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Abstract

On most operating systems, the UDP and TCP sockets are the two main types of sockets used to provide transport-layer networking

services. However, for several reasons, UDP and TCP sockets are unsuitable for transporting delay-sensitive but error-tolerant streaming data

such as the data generated by multimedia streaming applications. In this paper, we create a new type of socket that is suitable for transporting

such data and propose a novel and simple implementation for it.

We have implemented this new type of socket in Free BSD 4.8 and call it the ‘UDTCP socket.’ It has both the UDP and TCP socket

properties suitable for delay-sensitive but error-tolerant streaming data but not those UDP and TCP socket properties unsuitable for such data.

When transporting a stream of such data whose sending rate needs to be regulated by TCP congestion control, our simulation results show

that the UDTCP socket can provide a much better delay and delay-jitter performance than the TCP socket.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Multimedia streaming applications are becoming more

popular on the Internet [14]. These applications are

usually delay and delay jitter-sensitive. However, because

human perception can tolerate some errors, usually some

degree of packet loss and packet reordering can be

tolerated by these applications. By using dynamic variable

rate encoding or layering techniques, these applications

can be made adaptive [3,12,13,19,23,24,31]. The band-

width requirement for such an adaptive application can be

varied over time to dynamically match the current

available bandwidth. This often results in lower packet

loss rates and smaller delays.

Most of these delay-sensitive, but error-tolerant multi-

media streaming applications use UDP rather than TCP to

transport an audio or video stream on the Internet [14]. An

example is Microsoft Inc’s ‘Media Player’ product. These

applications choose to use UDP rather than TCP because

otherwise some undesirable delay problems will result

as follows. First, when TCP packets are lost, TCP at the

sending host will automatically retransmit them until they

are received by the receiver. However, retransmitted

packets may arrive too late to be useful for these delay-

sensitive applications. This will only waste network

bandwidth. Second, because TCP is designed to provide a

reliable and in-sequence delivery service, when some TCP

packets are lost, TCP at the receiving host will put other

received out-of-order packets into its reassembly queue for

re-sequencing. (Note: As long as one TCP packet is lost, all

following TCP packets are viewed as out-of-order even

though they are in sequence.) This design unnecessarily

delays the delivery of arrived packets (actually, the data

carried in these packets) to delay-sensitive multimedia

streaming applications.

Although using UDP for multimedia streaming appli-

cations avoids the TCP delay problems, excessively using

UDP for such applications can disrupt Internet congestion

control. This problem has been pointed out and discussed in

Refs. [8,4]. Motivated by this problem, many researchers

have been working on this problem to design ‘TCP-friendly’

or ‘TCP-like’ protocols for such applications. This is

evidenced by the many references cited in Section 2.
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Unlike TCP, UDP performs no congestion control.

Today many multimedia streaming applications use a

fixed rate (e.g. 28, 33, 56, 112 Kbps or 1.5 Mbps) to

transport their audio or/and video stream data. If these

applications become popular and their traffic constitutes a

large portion of the Internet traffic, the use of UDP as their

transport protocol will disrupt Internet congestion control

and cause problems. The first problem is congestion

collapse. When a larger portion of the Internet traffic is

carried by UDP, network congestion control will become

less effective. The packet drop rates in routers will increase

and the effective throughput of a network will decrease. The

second problem involves fairness with TCP. Since TCP

performs congestion control while UDP does not, when

sharing network bandwidth, UDP-based applications will

have unfair advantages over TCP-based applications.

Therefore, during network congestion, these UDP-based

applications may cause TCP-based applications such as

web, ftp and email to stop their data transfers. More

concerns about this problem have been discussed in Ref. [8].

Recently, to solve the above problems, many approaches

have been proposed to apply TCP congestion control to a

UDP packet stream. In these approaches, the multimedia

streaming application uses a UDP socket to send and receive

packets and a ‘TCP-friendly’ or ‘TCP-like’ congestion

control protocol to control when to send data into the UDP

socket. Because it is difficult to prove that these approaches

implement true TCP congestion control under any given

network condition, these approaches are often called ‘TCP-

friendly’ or ‘TCP-like’.

It is desirable if we can provide true TCP congestion

control for a UDP packet stream under any network

condition. Although a ‘TCP-friendly’ or ‘TCP-like’ con-

gestion control scheme can demonstrate that in the ‘long’

run, under certain conditions, and in some studied network

configurations, the proposed scheme is ‘TCP-friendly’, it is

difficult to guarantee that a proposed scheme will not act too

aggressively when the regulated flow is short-lived, under

realistic network conditions, or in a unstudied network

configuration. As such, a ‘TCP-friendly’ or ‘TCP-like’

congestion control scheme may behave unexpectedly and be

harmful to network congestion control in some untested

conditions and configurations. For example, in Ref. [34],

the authors analytically and experimentally demonstrated

that three TCP-friendly approaches [9,27,35] exhibit quite

different fairness, smoothness, responsiveness, and aggres-

siveness properties than those of TCP under various

network conditions.

