamiltonianĤ0 as19,23

C~r,z!5cs~r!w1~z!, ~5!

wherew1(z) is the normalized electron wave function inz
direction, ands561 is the quantum number related to the
spin states. The eigen-energyEnz in z direction can be ob-
tained easily from the well-known Ben–Daniel–Duke
boundary conditions.20,21

By taking the average

Ṽ~r!5E
2`

1`

dzw1* ~z!Vim~r !w1~z!,

and following the approach described in Refs. 19, 23 and 24,
we obtain statistically screened and averaged quasi-2-D scat-
tering potential in the following form:

Ṽc~r!52
\2Ze2

aB* m1~0!
E

0

` dq

e~q!
J0~qr!

3E
2`

1`

dzuw1~z!u2e2quzu,

Ṽso~r!5 i
\2Ze2

aB* m1~0!
E

0

` qdq

e~q!
J1~qr!

•Fa1~E!E
z<uL/2u

dzuw1~z!u2e2quzu

1a2~E!E
z>uL/2u

dzuw1~z!u2e2quzuG3
s

r

]

]f
,

whereaB* 5es\
2/e2m1(0) is the effective Bohr radius in the

well, Jn(x) is the Bessel function,

e~q!511
qf

q

is the 2-D dielectric function,

qf5
1

aB*

m1~Ef !

m1~0! H 11
d

dE
ln@m1~E!#uEFJ

is the 2-D Thomas–Fermi screening constant,EF is the
Fermi energy of the system,24 and

E5Er1E1z .

Due to the radial symmetry of the potentialsṼc(r) and
Ṽso(r), we can present the wave functioncs(r) as the fol-
lowing:

cs~r!5 (
l 52`

l 51`

Rl
s~r!eil fxs.

wherel is the orbital momentum number andxs is the spin
function upon which the Pauli matrix vector operates.

The quasi-2-D Schro¨dinger equation for the radial wave
function is given by

H \2

2m̃~E! F1

r

d

dr S r
d

dr D2
l 2

r2
1k2G2Ṽc~r!1 lṼso~r!J Rl

s~r!

50, ~6!

where

k5
1

\
A2m̃~E!Er

is the wave vector of the 2-D electrons, and
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1

m̃~E!
5

1

m1~E!
E

z<uL/2u
dzuw1~z!u2

1
1

m2~E!
E

z>uL/2u
dzuw1~z!u2.

At a large distance from the scattering center, the
asymptotic of the radial function is given by

Rl
s~r!→Al

s@cosd l
sJl~kr!2sind l

sNl~kr!#; r→`,

whered l
s is the scattering phase shift25,26 andNl is the Neu-

mann function. To solve the scattering problem we use the
variable phase approach,26,27 which assumes that the phase
function d l

s(r) at the pointr determines the phase shift pro-
duced by the part of the potential contained within the cycle
of a radiusr. The scattering phase shift for the total potential
is equal to the asymptotic value

d l
s5 lim

r→`

d l
s~r!.

The phase functiond l
s(r) satisfies the following differential

equation:

dd l
s~r!

dr
52

2pm̃~E!

\2
r@Ṽc~r!2 lṼso~r!#

3@cosd l
s~r!Jl~kr!2sind l

s~r!Nl~kr!#2, ~7!

with the boundary condition

d l
s~0!50. ~8!

The complex 2-D scattering amplitude we present as25,28

Fs~E,u!5@ f ~E,u!1szg~E,u!#xs, ~9!

where f s(u) and g(u) describe scattering without and with
electron spin reorientation, respectively, and they are deter-
mined by the following:28

f ~E,u!5(
l 50

`

f l cos~ lu!, ~10!

g~E,u!5(
l>1

`

gl sin~ lu!, ~11!

where

f l5A 1

2pk H exp~2id0!21, l 50

exp~ i2d l
1!1exp~ i2d l

2!22, l>1
,

gl5 iA 1

2pk
@exp~ i2d l

1!2exp~ i2d l
2!#,

u is the scattering angle between initial (k i) and final (k f)
wave vectors. When electrons are spin polarized parallel to
the z axis, the Mott scattering cross section29 can be ex-
pressed in terms of the incident electron spin-polarizationP
as the following:

s~E,u!5I ~E,u!1G~E,u!P, ~12!

where I (u) is the differential cross section for the unpolar-
ized incident electrons~the symmetric scattering part!

I ~E,u!5u f ~E,u!u21ug~E,u!u2,

and

G~E,u!5 f * ~E,u!g~E,u!1 f ~E,u!g* ~E,u!, ~13!

is the spin-flip part of the scattering cross section~the asym-
metric scattering part!.

III. SPIN-DEPENDENT HALL EFFECT IN 2-D
CHANNELS

In the Pauli approach to the explanation of the origin of
the AHE,8 the total electron velocity is presented as

vk
s5

1

\
“kEr~k!1wk

s ~14!

whereEr(k) is the dispersion relation of 2-D electrons in the
well, andwk

s is the anomalous velocity, which can be written
in the following form:8,21,22

wk
s5a

@sÃk#

t im
, ~15!

wheret im is the electron momentum relaxation time resulted
from impurity scattering, ands is the unit vector parallel to
the spin polarization.

