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Poincaré cycle of an Ehrenfest multiurn model in a one-dimensional ring
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We study an Ehrenfest multiurn model of a one-dimensional ring, generalizing the directed transport in the
previous model to arbitrary transports. We analytically study the evolution of the system and calculate the
Poincare´ cycle for given transport probabilities. The result shows that the average number of balls in an urn
evolves according to the transport probability, but the Poincare´ cycle is only related to the initial configuration.
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The Poincare´ ergodic theoremstates that a system havin
a finite energy and confined to a finite volume will return
the initial state. But the BoltzmannH theoremsingles out a
preferred direction of time; it is the so-calledreversal para-
dox for historical interest@1#. Since Ehrenfest brought out h
urn modelto show the process of approaching equilibrium
precise terms, the paradox was apparently resolved. The
model has played a very important role in fundamental c
cepts of statistical mechanics@2# ~see Fig. 1!.

In a previous paper we studied an Ehrenfest multi
model with directed transport@3# defined forN balls distrib-
uted betweenM urns. In that model the urns are connect
sequentially, and the periodic boundary condition is us
i.e., the first and theM th urns are connected. The dynami
of the model is defined as follows:~i! One of theN balls is
selected randomly.~ii ! The ball selected from thei th urn is
placed into the (i 11)th urn determinedly. This model can b
exactly solved, and it confirms the ergodic theory in that
entire accessible phase space will be traversed at an ex
Poincare´ cycle. However, it is a stringent requirement
place the selected ball into the next urn. Usually, to desc
the stochastic motion of a large number of particles one u
a diffusion equation, which implies nonzero outward flux
both the left-hand and right-hand sides of a given urn. T
it is desirable to relax the original transport model to pla
the selected ball into any other urn with certain probabili

In general, the direction and the distance between
original and the target urns determine the probability of
riving at a target urn. In this paper we study the system w
the new dynamics:~i! One of the balls is selected randoml
~ii ! The ball selected from thei th urn is placed into the (i

1 j )th urn with probability pj . Hereafter we denotepW

[(p1 ,p2 , . . . ,pM) as thejumping rate. As before, we num-
ber the urns from 1 toM, and define the (M11)th urn as the
first urn. The distribution of theN balls in theM urns is given
by thestate vectorum1 , m2 , . . . ,mM&[um&, wheremi is the
number of balls in thei th urn. At the start, the initial state
vector is denoted asum0&. After d steps, the system has se
eral possible states. The transition probability defined as
probability from stateum0& to stateum& can be written as
^muSdum0&, whereSrepresents the operation in one step, a
these state vectors are orthonormal. Accordingly, the tra
tion probability corresponding to thedth step and the (d
21)th step satisfies the recursion relation
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^m1 ,m2 , . . . ,mMuSdum0&

5(
i 51

M

(
j 51

M
pj~mi11!

N

3^ . . . ,mi11, . . . ,mi 1 j21,•••uSd21um0&,

~1!

where mM1k5mk . In addition, any state must satisfy th
conservation of balls and the conservation of total jump
rate

(
i 51

M

mi5N, and (
i 51

M

pi51. ~2!

We first calculate the average number of balls appea
in the kth urn afterd steps. According to the definition, w
get

^mk&d5(
$m%

mk^muSdum0&,

5S 12
1

ND ^mk&d211(
j 51

M
pj^mk2 j&d21

N
. ~3!

Here we have used the constraint as spelled out by Eq.~2!.
For solving Eq.~3!, we define anM31 column vectorMd
as

@Md#k[^mk&d , $k51, . . . ,M %, ~4!

and anM3M matrix Sav as

@Sav# i , j[d i , j S 12
1

ND1
pi 2 j

N
, $ i , j 51, . . . ,M %. ~5!

Then Eq.~3! can be calculated recursively:

FIG. 1. An example of the urn model: a configuration for
system with six urns and nine balls. The state vector for this c
figuration isum&5u2,1,0,3,2,1&.
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Md5SavMd215Sav
d M0 , ~6!

whereM0 represents the initial state.
Under the rotation symmetry, we found Eq.~6! has same

transformation matrix with Ref.@3#. For convenience, we
define

u[
2p

M
, qm[exp~ imu!, $m51,2, . . . ,M %, ~7!

vectorsqW m and anM3M matrix Q:

qW m[~qm ,qm
2 , . . . ,qm

M !, and Qm,n[~qm!n. ~8!