To provide true TCP congestion control but no TCP error

control for a stream of delay-sensitive but error-tolerant

packets, we design and implement the UDTCP socket in

FreeBSD 4.8. The UDTCP socket is a new type of socket. It

has the properties of UDP and TCP sockets that are suitable

for multimedia streaming applications but not those UDP

and TCP properties that are unsuitable for such applications.

The UDTCP socket properties include (1) datagram (i.e.

unlike TCP’s byte-stream service, the message boundary of

application data is preserved), (2) true TCP congestion

control (i.e. packets are sent under true TCP congestion

control), (3) no mandatory TCP error control (i.e.

lost/corrupted packets need not be forcibly retransmitted

by the sending host), and (4) no mandatory TCP out-of-

order packet re-sequencing (i.e. out-of-order packets need

not be forcibly delayed in the TCP reassembly queue).

Because of these properties, the UDTCP socket is very

suitable for multimedia streaming applications.

The contributions of this paper are as follows. The first

contribution is about protocol design. We create a new type

of socket (UDTCP) that uses TCP congestion control but no

TCP error control to transport a stream of delay-sensitive

but error-tolerant data. The transported stream is 100% TCP

friendly and causes no harm to network congestion control

because the default in-kernel TCP congestion control is

used. The second contribution is about protocol implemen-

tation. We propose a novel and simple implementation for

the UDTCP socket. On FreeBSD 4.8, we can convert the

TCP socket implementation into the UDTCP socket

implementation by adding, modifying, or deleting only 43

lines of C statements of the TCP socket implementation.

The rest of this paper is organized as follows. Section 2

surveys related work. Section 3 presents our design and

implementation of the UDTCP socket. Section 4 describes

the design features that reduce the queuing delay of packets

waiting in a UDTCP socket send buffer. Section 5 presents

an analysis showing that to reduce the delay, re-sequencing

packets in the TCP reassembly queue should be eliminated.

Section 6 presents simulation results showing that the

UDTCP socket provides a much better delay and delay-jitter

performance than the TCP socket. Section 7 presents two

extensions of the UDTCP socket. Section 8 discusses future

work. Finally, Section 9 concludes this paper.

2. Related work

Many approaches have been proposed to apply TCP

congestion control to a UDP packet stream. In these

approaches, a multimedia streaming application program

uses the UDP socket to send application data, and

implements a ‘TCP-like’ or ‘TCP-friendly’ congestion

control mechanism at the user-level to control the timing

of sending application data. If desired, RTP [26] headers can

be used to carry useful control information (e.g. sequence

number) with data, and RTCP [26] control packets can be

used to exchange control information between the sending

and receiving application programs. Most of these proposed

approaches can be classified into two categories. The first

category is TCP simulation and the second is model or

equation-based.

In the first category, to regulate the sending rate of a UDP

packet stream, an approach can be either window-based or

rate-based. A window-based approach, like TCP, maintains
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a congestion window size variable (similar to cwnd in BSD

TCP implementation) to control the current sending rate of a

UDP packet stream. The goal is to simulate TCP’s

congestion window update algorithms [11,28] as closely

as possible. A rate-based approach maintains a rate variable

and uses TCP’s additive increase and multiplicative

decrease (AIMD) [7,11] principle to update it. To

demonstrate that a proposed approach is TCP-friendly,

extensive simulations or experiments are run to show that in

the long run and in the studied network configurations, the

proposed scheme can make a UDP packet stream achieve

only the bandwidth that a TCP connection would achieve

under the same environment. Examples of these approaches

are presented in Refs. [2,3,5,6,22,25,29,32].

In the second category, a proposed approach tries to

model the steady state behavior of TCP congestion control

and uses the model to derive the relationship between the

achieved throughput, packet loss rate, and round-trip time

(RTT) of a TCP connection. To make a UDP packet

stream TCP-friendly, such an approach would constantly

measure the current packet loss rates and RTTs of the

UDP packet stream, use the derived relationship to

calculate the current fair share of available bandwidth

for the UDP packet stream, and then use a simple rate-

based scheme to send out UDP packets. Extensive

simulations or experiments are run to demonstrate TCP-

friendliness. Examples of these approaches are presented

in Refs. [1,9,10,15–18,20,21].

