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Drifting diffusion on a circle as continuous limit of a multiurn Ehrenfest model
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We study the continuous limit of a multibox Erhenfest urn model proposed before by the authors. The
evolution of the resulting continuous system is governed by a differential equation, which describes a diffusion
process on a circle with a nonzero drifting velocity. The short time behavior of this diffusion process is
obtained directly by solving the equation, while the long time behavior is derived using the Poisson summation
formula. They reproduce the previous results in the largeM ~number of boxes! limit. We also discuss the
connection between this diffusion equation and the Schro¨dinger equation of some quantum mechanical prob-
lems.
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In a previous study@1# we proposed a generalized Ehre
fest urn model@2# with N balls andM urns that arranged
periodically along a circle. The evolution of the system
governed by a directed stochastic operation. Using the s
dard matrix diagonalization procedures together with a m
tivariable generating function method, we have solved
problem completely. We found that for a genericM.2 case
the average number of balls in a certain urn oscillates sev
times before it reaches a stationary value. We also obta
the Poincare´ cycle@3#, i.e., the average time interval require
for the system to return to its initial configuration. The res
is simply given byMN, which indicates that the fundament
assumption of statistical mechanics holds in this system. T
ing M52, our model reproduces all the results of the ori
nal Erhenfest urn model@2#.

In this paper, we further study the continuous limit~the
large M and N limit ! of the proposed multiurn model. W
show that by defining a density functionr as the continuous
limit of the fraction f i5^mi&/N, i.e., the average number o
balls in thei th urn divided byN, the continuous limit of the
model exists if we also define the drifting velocity and d
fusion constant appropriately. The evolution ofr in space-
time is then governed by a differential equation, which c
be solved under proper initial condition and boundary c
ditions. The results obtained in this paper are in agreem
with those obtained before by the standard matrix diago
ization method. Since for even a genericM-urn andN-ball
case the Poincare´ cycle MN is too huge to be experienced
the evolution of the system can in practice be treated
unrepeatable, thus the average quantities considered her
come more important than those of microstate details.

We start from the Eq.~4! of Ref. @1#:

^mi&s5S 12
1

ND ^mi&s211
1

N
^mi 21&s21 , ~1!

where^mi&s denotes the number of balls in thei th urn after
s steps, andN is the total number of the balls. This result ca
be understood as follows. At each time step a certain ball
the probability 1/N of being chosen and thrown into the ne
urn, thus the increment of̂mi&s in one step caused by th
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positive contribution̂ mi 21&s21 /N coming from the last urn,
and the negative contribution2^mi&s21 /N leaking out into
the next urn.

Equation~1! can be rewritten as

f i~s!2 f i~s21!52
1

N
@ f i~s21!2 f i 21~s21!#, ~2!

where f i(s)[^mi&s /N. Adding @ f i 11(s21)2 f i 21(s21)#/
2N to both sides of Eq.~2!, we get

f i~s!2 f i~s21!

Dt
1

Dx

NDt F f i 11~s21!2 f i 21~s21!

2Dx G
5

~Dx!2

2NDt F f i 11~s21!22 f i~s21!1 f i 21~s21!

~Dx!2 G ,

~3!

where Dt represents the time interval in one step, andDx
stands for the center-center distance between two neigh
ing urns. Taking the continuous limit, we obtain

]r

]t
1v

]r

]x
5D

]2r

]x2
, ~4!

where we have used the substitutions

f i~s!→r~x,t !,
Dx

NDt
→v,

~Dx!2

2NDt
→D. ~5!

It is clear that Eq.~4! is a diffusion equation. Since the mod
is defined on a circle, we replacex by f, v by v, Dx by u,
and the diffusion equation becomes

]r

]t
1v

]r

]f
5D

]2r

]f2
. ~6!

Before further exploring Eq.~6!, here we give a simple and
general derivation of the diffusion equation. Note that t
conservation of probability implies
©2004 The American Physical Society02-1
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]r

]t
52“•J, ~7!

wherer(r ,t) is the probability density andJ(r ,t) is the prob-
ability current density. Now, the probability current can
written as the sum of two terms, one for the ‘‘diffusion par
and the other for the ‘‘drifting part’’ of the probability carri
ers ~the balls!, that is,

J52D“r1rv, ~8!

whereD is the diffusion constant andv is the drifting veloc-
ity caused by some pumping force.

Substitute Eq.~8! into Eq. ~7!, we obtain

]r

]t
5D“

2r2“•~rv!. ~9!

