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Poincare cycle of an Ehrenfest multiurn model in a one-dimensional ring
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We study an Ehrenfest multiurn model of a one-dimensional ring, generalizing the directed transport in the
previous model to arbitrary transports. We analytically study the evolution of the system and calculate the
Poincarecycle for given transport probabilities. The result shows that the average number of balls in an urn
evolves according to the transport probability, but the Poincgete is only related to the initial configuration.
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The Poincareergodic theorenstates that a system having (my,my, ... ,mM|5d|mo>
a finite energy and confined to a finite volume will return to VY
the initial state. But the Boltzmani theoremsingles out a B> pj(m;+1)
preferred direction of time; it is the so-calleeiversal para- a5 N
doxfor historical interesf1]. Since Ehrenfest brought out his
urn modelto show the process of approaching equilibrium in XCooomit+d, oM=L [STmg),
precise terms, the paradox was apparently resolved. The urn (1)
model has played a very important role in fundamental con-
cepts of statistical mechani¢g] (see Fig. L where my ,,=m,. In addition, any state must satisfy the

In a previous paper we studied an Ehrenfest multiurrconservation of balls and the conservation of total jumping
model with directed transpof8] defined forN balls distrib- ~ raté
uted betweerM urns. In that model the urns are connected

M M
sequentially, and the periodic boundary condition is used, E m=N, and E p=1. )
i.e., the first and thélth urns are connected. The dynamics i=1 i=1
of the model is defined as follows$:;) One of theN balls is We first calculate the average number of balls appearing

selected randomlyii) The ball selected from thigh urn is in the kth urn afterd steps. According to the definition, we
placed into thei(+ 1)th urn determinedly. This model can be get
exactly solved, and it confirms the ergodic theory in that the
entire accessible phase space will be traversed at an explicit (M)g= > m(m|SYmy),
Poincarecycle. However, it is a stringent requirement to }
place the selected ball into the next urn. Usually, to describe M
the stochastic motion of a large number of particles one uses —|1- i 2 Pi{Mk—j)d-1 3

o ) R (Mgt ——
a diffusion equation, which implies nonzero outward flux on N i=1 N
both the left-hand and right-hand sides of a given urn. Thus ]
it is desirable to relax the original transport model to placetiere we have used the constraint as spelled out by(&q.
the selected ball into any other urn with certain probability. FOr Selving Eq.(3), we define arM X1 column vectorMy

In general, the direction and the distance between th&S
qnglnal and the target urns determine the probability of ar- [Mgl=(Mdg, 1k=1,... M}, ()
riving at a target urn. In this paper we study the system with
the new dynamics(i) One of the balls is selected randomly. and anM X M matrix S,, as
(i) The ball selected from thith urn is placed into thei(
+j)th urn with probability p;. Hereafter we denotq3 =5

. J [Sau]l j 5| j

=(p1,P2, - - - ,Pm) as thegumping rate As before, we num- ’ ’
ber the urns from 1 t, and define theNl + 1)th urn as the
first urn. The distribution of thé&l balls in theM urns is given
by thestate vectofmy, my, ... ,my)=|m), wherem; is the
number of balls in theth urn. At the start, the initial state

1—3)+b {ij=1,... ML (5
N N’ ') T .

Then Eq.(3) can be calculated recursively:

vector is denoted dsny). After d steps, the system has sev- P .. ®)
eral possible states. The transition probability defined as the ® @) ® (5] ®
probability from statemy) to state|m) can be written as ; = 5 i 5 5

