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Drifting diffusion on a circle as continuous limit of a multiurn Ehrenfest model
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We study the continuous limit of a multibox Erhenfest urn model proposed before by the authors. The
evolution of the resulting continuous system is governed by a differential equation, which describes a diffusion
process on a circle with a nonzero drifting velocity. The short time behavior of this diffusion process is
obtained directly by solving the equation, while the long time behavior is derived using the Poisson summation
formula. They reproduce the previous results in the lavgénumber of boxeslimit. We also discuss the
connection between this diffusion equation and the Stihger equation of some quantum mechanical prob-
lems.
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In a previous studyl] we proposed a generalized Ehren- positive contributiom; _;)s_, /N coming from the last urn,
fest urn model[2] with N balls andM urns that arranged and the negative contribution (m;)s_;/N leaking out into
periodically along a circle. The evolution of the system isthe next urn.
governed by a directed stochastic operation. Using the stan- Equation(1) can be rewritten as
dard matrix diagonalization procedures together with a mul-
tivariable generating function method, we have solved the
problem completely. We found that for a genec>2 case
the average number of balls in a certain urn oscillates several
times before it reaches a stationary value. We also obtainedhere f;(s)=(m;)s/N. Adding [f;,(s—1)—f;_1(s—1)]/
the Poincareycle[3], i.e., the average time interval required 2N to both sides of Eq(2), we get
for the system to return to its initial configuration. The result

1
fi(s)—fi(s—1)=- N[fi(s_ H-fi_i(s—D], 2

is simply given byM™N, which indicates that the fundamental fi(s)—fi(s—1)  Ax [fi y(s=1)—f_y(s— 1)}

assumption of statistical mechanics holds in this system. Tak- At NAt 2Ax

ing M=2, our model reproduces all the results of the origi-

nal Erhenfest urn mod¢R]. (M| fia(s—1)—2fi(s— 1) +f;_y(s—1)
In this paper, we further study the continuous lirtthe ~ 2NAt (Ax)? '

large M and N limit) of the proposed multiurn model. We

show that by defining a density functignas the continuous ©)
limit of the fractionf;=(m;)/N, i.e., the average number of . . .
balls in theith urn divided byN, the continuous limit of the WhereAt represents the time interval in one step, atd
model exists if we also define the drifting velocity and dif- _stands for th? center-center d|st§1nqe between two neighbor-
fusion constant appropriately. The evolution @fin space- ing urns. Taking the continuous limit, we obtain
time is then governed by a differential equation, which can P 9 P
be solved under proper initial condition and boundary con- _p+v_p:D_p, (4)
ditions. The results obtained in this paper are in agreement ot 28 ax?
with those obtained before by the standard matrix diagonal-
ization method. Since for even a genekicurn andN-ball ~ where we have used the substitutions
case the Poincareycle MN is too huge to be experienced, 5
the evolution of the system can in practice be treated as fi(s)— p(x,t) Ax o (Ax) . (5)
unrepeatable, thus the average quantities considered here be- ! TONAt 7T 2NAt
come more important than those of microstate details.

We start from the Eq(4) of Ref.[1]: Itis clear that Eq(4) is a diffusion equation. Since the model
is defined on a circle, we replageby ¢, v by w, Ax by 6,
and the diffusion equation becomes

1 1
<mi>s=(1_ﬁ)<mi>sl+ N<mi71>sflv (1)
ap N ap (92p

where({m;)¢ denotes the number of balls in tith urn after Y Py
s steps, andN is the total number of the balls. This result can
be understood as follows. At each time step a certain ball haBefore further exploring Eq6), here we give a simple and
the probability 1N of being chosen and thrown into the next general derivation of the diffusion equation. Note that the
urn, thus the increment dfm;)s in one step caused by the conservation of probability implies

(6)
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ap

E——V-J, (7)

wherep(r,t) is the probability density and(r,t) is the prob-
ability current density. Now, the probability current can be
written as the sum of two terms, one for the “diffusion part,”
and the other for the “drifting part” of the probability carri-
ers(the ballg, that is,

J

= (8
whereD is the diffusion constant andis the drifting veloc-
ity caused by some pumping force.

Substitute Eq(8) into Eg.(7), we obtain

—DVp+pyv,

J
P bV V.(pv). )
at
We further assume th& -v=0 (incompressible fluid; one
special case is that= constany, then we have

ap

2—.
= DV<p—v-Vp,

(10)
which is the desired diffusion equation and has the sam
form as Eq.(4) and (6).