The transformation matrixR of Sav is given by

R5R21* 5
Q

AM
. ~9!

The eigenvalues ofSav ~see Fig. 2! are

lm512
1

N
1

1

N (
i 51

M

piqm
i* 512

12pW •qW m*

N
, ~10!

and the components of the eigenvalue matrixL are

Lm,n5dm,nlm . ~11!

Thus we can get the average number of balls ink urn afterd
steps as

^mk&d5~Save
d M0!k5~RLdR21M0!k

5
1

M (
i 51

M

(
j 51

M

qi
(k2 j )l i

dmj ,0 . ~12!

Considering a specific jumping rate,

$pi up15p, pM215q5~12p!, pi50 ~others!%,

~13!

we name it thepq model. The urn model in Ref.@3# hasp
51. For theN51 case, the problem is reduced to the ra
dom walk in a one-dimensional ring. Figure 2 shows t

FIG. 2. Eigenvalues$lk,i% of the matrixSk,av . Herer 51/N is
the radius of the reference circle, andOB(121/N,0) is its center.
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-
e

eigenvalues for theM59 case:$l1,i%, $l2,i%, and$l3,i% cor-
respond to the cases ofp51, p50.8, andp50.5, respec-
tively. In general, the eigenvalues are all distributed ins
the gray circle region.

Let us now consider a simple example. Suppose initia
all balls are in the last urn, that is,

m1,05m2,05•••5mM21,050, mM ,05N. ~14!

Then according to Eq.~12!,

^mM&d5
N

M (
j 51

M

l j
d . ~15!

The behavior of̂ mM&d /N is a universal function for a fixed
M in the largeN limit, that is, Eq.~15! can be approximated
by

lim
N→`

1

N
^mM&d5

1

M (
j 51

M

exp@2t~12pW •qW j* !#, ~16!

where we have defined the timet as

t[
d

N
. ~17!

In the long run, the system will approach equilibrium b
^mk&`5N/M , when every urn has reached its stationa
state.

Figure 3 shows several cases for differentp values of the
pq model atN550, M550. In each case we observe th
before the system arrives at its equilibrium,^mk&d undergoes
several times of oscillation, which seems to have differ
behavior for different jumping rate. However, in all cases
observe the same damping rate, which means they have
same relaxation time before they approach the equilibriu

These phenomena can be understood in a global se
We define the center-of-mass~COM! as

FIG. 3. In thepq model, some examples of the average num
of balls evolve from all balls in the last urn. Here we plot ‘‘frac
tion’’ 5^mM&d /N.
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COM[
1

N (
k51

M

eifk^mk&d , ~18!

wherefk52ku is the ‘‘phase angle’’ of thekth urn.
In general COM[reif is a complex number, withr

5uCOMu satisfying 0<r<1. f is the phase angle of COM
and df/dt (t5d/N) represents the angular velocity o
COM. The normr here gives us the information of the di
tribution of theN balls. Substituting Eq.~12! into Eq. ~18!,
we get

COM5l1
d . ~19!

In the pq model, we get

COM'e2tu2/2e2 i (2p21)tu, ~20!

hencer 5exp(2tu2/2), andf52(2p21)tu.
The COM curve is approximately described by a spi

circulating inside a unit circle with an angular frequen
~with respect tot5s/N) 2(2p21)u522p(2p21)/M
~clockwise!, consistent with the oscillation behaviors of th
^mM&d /N curve discussed before.

When

t.
M2

2p2
, ~21!

the balls become widely distributed.M2/2p2 is the relax-
ation timeof the pq model. Figure 4 plotted thepq model
from d50 to d5M2N/p2 at M550, N550 for p
5(1.0,0.8,0.6,0.5).

We now derive^muSdum0&—the transitional probability
from um0& to um& after d steps. We define the matrixS with
components

Smm85^muSum8&. ~22!

HereS is aHN
M3HN

M matrix, we name it asstate matrix, and
um& is aHN

M column vector. According to Eq.~1!, the matrix
S has components

FIG. 4. Four COM curves in thepq model.
02710
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Smm85(
i 51

M

(
j 51

M pjmi8

N

3dm1 ,m
18
•••dmi ,m

i821•••dmi 1 j ,m
i 1 j8 11•••dmM ,m

M8
.