There is a big implementation difference between these

existing approaches and our UDTCP socket approach. In

these existing approaches, the data generated by multi-

media streaming applications are transmitted in UDP

packets (i.e. using the UDP headers). The timing for

sending out these UDP packets is controlled by a user-

level controller that tries to simulate TCP’s behavior. For

the sending host to get RTT estimates and ACK sequence

numbers (both of which are required to simulate TCP’s

behavior), the receiving host needs to constantly send

back extra UDP packets, which are used to play the same

role as TCP ACK packets. Since UDP does not

automatically retransmit lost data, data carried in a lost

UDP packet need not be forcibly retransmitted. Besides,

since UDP does not re-sequence out-of-order data at the

receiving host, out-of-order data need not be forcibly put

into a reassembly queue and suffer unnecessary delays.

In contrast, in our UDTCP socket approach, data are

transmitted in TCP packets (i.e. using TCP headers). These

TCP packets are sent out under the true TCP congestion

control that is already implemented in the kernel. Since the

TCP protocol is used, to avoid forcibly retransmitting lost

data, data are removed from the socket send buffer

immediately after they are sent. To avoid suffering

unnecessary delays at the receiving host when data arrive

out of order, in our UDTCP socket approach, data will

bypass the reassembly queue when they arrive.

3. Design and implementation of the UDTCP socket

In order to use TCP congestion control to transmit a

stream of delay-sensitive but error-tolerant data and

eliminate the need for implementing a complicated ‘TCP-

like’ or ‘TCP-friendly’ protocol scheme in streaming

application programs, we propose a novel and simple

implementation to easily create a new type of socket that is

suitable for such applications. This new type of socket is

called the ‘UDTCP socket’ and is implemented in the

kernel. It can be used by multimedia streaming application

programs as follows.

A multimedia streaming application program can simply

pump its data into a UDTCP socket as long as the UDTCP

socket can accept more data. Data pumped into the

UDTCP socket are transmitted as TCP packets under true

TCP congestion control. Although the transmitted packets

are TCP packets (i.e. using the TCP header), because we

preserve the message boundary of application data and do

not automatically retransmit lost data, they have the

properties of UDP packets.

The design and implementation of the UDTCP socket are

simple and almost the same as the TCP socket. In fact, we

reused the in-kernel TCP socket implementation and made

only four minor changes to convert a TCP socket into a

UDTCP socket. Only 43 lines of C statements of the original

TCP socket implementation need to be modified, added, or

deleted. This number is small compared to 9708, which is

the number of C statements in the TCP socket implemen-

tation of the FreeBSD 4.8 operating system.

Fig. 1 shows the four changes that are made to the TCP

socket implementation. Three of these changes (Change 1,

2, and 3) are made to the control path of sending TCP

packets from the sending host to the receiving host. One

change (Change 4) is on the control path of receiving TCP

acknowledgment packets at the sending host. These four

changes are explained in the following: description

Fig. 1. The four minor changes made to the TCP protocol implementation to

implement the UDTCP socket.
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Change 1 is about the socket send buffer at the sending

host. The purpose of this change is two fold. First, we want

to preserve the message boundary of application data. The

data generated by a streaming application normally is an

audio or/and video stream. Such streams normally are

composed of many frames. For example, an MPEG video

stream may be composed of many I, P, and B frames. To

facilitate frame format decoding at the receiving side,

normally these frames are transmitted as separate UDP

messages. The UDTCP socket thus also wants to be able to

preserve message boundary.

However, traditionally because TCP provides a byte-

stream service, application data separately written into a

TCP socket is concatenated together and can be partially

transmitted in any manner. To preserve the message

boundary, application data separately written into a

UDTCP socket should be kept separate in the socket send

buffer. Because BSD UNIX’s packet buffer structure (mbuf)

allows the message boundary to be preserved and

application data separately written into a UDP socket can

already be kept separate in the socket send buffer, this

change is easily done.

Second, we want to eliminate TCP’s mandatory packet

retransmission mechanism, which is used for recovering lost

packets. Traditionally, because TCP provides a reliable

service, a lost packet must be retransmitted until it is

received by the receiving host. This retransmission attempt

is canceled after 12 unsuccessful retransmissions, whose

waiting time for retransmission is exponentially doubled

after each unsuccessful retransmission. (The waiting times

are 1, 2, 4, 8, 16, 32,…,128, 128, 128 s.)

It is clear that automatic retransmission is bad for a

delay-sensitive but error-tolerant streaming application

when the RTT between the sender and receiver is large.

During a data transfer, to disable TCP’s packet retrans-

mission mechanism while still keeping TCP congestion

control going, after a message (in this paper, a message

means a piece of application data written atomically into a

UDTCP socket) is transmitted, we immediately dequeue it

from the socket send buffer. If the message is lost, which

causes the TCP retransmission mechanism to be triggered,

the message ‘retransmitted’ will be the next message to be

transmitted (new), not the previously transmitted message

(old). In such a design, a lost delay-sensitive message

therefore will not be forcibly retransmitted. The decision

to retransmit a lost message or not in the UDTCP socket

approach is left to the multimedia streaming application

program. Such a design is good for these programs

because only the application-layer program knows

whether a delay-sensitive message is still useful and

worth retransmitting.