On a straight line, the above equation becomes (Ey.
and we adopt the boundary condition

p(,t)=p(—,1)=0.

On a circle, Eq(10) becomes Eq(6), with boundary condi-
tion

(11)

p(¢)=p(P+2m,1). (12
Now we find the solutiong for the one-dimensiondllD)
diffusion equations on a straight lir(d) and on a circlg6),
respectively. Assuming the initially condition

p(x,0)=&(x), (13
the solution on a line can be obtained by Fourier transform
method[4]:

(x0) 1 F{ (x—vt)? (14)
X,t)= exg— ——=—|-
P V47Dt 4Dt
Similarly, for the circle problem, given the initial condition
p(¢,00=0(4), (15
we obtain
1 - (¢p— wt+2nm)?
1) = exg————=——|.
plD JamDt n;o«: F{ 4Dt
(16)
In deriving Eq.(16), we have used the identity
o * 27
f f(x)dx= >, f(x+2n) dx (17)
— n=—wx 0
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FIG. 1. Fraction curves calculated from the exact solution of the
diffusion equation.

for a localized functiorf(x), and we have treated the “circle

problem” as an “infinite-folded line problem.”
As such, the “center of mass” can be written by

COM= :wd¢p(¢,t),exp(i¢)

o)

1 2 2 .
— Z f d¢e7[(d)+2nﬂrr7wt) /4Dt] +i(o+2n)
V4Dt n=-= Jo
—exp(—Dt+iwt), (18)

which is equivalent to Eq32) of Ref.[1] if we define

Dt= 02 —ZWZ t=607r= il 19
—?T—WT, wl= T—VT. ( )

Here r and # are defined as
_ L s 0=A _2 20
=NatN AW (20

Now we compare the results with those in Réf]. Figure 1
shows the results from Eq16), (19), and(20) for the cases
M=30 andM=60. As one can see, the present equation
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indeed reproduce the results of Rgf] in the largeM limit. fi(s)—fi(s—1) 2(p—q)Ax

fira(s— 1)_fi—1(5_1)}

The parameteN does not appear here because the motion of At SNAT SAx
each particle is independent in our model.
Note that although for a smatl the expressior(16) is (AX)2| fipq(s—1)—2f(s—1)+f;_4(s—1)

good enough to be a fast convergent series, however, when

l. (27)

becomes large, Eq16) converges slowly. In this situation 2NAt (Ax)?
we use a more accurate expressiondor Now define
LS o (p— ) Ax (Ax)2
)= — e n Dt+in(¢— wt) _ P an )
p(¢0) 2wwzx fi(s)—p(x,t), NAr Y anap D (@8

B 1 1< 2Dt then we get a continuous equation of the foi, without
oLt z«l e cogn(¢p—wt)], (21  the restriction(24). One special case iB=q=1/2, which

has a zero drifting velocity, and the evolution of the system is
which can be derived from E@16) using thePoisson sum- governed by pure dlffu_5|orj process—the random W‘,"‘",(-
mation formula[5] For another ggnerallzatlon we assume that the drifting ve-
locity v varies with time, that is,

0

21

> f(na=— X g

n=—o ad n=—w

2nar

< (22) dp ap __p

—+v(t)—=D—. (29
X

Heref(x) is a localized function, and Defining x(t) as the time integral o (t):

1 (= .
g(k)zﬂf_xf(x) e kxdx (23 x(t)=Jotv(t’)dt’, (30

is its Fourier transform. and adopting the initial conditioflL3), then
We now consider some solvable generalizations of(Eq.

and(6). Note that the ratio betwedd andw in our model is (x.t)= 1 oxd — (x—=x(1))? (31)
fixed P Dt 4Dt |
E: f: 1_ (24) Similarly, for the diffusion equation on a circle with a time-
o 2 M dependents(t) and initial condition(15)
To relax this restriction, we modify our urn model by assum- ap ap &Zp
ing that at each time step the picked ball can have probability at (1) % - (97)2’ (32
p to be put into the next urn and probability=1—p to be
put into the previous urn. Hereafter we call this modifiedgnd the solution is
model thepq model. Thepg model is also solvablgg] by .
using methods like those used in REf]. The continuous B > —(¢—p(t)+2nm)?
limit of the pq model can be derived from the recurrence p(d,t)= 47Dt nS e ex ADt '
relation forf; :
i (33
1 p q
fi(s):<l_ﬁ)fi(s_l)+ﬁfi1(3_1)+Nfi+1(3_1)1 Here t
(29) ﬂU=fwﬂUMC (34)
0
where