The total electron current can be obtained by averaging
the total velocity over the electron distribution function
f s(k). In the linear approximation with respect to the exter-
nal electric fieldF,30–32 this leads to

J52ueu(
k,s

vk
s f s~k!5J01Js5scF1sc

s @sÃF#

s
, ~16!

wheresc is the diagonal element of the conductivity tensor
andsc

s is the spin-dependent Hall conductivity~off-diagonal
element of the conductivity tensor!. If the concentration of
scatterers is low, one can assume these impurities scatter the
electrons independently. In this approximation, the Boltz-
mann transport equation for the electron distribution function
f s(k) is given by

2
ueu
\

F“k f s~k!5(
k,s

W0~k,k̃!1Ws~k,k̃!

3@ f s~k!2 f s~ k̃!#, ~17!

where

W0~k,k̃!5
8p\3

Am̃2~E!
kI~k,k̃!Nimd@Er~k!2Er~ k̃!#, ~18!

Ws~k,k̃!5
8p\3

Am̃2~E!
kPG~k,k̃!Nimd@Er~k!2Er~ k̃!#,

~19!

I ~k,k̃!5I @Er~k!,u#, G~k,k̃!5G@Er~k!,u#, ~20!

P5
1

n (
s561

sns , n5n111n21 , ~21!

where W0(k,k̃) and Ws(k,k̃) are the scattering transition
probabilities per unit time due to symmetric and asymmetric
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scattering, respectively,Nim is the impurity concentration,P
is the polarization of the 2-D electronic gas,ns is the con-
centration of thes-polarized electrons in the 2-D channel,
and A is the system area. In the linear approximation, the
electron distribution function can be written in the form

f s~k!' f 0~E!1P0~E!~k"F!1Ps~E!~k•@sÃF# !. ~22!

Substituting f s(k) into the Boltzmann equation, we obtain
the coefficientsP0(E) andPs(E), and then the components
of the conductivity tensor.

Finally, the off-diagonal element of the conductivity ten-
sor obtained from Eq.~16! consists of two parts,

sc
s5sSS

s 1sSJ
s ~23!

where sSS
s is the contribution from the skew-scattering

~which comes from the spin-dependent part of the elastic
scattering! and sSJ

s is the side-jump contribution~which
comes with the anomalous velocity!. For the case of the de-
generated electronic system~low-temperature limit!, those
two contributions can be presented as the following:

sSS
s 5

\e2Nim

2p (
s561

sS t im
s

m̃s
D 2

G̃s~kF
s!3, ~24!

sSJ
s 52

e2

4p\ (
s561

sas~kF
s!2. ~25!

In Eqs.~24! and ~25!,

G̃s5E
0

2p

G~EF
s ,u!@12cos~u!#sin~u!du, ~26!

1

t im
s

5
2\Nim

m̃s
kF

sI s̃, ~27!

Ĩ s5E
0

2p

I ~EF
s ,u!@12cos~u!#du, ~28!

m̃s5m̃(EF
s), as5a(EF

s), and the Fermi energyEF
s for the

s-group of the polarized electrons is the solution of the fol-
lowing equation:

EF
s5

\2

2m̃s
~kF

s!21E1z , ~29!

with the electron Fermi wave vector defined as the follow-
ing:

kF
s5@2pn~11sP!#1/2. ~30!

The tangent of the spin-dependent Hall angle~SDHA! is the
sum of two tangents, and can be presented as

tan~uH!5tan~uH
SS!1tan~uH

SJ!, ~31!

where

tan~uH
SS!5

sSS
s

s
, tan~uH

SJ!5
sSJ

s

s
, ~32!

and

sc5
e2kF

s2

4pm̃
t im

s uP50 . ~33!

IV. CALCULATION RESULTS

To demonstrate the actual value of the SDHE in semi-
conductor QWs, we first present results of our simulations
for Al0.48In0.52As/In0.53Ga0.47As/Al0.48In0.52As ~IGA! sym-
metrical QWs, which possessed the well-developed growth
technology. The parameters taken in this calculation are the
following: Eg150.813 eV, Eg251.508 eV, D150.361 eV,
D250.332 eV, m1(0)50.041m0 , m2(0)50.075m0 , e1

514, e2512.5, andV050.504 eV33 (m0 is the free electron
mass!. Secondly, we present our calculation results for CdTe/
InSb/CdTe~IS! QWs @where Eg150.24 eV, Eg251.59 eV,
D150.81 eV, D250.8 eV, m1(0)50.015m0 , m2(0)
50.08m0 , e1516.8, e2510.2, andV050.55 eV34,35#; these
demonstrate about the largest spin-coupling effects. In all
calculations, we assure the validity of the one-subband scat-
tering model, when the intersubband gap is larger than the
energy of ther-direction motion:Er,E2z2E1z . This al-
lows us to consider scattering of electrons with the following
wave vectors: for the IGA structures withL<30 nm2k
<kF

I 52.5(aB* )21 ~the electron concentrationn53.5
31011cm22); for the IS structures withL<30 nm2k<kF

II

56.6(aB* )21 (n5331011cm22). Notice, thataB* is taken
different by definition for the different types of the systems.
We also assume in all our calculations the polarization of the
2-D electron gas to be 50%.