Implementation complexity: (1) A 10 C statement

addition for using the mbuf’s message boundary option,

(2) A 15 C statement addition for forcing tcp_output()

function to transmit a complete message, not a concatenated

or partial message.

Change 2 is about the TCP reassembly queue at the

receiving host. The reason for making this change is that we

want an arrived out-of-order packet not to be delayed in the

TCP reassembly queue. Rather, as soon as it arrives, we

want it (actually, the message carried by it) to be available to

the multimedia streaming application program immediately.

Traditionally, because TCP provides a reliable and in-

sequence delivery service, when a packet is lost, an

incoming out-of-order packet must be put into the

reassembly queue to wait for the lost packet to be

retransmitted and arrive. However, for delay-sensitive but

error-tolerant streaming applications, delaying already

arrived packets will unnecessarily increases the chance

that they will miss their playback times.

To avoid the delay problem caused by packet re-

sequencing at the receiving host while keeping TCP

congestion control going, we propose the following design

for the TCP receiving host. This design can be described in

three steps. Only one minor change needs to be made to the

original TCP socket implementation in the second and third

steps.

† First, to keep TCP congestion control going, as normal,

an incoming out-of-order TCP packet still undergoes the

default TCP receiving process. That is, it is put into the

TCP reassembly queue and waits for the hole to be filled

(i.e. waits for the lost packet to be retransmitted and

arrive).

† Second, to allow the multimedia streaming application

program to quickly access an already arrived packet,

when a TCP packet arrives, we make a copy of the

message carried by it and immediately enqueue the copy

into the socket receive buffer.

† Third, when a lost and retransmitted packet finally

arrives, which causes the hole in the TCP reassembly

queue to be filled, now we dequeue a sequence of

now-in-order TCP packets from the TCP reassembly

queue but do not enqueue the messages carried by

these TCP packets into the socket receive buffer.

Traditionally in TCP design, these messages should be

enqueued into the socket receive buffer when they

become in order. However, since in the second step

these messages have already been enqueued into the

socket receive buffer, in the third step we should just

discard them.

As previously described, in the UDTCP socket approach,

the data payload carried in each retransmitted TCP packet is

always a new message. This change to the original TCP

socket design does not affect the operation and behavior of

TCP congestion control. The reason is that in implementing

TCP congestion control, only the control information

carried in the TCP headers of transmitted TCP packets is

important. The data payload carried in these TCP packets is

irrelevant. This explains why in the above design, TCP
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congestion control can still operate normally in the presence

of packet losses.

Implementation complexity: (1) Six additional C state-

ments to perform the copy and enqueue operations in the

second step, (2) One C statement deleted to eliminate the

enqueue operation in the third step.

Change 3 is about the socket receive buffer at the

receiving host. This change preserves the message boundary

of received application data in the UDTCP socket’s receive

buffer. As described previously, the BSD UNIX’s packet

buffer structure (mbuf) supports the message boundary

option. It is easy to make this change.

Implementation complexity: (1) Add 10 C statements for

using the mbuf message boundary option in the UDTCP

socket’s receive buffer.

Change 4 is about the socket send buffer at the sending

host and deals with receiving acknowledgment packets. (It

is in Fig. 1b.)

We need to make a change here so that when an

acknowledgment packet is received, the messages in the

UDTCP socket send buffer will not be dequeued.

Traditionally, because TCP provides a reliable service,

the application data in a TCP socket send buffer that has

been transmitted may need to be retransmitted later.

Therefore, application data queued in a TCP socket send

buffer cannot be dequeued immediately after it is

transmitted. Instead, it must wait until its corresponding

acknowledgment packet is received. In this traditional

design, a received acknowledgment packet may trigger the

operation of dequeuing some application data from the

TCP socket send buffer.

For the UDTCP socket send buffer, because messages are

dequeued immediately after they are transmitted (described

in Change 1), we should not let a received acknowledgment

packet trigger the operation of dequeuing messages from the

UDTCP socket send buffer.

Implementation complexity: (1) Delete one C statement

to eliminate the dequeue operation. description

4. Reducing queuing delay

Usually a multimedia streaming application program is

delay-sensitive. Therefore, the messages it generates should

not experience long queuing delays in the UDTCP socket

send buffer. However, because the UDTCP socket uses TCP

congestion control to regulate the transmission of appli-

cation messages, a long queuing delay problem may occur if

there are many messages queued in the socket send buffer

waiting to be sent and the network’s available bandwidth

suddenly decreases. To deal with this problem, we use the

following method.