The reason why andw can freely vary with time relies
p+g=1, on Eq.(28). Recall that in our original multiurn Ehrenfest
model or thepg model both the time interval between two
steps and the distandangle differencebetween two urns
0<p, g<1. (26)  are undefined. Thus in deriving the continuous limit of these
models we do not have to adopt a constahat each step or
Adding a fixed Ax (A#) between two neighboring urns. If we relax
( ) the restriction in Eq(28) and modify them taAtg and Ax;
DZNq [fa(s—1)—f;_1(s—1)] l()?t?)o,rtz?tr;.the continuous limit of these quantities lead to
It is interesting to note that the solutions for the diffusion
to both sides of Eq(25), it becomes equation (10) can be used to find the wave function or

and
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Green'’s function of some time-dependent quantum mechani-
cal problemg7]. The main idea is to define a transformation
appropriately between the parameters used in the diffusion

PHYSICAL REVIEW B9, 022102 (2004

1 (taA(t)\* |
U(t)=exr{2iﬁmJ’o( c )dt ,

(42

equation(10) or (4) and (6) and those used in the corre- 4,4
sponding Schrdinger equations. For instance, consider a

guantum point particle of chargeand massn moving under
the influence of a vector potential(t) [8]:

Loy 1 gA(t)
|ﬁﬁ—ﬁ(—ﬁV—T lﬂ, (35)
here we have assumed thgft) is a function of timet only.
Executing the transformation

B 1 TqAGU)Z 1~
=ex ZihmJ’O c dt’ ¢, (36)
then Eq.(35) can be rewritten as
g ik~ [AA) _.
ot om Y Yt C)'Vlﬂ- (37

Comparing Eq.(37) with (10), we find that they can be
transformed to each other by the substitution

ih (qA
D« —, Ve—|—
mc

o (39

), pih.

q

¢>(t)——— (t ) dt’. (43

Note that they in Eqg. (41) is nothing but the Green’s
function G(¢, ¢g;t,tg) for the quantum particle withp,

=t,=0. If A(t)=0, Eq.(41) gives the well known results
[9]:
1 - (p+2nm)?
G(t)= ——= expg— —m5——|, (44
(40 JZﬂﬁUmn;L> % @inum) | Y
and

1 o _
G(pit)= 2— g Z e MR2ZMicogn 4 (45)

for small and largd, respectively.

In conclusion, we have derived the continuous limit of a
mutiurn Ehrenfest model, which is a diffusion equation with
a drifting velocity term. Solving the equation gives us the
correct time evolution behavior of the ball distribution. A
transformation was introduced, which changes the solution

To be more specific, consider the case where the particlef the diffusion equation to the corresponding solution for
is moving on a circle of radius 1. Suppose the circle is lyingthe problem of a quantum particle moving under the influ-

on thexy plane and centered ak,)=(0,0). The vector
potential can be chosen agt) =A(t) é¢ and is generated
by a time-dependent magnetic fldx(t) tube going through
the origin and pointing along theaxis

d(t) .
A(t)=A(t) e¢,—2—e¢ (39
Choosing the initial condition as
W h,0=1($,0=5(¢h), (40)
then
U g —(¢p—¢p(t)+2nm)?
N I ex‘{ (int/m)
(41)
Here

ence of a time-varying magnetic field.

Note addedAfter submission of the present report we
noticed another paper concerning diffusion equafit,
where the dynamics of the breakdown of granular clusters
was investigated using a multiurn Ehrenfest model. In their
model the evolution of particle concentration in one urn de-
pends on both the local concentration and the concentration
in the neighboring urns, and the transition probabilities to the
two neighboring urns are equal. For a broken cluster they
found both the normal and anomalous diffusion behaviors
depending on the form of flux function they choose. Now, if
one modifies the transition probability to an asymmetric
form as ourpg model (their model in theT— o limit is our
pq model withp=q=1/2), then other features such as con-
centration oscillation might appear. However, we expect that
the diffusion exponent has nothing to do with the asymmetry,
since it contributes only a drift velocity in the continuous
limit.
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