Two contributions to the total SDHA (uH
SSanduH

SJ) come
with different signs and different dependencies on the QW
width, the electron and impurity concentrations.uH

SJ does not
depend on the charge and concentration of the impurities,
and obviously increases when the electron concentration in-
creases. At the same time,uH

SS depends on the charge of
scatterers~see Ref. 18! and on their concentration~it de-
creases whenNim increases!. This generates a complicated
interplay betweenuH

SS and uH
SJ contributions to the total

SDHA uH . In Fig. 1, we present the ratioh5uuH
SJ/uH

SSu as a
function on the electron concentration for two types of scat-
terers located in the center of the IGA well withL520 nm.
The concentration of scatterers and concentration of the elec-
trons are taken to be equal:n5Nim . It follows from the
figure that for the repulsive potential (Z521) the skew-
scattering mechanism is always predominant. For the case of
the attractive impurities (Z511), each of them can be pre-

FIG. 1. The ratioh5uuH
SJ/uH

SSu (uH
SJ anduH

SS are contributions into the total
SDHA from the side-jump and skew-scattering parts, correspondingly! as
the function on the electron concentration for two types of impurities located
in the center of the IGA QW@n5Nim , L520 nm; a is a repulsive impurity
(Z521), b is an attractive impurity (Z511)].
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dominant for certain concentrations; for the concentrations
near n5Nim'331010cm22, those two mechanisms can
cancel each other.

The actual magnitude of the total SDHA as the function
of the electronic concentration for the IGA well is presented
in Fig. 2~a!. In this figure we fixed the impurity concentra-
tion to beNim51011cm22. Despite the different behavior of
the angle for systems with attractive and repulsive impuri-
ties, both demonstrate quite measurable magnitudes. Figure
2~b! clearly shows that the skew-scattering mechanism domi-
nates for systems both with attractive and repulsive impuri-
ties up to the very high concentrations of the 2-D electrons.

In addition, one can manipulate the effect in 2-D systems
with a variation of the well width. The impact of the well
width on the skew-scattering mechanism is discussed in de-
tail in Ref. 18. The main result is the following: the effect
always decreases when the well width increases. The depen-
dencies of the total~SDHA! on the well width for the IGA
wells are demonstrated in Fig. 3. The figure shows that the
side-jump contribution can make the effect stable for the
well width variations in the case of the attractive impurities.

The SOI is known to be larger in narrow-gap semicon-
ductors. For this reason, we show in Fig. 4, as an example,
the calculation results for the IS wells. We consider here only
the QWs with repulsive impurities, in which we can expect
~as it follows from the IGA wells! the most interesting result.
In this case the total SDHA reaches about 2.531023 rad for
the relatively narrow wells, and it increases when the elec-
tron concentration increases.

These results show how one can manipulate the forma-
tion of the effect mechanisms and magnitude as well by
means of changes in the system parameters (n,Nim ,L). This
possibility makes properties of the SDHE in 2-D semicon-

ductor systems essentially different from those in the bulk. In
three-dimensional systems, we only can manipulateNim . In
addition, we notice that the SDHA in the QWs is signifi-
cantly larger~in few orders! than it was for the bulk~see
Refs. 30, 31, and 36!. In addition, the effect is easily tunable
in QWs.

V. CONCLUSIONS

We described theoretically the SDHE in semiconductor
QWs when the 2-D electrons are scattered and form the
screened Coulomb centers located in the center of the wells.
The one-electronic-band effective Hamiltonian and SO cou-
pling potential of the impurities allow us to solve the 2-D
spin-dependent Boltzmann equation and to calculate the
SDHA at zero magnetic field. We have found large SDHAs
for AlInAs/InGaAsAs/AlInAs and CdTe/InSb/CdTe sym-
metrical QWs. For instance, in the CdTe/InSb/CdTe narrow
QWs the SDHE can reach 2.531023 rad. This could be de-
tected in the measurements of the Hall effect at low tempera-
tures, and this is potentially useful in integrated electron

FIG. 2. ~a! The absolute value of the SDHA in the IGA QW and~b! the ratio
h as the function of the electron concentration (Nim51011 cm23, L
520 nm; a: Z521, b: Z511).

FIG. 3. ~a! The absolute value of the SDHA in the IGA QW and~b! the ratio
h as the function of the well width (n5Nim51011 cm23; a: Z521, b: Z
511).

FIG. 4. The absolute value of the SDHA in the IS QW with repulsive
impurities as the function of the well width (Nim51011 cm23, a: n55
31010 cm23, b: n51011 cm23).
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spin-polarization devices based on semiconductor hetero-
structures. It also can be used as a tool of determination of
spin-coupling parameters in III-V narrow-gap semiconductor
heterostructures. We suggest that experimental investigations
should be conducted to verify our theory predictions.
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