In this method, we limit the size of the UDTCP socket

send buffer to only one message. This guarantees that as

long as TCP congestion control does not time-out, a

message queued in the UDTCP socket send buffer will be

transmitted within one RTT of the multimedia stream.

A multimedia streaming application program can greedily

try to write its generated message into the UDTCP socket. If

the socket send buffer is not full, the write operation will

succeed and the application program can be assured that the

message just written will be sent in one RTT if TCP does not

time-out. On the other hand, if the UDTCP socket send

buffer is full (indicated by the 21 returned from the write

operation), the application program can use the select ( )

system call to wait until the socket send buffer becomes not

full. At that time, the application program can write the

current message to the UDTCP socket. If the current

message has become too old to be useful, the application

program can discard the current message, generate a more

recent one, and write the new message to the UDTCP

socket.

Fig. 2 depicts an example usage of the UDTCP socket.

Inside the multimedia streaming application program, there

are two tasks. Task 1 is responsible for generating the audio/

video frames and task 2 is responsible for writing these

frames as messages into the UDTCP socket. There is a FIFO

frame buffer between task 1 and task 2. A generated frame is

enqueued into the buffer by task 1 and later dequeued from

the FIFO by task 2 for transmission. By maintaining the

buffer occupancy around a threshold (e.g. one half of the

buffer size), task 1 can use a variable-rate encoding or

layering technique to dynamically change its bandwidth

usage. If a frame in the FIFO becomes too old to be useful

due to a sudden reduction in available bandwidth, task 1 can

delete that frame when it needs to enqueue more recent

frames to the FIFO but finds that the buffer occupancy is

already above the threshold. Actually, since in the UDTCP

socket approach frames are buffered in the application

program rather than in the in-kernel socket send buffer, the

application program can easily use more advanced or

application-specific frame management schemes to manip-

ulate its frames.

Fig. 2. An example usage of the UDTCP socket.
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Because the messages in the UDTCP socket send buffer

are dequeued immediately after they are transmitted,

limiting the size of the UDTCP socket send buffer to only

one message does not reduce the maximum throughput that

a UDTCP connection can achieve. In contrast, this property

cannot be achieved by the TCP socket. Traditionally,

because TCP provides a reliable service, transmitted

application data may need to be retransmitted and thus

must remain in the TCP socket send buffer until a

corresponding acknowledgment packet arrives. Since appli-

cation data can be transmitted only after they are written

into and stay in the socket send buffer, the size of a socket

send buffer will limit the amount of application data that can

be transmitted per RTT (i.e. in-flight). As a result, if the size

of the TCP socket send buffer is less than the product of the

available network bandwidth and RTT, it will become a

throughput-limiting factor. In contrast, because the UDTCP

socket does not intend to provide a reliable service, it does

not suffer from the throughput-limiting problem even

though we reduce its socket send buffer size to only one

message.

5. Analysis

In this section, we perform a simple analysis to

numerically show that re-sequencing out-of-order packets

in a TCP reassembly queue should be eliminated; otherwise

a large percentage of transmitted packets will wait

unnecessarily in the reassembly queue for at least one

RTT. (Note: Because one RTT is needed to recover a lost

packet, if multiple packets are lost in a TCP window, out-of-

order packets may need to wait more than one RTTs in the

TCP reassembly queue.)

Fig. 3 shows the typical saw-tooth window growing and

shrinking behavior of a greedy TCP connection. To simplify

the analysis, we make two assumptions. First, packet losses

are uniformly distributed over transmitted packets. That is,

if the packet loss rate is 1=N; then one packet loss will occur

after N packets are successfully transmitted and received.

Second, for each packet loss, the TCP fast retransmit and

recovery mechanisms can always recover the lost packet

without incurring a TCP time-out. Based on these assump-

tions, when a packet is lost, the TCP congestion control will

cut the current congestion window size W to W=2 and then

increase it by one packet every RTT until one packet is lost

again. Because we assume that packet losses are uniformly

distributed, the above cycle will repeat.

From Fig. 3, we see that in each cycle W=2 þ ðW=2 þ

1Þþ;…;þW ¼ ð3=8ÞW £ W þ 3W=4 packets are sent and

one packet is lost. When a packet loss occurs, the current

congestion window size is W : This means that when a

packet loss occurs, there are W packets following the lost

packet in the network and all of them now become out-of-

order packets. These W out-of-order packets need to wait in

the TCP reassembly queue at least one RTT until the lost

packet is retransmitted and finally arrives. It is clear that if

the RTT is large, these packets will likely miss their

playback deadline due to the extra one RTT delay.