~23!

The eigenvalue equation can be written as

(
$m8%

Smm8fm8~n!5gnfm~n!, ~24!

wheren characterizes the eigenvaluegn . Here we have se
fm(n)50 for thoseum&5um1 ,m2 , . . . ,mM& that do not sat-
isfy constraint~2!.

To diagonalizeS, we construct a generating function fo
fm(n) and transform the matrix eigenvalue Eq.~24! to its
differential equation form.

Defining the generating function as

f n~x1 , . . . ,xM ![(
$m%

fm~n!x1
m1x2

m2
•••xM

mM , ~25!

multiplying xi
mi over all i on both sides of Eq.~24!, and

summing over all$m‰, we get the desired differential equa
tion

(
i 51

M

(
j 51

M

pj

xi 1 j

N
]xi

ln@ f n~x1 , . . . ,xM !#5gn . ~26!

Define

xqk
[x1qk1x2qk

21•••1xMqk
M ; ~27!

then the complete solution off (x1 , . . . ,xM) can be written
as

f n~x1 , . . . ,xM !5)
k51

M

~xqk
!nk. ~28!

Here f n(x1 , . . . ,xM) is a homogeneousNth power function.
The vectorn5@n1 ,n2 , . . . ,nM# satisfies

(
k51

M

nk5N, ~29!

thus the eigenvalue is

gn5
1

N (
j 51

M

(
k51

M

nkqk
j* pj5

n•Q* •pW

N
. ~30!

The S matrix can be expressed as

U21SU5G, ~31!

where G is the eigenvalue matrix with componentsGmm8
5gmdmm8 . The matrix elements of the transformation m
trix U and its inverseU21 are
3-3
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Umn5fm~n!, Unm
215

1

MN
fn~m̃!, ~32!

wherefm(n) according to Eq.~25! is the coefficient of)xi
mi

that appears in the expansion of Eq.~28!, andm̃ is defined as

m̃[@mM21 ,mM22 ,mM23 , . . . ,m1 ,mM#. ~33!

Finally we obtain the desired solution of^muSdum0&

^muSdum0&5~UGsU21!mm0

5
1

MN (
m8

gm8
d fm~m8!fm8~m̃0!. ~34!

The Poincarécycle is defined as the expected number
steps of a system to first return to the initial state. No
giving an initial statem0, the transition probability for the
system to return to this state afterd steps is

^m0uSdum0&5
1

MN (
m

gm
d fm0

~m!fm~m̃0![P~d!.

~35!

Note thatP(d) does not preclude the possibility that th
initial state has already been rearrived at before.

Define a functionQ(d) as the probability for the firs
return to the initial state at thedth step, which relates to
P(d) via

P~d!5Q~d!1 (
k51

d21

Q~k!P~d2k!, ~36!

and hence the Poincare´ cycle can be obtained,

CP5 (
d50

`

dQ~d!. ~37!

In a previous paper@3# we got the relation of the Poincar´
cycle with components of the state vectors as
f

se

02710
f
,

CP5
MN

fm0
~mg51!fmg51

~m̃0!
. ~38!

Now since

fm0
~mg51!5S N

m0
D , fmg51

~m̃0!51, ~39!

we have

CP5
MN

S N

m0
D . ~40!

Here the factor

S N

m0
D 5

N!

m1,0!m2,0! •••mM ,0!

is the degeneracy of the configurationm0. The Poincare´
cycle implies that the fluctuations in the noise range rep
themselves. This result shows that the period of the fluct
tion is inversely proportional to the degeneracy of its co
figuration, but independent of the jumping rate. In natu
systems are not always really ergodic; examples are glas
folding proteins and harmonic crystals.

Finally, we would like to mention the applications of var
ous urn models. They provide very good descriptions
granular and glass systems@4–7#. Lipowski et al. studied an
urn model that characterized by a parameterT as the tem-
perature @8–10#. It was shown to undergo a symmetry
breaking transition at critical temperatureTc . Our paper cor-
responds to the case ofT50. Recently, Shimet al. solved
the Lipowski urn model analytically in the two urn cas
@11#. It would be of interest to extend this to the multiur
models.
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