(m|S9Im,), whereSrepresents the operation in one step, and
these state vectors are orthonormal. Accordingly, the transi- FIG. 1. An example of the urn model: a configuration for a

tion probability corresponding to thdth step and thed  system with six urns and nine balls. The state vector for this con-
—1)th step satisfies the recursion relation figuration is|m)=12,1,0,3,2,1.
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FIG. 2. Eigenvalueg\ ;} of the matrixS, o, . Herer=1/N is
the radius of the reference circle, a@g(1— 1/N,0) is its center.
M= SayMg-1=S5,Mo, (6)
where Mg represents the initial state.
Under the rotation symmetry, we found E) has same

transformation matrix with Ref[3]. For convenience, we
define

2
HEV’ gn=expimé), {m=212,...M}, (7)
vectorsﬁm and anM XM matrix Q:
Gn=(Gm: G - - Ah)s  ad Qup=(dm)™  (8)
The transformation matriR of S,, is given by
Q
R=R *=—. 9
N €)
The eigenvalues 08,, (see Fig. 2 are
M - Tk
1 1 i 1-p- Um
— 1 __ _ =1 - "
An=1-gt N 2 Pdm=1-—y— (10
and the components of the eigenvalue maityiare
Am,n: SmnNm- (11

Thus we can get the average number of ballk urn afterd
steps as

(Mi)a=(Sh,eMo)i=(RAIR™IMy),

1 M M
=_ k=D\9m.
M Z:l ]_2::1 ql )\| mJ,O- (12)

Considering a specific jumping rate,

pi=0 (others},

(13
we name it thepg model The urn model in Ref[3] hasp
=1. For theN=1 case, the problem is reduced to the ran-

{pilp1=p, PmM-1=9=(1—p),
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N=50, M=50
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FIG. 3. In thepg model, some examples of the average number
of balls evolve from all balls in the last urn. Here we plot “frac-
tion” =(my)q/N.

eigenvalues for tht1 =9 caseiAy;}, {\,;}, and{\3;} cor-
respond to the cases pf=1, p=0.8, andp=0.5, respec-
tively. In general, the eigenvalues are all distributed inside
the gray circle region.

Let us now consider a simple example. Suppose initially
all balls are in the last urn, that is,

My o=Myo=--+-=My_10=0, mMmyo=N. (149
Then according to Eq12),
N &
(MuYa=rr 2 A (15
M =

The behavior of my)4/N is a universal function for a fixed
M in the largeN limit, that is, Eq.(15) can be approximated

by

1
lim N(mmd:

N— oo

1o ..,

= > ex—r(1-p-gf)], (16
M J:l

where we have defined the timeas

(17)

In the long run, the system will approach equilibrium by
(m)..=N/M, when every urn has reached its stationary
state.
Figure 3 shows several cases for differpntalues of the
pg model atN=50, M=50. In each case we observe that
before the system arrives at its equilibrium, )4 undergoes
several times of oscillation, which seems to have different
behavior for different jumping rate. However, in all cases we
observe the same damping rate, which means they have the
same relaxation time before they approach the equilibrium.
These phenomena can be understood in a global sense.

dom walk in a one-dimensional ring. Figure 2 shows theWe define the center-of-mag&OM) as
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(a) ) _p_=‘1\

FIG. 4. Four COM curves in thpgq model.

M
1 .
COM= - >, €"(myq,
1

(18)

where ¢ = —k@ is the “phase angle” of théth urn.
In general COM=re'? is a complex number, withr
=|COM| satisfying Osr=<1. ¢ is the phase angle of COM,
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M M
s s P
=1 =1 N
X5m1 mi 5mi,m -1 5mi+j,ml’+]+l mM,m"w-
(23
The eigenvalue equation can be written as
> S b (M) =yndm(N), (24)

{m’}

wheren characterizes the eigenvalyg. Here we have set
ém(n) =0 for thosgm)=|m;,m,, ... ,my) that do not sat-
isfy constraint(2).

To diagonalizeS we construct a generating function for
dm(n) and transform the matrix eigenvalue EG4) to its
differential equation form.

Defining the generating function as

fo(Xg, -« - ,xM>E{E} Gm(MXTXT2- - x M, (25)
m

and d¢/dr (7=d/N) represents the angular velocity of multiplying x; ™ over alli on both sides of Eq(24), and
COM. The normr here gives us the information of the dis- summing over alfm}, we get the desired differential equa-

tribution of theN balls. Substituting Eq(12) into Eq. (18),
we get

COM=2\{. (19
In the pq model, we get
COM~e ™ "*12gi(2p=1)70, (20

hencer =exp(—r6/2), and¢=—(2p—1) 6.

tion
M M
;1 le D |+J EI Py |n[fn(X1, X)) =Y (26)
Define
Xg, =Xa0kH X0k + - - Xy 27)

then the complete solution d{x4, ... Xy) can be written

The COM curve is approximately described by a spiralas

circulating inside a unit circle with an angular frequency

(with respect tor=s/N) —(2p—1)0=—-27w(2p—1)/M

(clockwise, consistent with the oscillation behaviors of the

(mpm)q/N curve discussed before.