Delaying arrived out-of-order packets in the TCP

reassembly queue can cause a large percentage of

transmitted packets to miss their deadline. In the above

analysis, we see that in each cycle, W out of ð3=8ÞW £ W þ

3W=4 transmitted packets will need to unnecessarily wait at

least one RTT delay. This out-of-order ratio W=ðð3=8ÞW £

W þ 3W=4Þ is large. For example, it is 22% and 12% when

W is 10 and 20, respectively.

Another case in which packets may need to wait at least

one RTT delay is when they are lost and retransmitted.

However, this retransmission ratio is smaller and thus less

important than the out-of-order ratio discussed above. In

each cycle, since only one packet is lost out of ð3=8ÞW £

W þ 3W=4 transmitted packets, the retransmission ratio is

equal to the packet loss rate, which is 1=ðð3=8ÞW £ W þ

3W=4Þ: Compared with the out-of-order ratio, we see that the

retransmission ratio is only 1=W times of the out-of-order

ratio. For example, the retransmission ratio is only 2.2% and

0.6% when W is 10 and 20, respectively.

Although the above analysis shows that the retransmis-

sion ratio is smaller than the out-of-order ratio, it does not

mean that Change 1 (which eliminates retransmissions) is

unimportant and thus can be eliminated. Actually, Change 1

is as important as Change 2 (which eliminates the delay

spent waiting in the reassembly queue). The real benefit of

Change 1 is that packets can be dequeued immediately after

they are transmitted. Therefore, unlike TCP, the maximum

throughput that a UDTCP connection can achieve is not

limited by the size of its socket send buffer. It is this

property that enables us to reduce the queuing delay spent in

the socket send buffer while not limiting the maximum

throughput that can be achieved by a UDTCP connection.

6. Simulation results

In this section, we present simulation results to

demonstrate that, when used to transport the data of a

multimedia streaming application program, the UDTCP

socket provides a much better delay and delay-jitter

performance than the TCP socket. Although we have

implemented the UDTCP socket in FreeBSD 4.8 and canFig. 3. TCP’s typical saw-tooth window growing and shrinking behavior.
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generate experimental results, in order to compare the delay

performance of the UDTCP and TCP sockets under various

RTT conditions (which is difficult to achieve using real

links) and avoid the task of precisely synchronizing many

PCs’ clocks (for measuring the delay experienced by

transmitted messages), we used a network simulator to do

the study. The simulator used is the NCTUns 1.0 network

simulator [33], which is a high-fidelity and extensible

network simulator and is available for download at http://

NSL.csie.nctu.edu.tw/nctuns.html. We used this simulator

because it can directly use our in-kernel UDTCP socket

implementation to transport a multimedia streaming appli-

cation program’s data in a simulated network.

To compare the delay performance of the TCP and

UDTCP sockets when they are used in different RTT

conditions, we tested two different network and traffic

configurations. The first configuration has a small RTT for

multimedia streaming application programs while the

second one has a large RTT. In each configuration, the

TCP and UDTCP cases were tested to study the delay

performance of the TCP and UDTCP sockets, respectively.

Both of these two configurations used the simulation testbed

depicted in Fig. 4. In this testbed, the link propagation

delays of the links ðS1;CÞ; ðS2;CÞ;…; ðS10;CÞ were set to

10 ms and the bandwidth of all of these links was set to

10 Mbps. The differences between these two configurations

are summarized below. description

Configuration 1. The delay of the link ðC;RÞ is 25 ms, the

bandwidth of the bottleneck link ðC;RÞ is 10 Mbps, and the

maximum queue length of the FIFO in the router C is 50

packets. Under this configuration, the one-way link

propagation delay from S1; S2;…; or S10; to R is 35

(10 þ 25) ms, and the maximum queuing delay in the

bottleneck router C can be as large as 60 ms. (This is

because the transmission time of a 1500-byte packet on a

10 Mbps link is 1.2 ms and up to 50 packets may be queued

in the bottleneck router’s FIFO.) In the TCP case, five TCP

connections are contending for the bottleneck link’s

bandwidth. In the UDTCP case, five UDTCP connections

are contending for the bottleneck link’s bandwidth. The

sending application programs of these five TCP/UDTCP

connections are on S1; S2;…; S5; respectively, and the

receiving application programs are all on R. The socket send

buffer size of these TCP connections is set to 32 Kb so that

each TCP connection can fully utilize its share of available

bandwidth.

Configuration 2. The delay of the link ðC;RÞ is 50 ms,

the bandwidth of the bottleneck link ðC;RÞ is 20 Mbps,

and the maximum queue length of the FIFO in the router

C is 100 packets. Under this configuration, the one-way

link propagation delay from S1; S2;…; or S10; to R is 60

(10 þ 50) ms and the maximum queuing delay in the

bottleneck router C can be as large as 60 ms. (This is

because the transmission time of a 1500-byte packet on a

20 Mbps link is 0.6 ms and up to 100 packets may be

queued in the bottleneck router’s FIFO.) In the TCP

case, ten TCP connections are contending for the

bottleneck link’s bandwidth. In the UDTCP case, ten

UDTCP connections are contending for the bottleneck

link’s bandwidth. The sending application programs of

these ten TCP/UDTCP connections are on S1; S2;…; S10;

respectively, and the receiving application programs are

all on R: The socket send buffer size of these TCP

connections is set to 64 Kb so that each TCP connection

can fully utilize its share of available bandwidth.

description

To easily compare the results gathered on configuration 1

with those gathered on configuration 2, the above settings

for configuration 1 and 2 are particularly chosen such that

each TCP and UDTCP connection has a fair share of 2 Mbps

bandwidth in both configurations.

Because in either the TCP or UDTCP case all connec-

tions are homogeneous, we chose to study only the

connection between S1 and R. The performance studied is

the distribution of the delays of the transmitted messages.

The delay of a transmitted message is defined as the elapsed

time between two events. The first event occurs when the

sending application program successfully writes the mess-

age into the socket send buffer, and the second event occurs

when the receiving application program reads the message

out of the socket receive buffer. To calculate the elapsed

time, each time when the sending application program tries

to write a message into the socket send buffer, it puts the

current timestamp into the message. When the receiving

application program reads a message out of the socket

receive buffer, it retrieves the timestamp carried in the

message and deducts it from the current time to obtain the

elapsed time. This elapsed time represents the application

layer-to-application layer delay experienced by the message

just read out.

The results of configuration 1 are depicted in Figs. 5–7.

Fig. 5 shows the delay distribution of the transmitted

messages when they are transported on a TCP connection.

Fig. 6 shows the delay distribution when a UDTCP

connection is used. Fig. 7 shows the percentage ofFig. 4. The testbed network used in simulations.
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transmitted messages that miss a specified deadline when

the deadline is varied from 100 to 500 ms. From these

results, we see that the UDTCP socket provides a much

better delay and delay-jitter performance than the TCP

socket.

The results of configuration 2 are depicted in Figs. 8–10.

In configuration 2, the round-trip link propagation delay

(60 £ 2 ¼ 120 ms) is larger than that (35 £ 2 ¼ 70 ms) in

configuration 1. We used this configuration to study the

delay performance of the TCP and UDTCP sockets in

networks with larger end-to-end link propagation delays

(e.g. the Internet). Fig. 8 shows the delay distribution of

transmitted messages when they are transported on a TCP

connection. Fig. 9 shows the delay distribution when a

UDTCP connection is used. Fig. 10 shows the percentage of

transmitted messages that miss a specified deadline when

the deadline is varied from 100 to 500 ms. Again, we see

that the UDTCP socket provides a much better delay and

delay-jitter performance than the TCP socket.

By comparing Fig. 7 with Fig. 10, we see that as the RTT

of a multimedia packet stream increases, TCP becomes less

and less suitable for transporting multimedia streaming

application data while UDTCP is still very suitable. This

phenomenon is reasonable and can be explained as follows.

When the RTT becomes larger, arrived out-of-order

messages need to wait longer (at least one RTT) in the

TCP reassembly queue before the lost message can be

retransmitted and finally arrive. This will increase the

chance that these messages miss the specified deadline. In

contrast, if messages are transported on the UDTCP

connection, because arrived out-of-order messages need

not wait at least one RTT in the reassembly queue,

increasing RTT causes little impact on the delay

performance.

Note that the fact that UDTCP intends not to provide a

mandatory reliable service does not mean that it cannot

provide a reliable service. Actually, it just leaves the

retransmission decisions up to the streaming application,

which is the best place to make such decisions. If

Fig. 5. Case 1: The delay distribution of the messages transported on a TCP

connection.

Fig. 6. Case 1: The delay distribution of the messages transported on a

UDTCP connection.

Fig. 7. Case 1: The percentage of transmitted messages that miss the

deadline when transported on a TCP and UDTCP connection, respectively.

Fig. 8. Case 2: The delay distribution of the messages transported on a TCP

connection.
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the streaming application at the receiving side considers that

some missing messages are very important and deserve

retransmission, it can send a request packet back to the

streaming application running at the sending side. Upon

receiving such a request, the sending streaming application

can write the requested message into the UDTCP socket

again to retransmit it.

In our simulation studies, the sending streaming

application does not retransmit lost packets. From the

application’s perspectives, these lost packets can be

considered as packets that miss their playback deadlines.