When
M2
r>ﬁ, (21
the balls become widely distributed?/272 is the relax-

ation timeof the pq model. Figure 4 plotted thpgq model
from d=0 to d=M2N/#? at M=50, N=50 for p
=(1.0,0.8,0.6,0.5).

We now derive(m|S%|my)—the transitional probability
from |mg) to |m) afterd steps. We define the matr&with
components

Smm’:<mls|m,>- (22)
HereSis aHN X HN matrix, we name it astate matrix and
|m) is aHN column vector. According to Ed1), the matrix
S has components

fa(Xq, ... Xy (28)

M
)= I<1:[1 (qu)nk

Heref, (X4, ... Xu) is @ homogeneoudth power function.
The vectorn=[nq,n,, ... ,ny] satisfies

M
> ne=N, (29)
k=1

thus the eigenvalue is

>

M M
1 - n-Q*-p
=N 2 2 Mk Py= (30
The S matrix can be expressed as
U-lsu=r, (32)

whereI" is the eigenvalue matrix with components,,
=YmOmm’ - The matrix elements of the transformation ma-
trix U and its inversd) 1
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MN

My b (o)

N 1 ~
Umnn=m(n), Upn= 5 bn(m), (32 Cr (38)
where¢,(n) according to Eq(25) is the coefficient oﬂximi Now since
that appears in the expansion of E28), andm is defined as

N ~
d)mo(my—l):( mo) ’ ¢my:1(m0):11 (39)

M=[My_1,My_2,My_3, ... My,My]. (33
Finally we obtain the desired solution ¢f|S%mg) we have
_ N
<m|5d|m0>:(UFSU 1)mmO Cp= Nlll ] (40)
! d ' n (m0>
=R 2 Y bn(M) b (o). (34
m Here the factor
The Poincarecycleis defined as the expected number of N NI
steps of a system to first return to the initial state. Now, ): :
giving an initial statem,, the transition probability for the Mg/  MyoMygl- My o

system to retum to this state aft@isteps is is the degeneracy of the configuration,. The Poincare

1 cycle implies that the fluctuations in the noise range repeat
<m0|Sd|m0)= — E 7§n¢m (m)¢m(ﬁ10)z'])(d)_ themselves. This result shows that the period of the fluctua-
MN “m 0 tion is inversely proportional to the degeneracy of its con-
(35  figuration, but independent of the jumping rate. In nature,
systems are not always really ergodic; examples are glasses,
folding proteins and harmonic crystals.
Finally, we would like to mention the applications of vari-
ous urn models. They provide very good descriptions of
granular and glass systeras—7]. Lipowski et al. studied an

Note thatP(d) does not preclude the possibility that the
initial state has already been rearrived at before.

Define a function@Q(d) as the probability for the first
return to the initial state at thdth step, which relates to

P(d) via urn model that characterized by a paraméieas the tem-
d-1 perature[8—10Q. It was shown to undergo a symmetry-

P(d)=9O(d) + 2 O(K)P(d—k), (36) breaking transition at critical temperature. Qur paper cor-

k=1 responds to the case @=0. Recently, Shinet al. solved

dh he Poinc | be obtained the Lipowski urn model analytically in the two urn cases
and hence the Poincapycle can be obtained, [11]. It would be of interest to extend this to the multiurn
w models.

CP:(,ZO dQ(d). (37 The author thanks Dr. P. G. Luan of NCU and Dr. J. Hsu
) of NCHC for discussions on the related physics. This work
In a previous papdi3] we got the relation of the Poincare was supported by the National Science Council, Republic of

cycle with components of the state vectors as China through Grant No. NSC 92-2811-M-009-028.
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