For this reason, to make fair performance comparisons

between UDTCP and TCP, we conducted simulation runs to

obtain the packet loss rates in the UDTCP cases.

For each configuration, we conducted five simulation

runs and averaged their packet loss rates. The averaged

packet loss rates for configuration 1 is found to be about

0.005 while that for configuration 2 is found to be about

0.002. We can see that these numbers are insignificant

compared to the percentages of packets that miss their

playback deadlines reported in Figs. 7 and 10. These results

mean that the performance differences between UDTCP and

TCP, from application’s perspectives, are still almost the

same as those reported in Figs. 7 and 10.

7. Extensions

7.1. Handling TCP timeout

When excessive packets are dropped in a TCP sending

window, TCP congestion control may time-out for more

than one second without transmitting any packet. This long

delay may cause the message waiting in the single-message

UDTCP socket send buffer to become useless. To solve this

problem, we provide a system call that can be used to

remove the message waiting in the UDTCP socket send

buffer. A multimedia streaming application program can

execute this system call if it cannot successfully write a

message into the UDTCP socket for a certain period of time

(e.g. 200 ms). This mechanism ensures that every message

transmitted into the network is fresh and useful.

7.2. Guaranteeing a minimum rate

Some multimedia streaming applications may want a

guarantee of a minimum rate for their audio/video streams

while using TCP congestion control to fairly share excess

available bandwidth with other traffic flows. This transport

service would allow the application to maintain a reasonable

performance when the network’s bandwidth is insufficient

for all traffic flows, while enabling the application to

achieve a better performance when the network’s bandwidth

is abundant.

Although this transport service is no longer 100% TCP

friendly, if multimedia streaming applications prefer to use

it, this transport service can be easily supported in the

UDTCP socket. In the kernel of the sending machine, we

can set up a leaky bucket [30] to transmit messages at a

desired rate. The leaky bucket is simply a timer which, when

triggered, dequeues a message from the UDTCP socket send

buffer and transmits it into the network. When the leaky

bucket is not triggered, the message in the socket send buffer

is transmitted into the network under TCP congestion

control.

8. Future work

In the study, we did not compare the performances of an

application that uses a UDTCP socket to send out its data

with the performances of an application that uses a UDP

socket and a fixed rate to send out its data (e.g. Microsoft

Inc’s ‘Media Player’ product). We feel that it does not make

much sense to make such a comparison because the UDTCP

Fig. 9. Case 2: The delay distribution of the messages transported on a

UDTCP connection.

Fig. 10. Case 2: The percentage of transmitted messages that miss the

deadline when transported on a TCP and UDTCP connection, respectively.
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socket approach is congestion-responsive while the UDP

socket and fixed-rate approach is not. For example, in the

tested configurations, if the fixed-rate applications are each

given a rate greater than its fair share of 2 Mbps, an

excessive amount of their packets will be dropped in the

bottleneck router C due to excessive FIFO overflows. On the

other hand, if they are each given a rate less than 2 Mbps,

none of their packets will be dropped due to FIFO overflow

and these packets will not experience any queueing delay in

the FIFO (because the FIFO is always empty).

A more reasonable comparison would be to compare

the performances of an application that uses a UDTCP

socket to send out its data with the performances of an

application that uses a ‘TCP-friendly’ approach to send

out its data. Although such a comparison would be more

desirable, choosing which proposed ‘TCP-friendly’

approach to compare is not clear (e.g., which is most

typical? which is most ‘TCP-friendly’?). Also, porting the

implementation of a complicated ‘TCP-friendly’ approach

to make it work in our simulator is a large amount of

work. For these reasons, we left such a comparison as our

future work.

9. Conclusions

We create a new type of socket, called the ‘UDTCP

socket,’ in the BSD UNIX kernel for transporting delay-

sensitive but error-tolerant streaming data. The UDTCP

socket uses the default in-kernel TCP congestion control

implementation to transport a stream of data. Therefore, the

transported stream of data is 100% TCP-friendly under any

network condition and causes no harm to the stability of a

network. Because the UDTCP socket is implemented in the

kernel, an application program can readily use it without

implementing a complicated ‘TCP-like’ or ‘TCP-friendly’

protocol scheme inside its own program.

We propose a novel and simple implementation for the

UDTCP socket. We successfully identify only four places in

the TCP socket implementation that need to be changed to

convert a TCP socket to a UDTCP socket. In addition, all of

these four changes are minor. Only 43 lines of C statements

need to be added, modified, or deleted to convert the TCP

socket implementation into the UDTCP socket

implementation.

The UDTCP socket is suitable for delay-sensitive but

error-tolerant streaming applications. It has both the UDP

and TCP socket properties that are suitable for these

applications but not those UDP and TCP socket properties

that are unsuitable for these applications.
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