We further assume that“•v50 ~incompressible fluid; one
special case is thatv5 constant!, then we have

]r

]t
5D“

2r2v•“r, ~10!

which is the desired diffusion equation and has the sa
form as Eq.~4! and ~6!.

On a straight line, the above equation becomes Eq.~4!,
and we adopt the boundary condition

r~`,t !5r~2`,t !50. ~11!

On a circle, Eq.~10! becomes Eq.~6!, with boundary condi-
tion

r~f,t !5r~f12p,t !. ~12!

Now we find the solutionsr for the one-dimensional~1D!
diffusion equations on a straight line~4! and on a circle~6!,
respectively. Assuming the initially condition

r~x,0!5d~x!, ~13!

the solution on a line can be obtained by Fourier transfo
method@4#:

r~x,t !5
1

A4pDt
expF2

~x2vt !2

4Dt G . ~14!

Similarly, for the circle problem, given the initial condition

r~f,0!5d~f!, ~15!

we obtain

r~f,t !5
1

A4pDt
(

n52`

`

expF2
~f2vt12np!2

4Dt G .
~16!

In deriving Eq.~16!, we have used the identity

E
2`

`

f ~x! dx5 (
n52`

` E
0

2p

f ~x12np! dx ~17!
02210
e

for a localized functionf (x), and we have treated the ‘‘circle
problem’’ as an ‘‘infinite-folded line problem.’’

As such, the ‘‘center of mass’’ can be written by

COM5E
0

2p

df r~f,t !,exp~ if!

5
1

A4pDt
(

n52`

` E
0

2p

df e2[(f12np2vt)2/4Dt] 1 i (f12np)

5exp~2Dt1 ivt !, ~18!

which is equivalent to Eq.~32! of Ref. @1# if we define

Dt5
u2

2
t5

2p2

M2
t, vt5ut5

2p

M
t. ~19!

Heret andu are defined as

t[
t

NDt
5

s

N
, u5Dx5

2p

M
. ~20!

Now we compare the results with those in Ref.@1#. Figure 1
shows the results from Eq.~16!, ~19!, and~20! for the cases
M530 andM560. As one can see, the present equat

FIG. 1. Fraction curves calculated from the exact solution of
diffusion equation.
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indeed reproduce the results of Ref.@1# in the largeM limit.
The parameterN does not appear here because the motion
each particle is independent in our model.

Note that although for a smallt the expression~16! is
good enough to be a fast convergent series, however, wht
becomes large, Eq.~16! converges slowly. In this situation
we use a more accurate expression forr:

r~f,t !5
1

2p (
n52`

`

e2n2Dt1 in(f2vt)

5
1

2p
1

1

p (
n51

`

e2n2Dtcos@n~f2vt !#, ~21!

which can be derived from Eq.~16! using thePoisson sum-
mation formula@5#

(
n52`

`

f ~na!5
2p

a (
n52`

`

gS 2np

a D . ~22!

Here f (x) is a localized function, and

g~k!5
1

2pE2`

`

f ~x! e2 ikx dx ~23!

is its Fourier transform.
We now consider some solvable generalizations of Eq.~4!

and~6!. Note that the ratio betweenD andv in our model is
fixed

D

v
5

u

2
5

p

M
. ~24!

To relax this restriction, we modify our urn model by assu
ing that at each time step the picked ball can have probab
p to be put into the next urn and probabilityq512p to be
put into the previous urn. Hereafter we call this modifi
model thepq model. Thepq model is also solvable@6# by
using methods like those used in Ref.@1#. The continuous
limit of the pq model can be derived from the recurren
relation for f i :

f i~s!5S 12
1

ND f i~s21!1
p

N
f i 21~s21!1

q

N
f i 11~s21!,

~25!

where

p1q51,

and

0<p, q<1. ~26!

Adding

~p2q!

2N
@ f i 11~s21!2 f i 21~s21!#

to both sides of Eq.~25!, it becomes
02210
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f i~s!2 f i~s21!

Dt
1

2~p2q!Dx

2NDt F f i 11~s21!2 f i 21~s21!

2Dx G
5

~Dx!2

2NDt F f i 11~s21!22 f i~s21!1 f i 21~s21!

~Dx!2 G . ~27!

Now define

f i~s!→r~x,t !,
~p2q!Dx

NDt
→v,

~Dx!2

2NDt
→D, ~28!

then we get a continuous equation of the form~4!, without
the restriction~24!. One special case isp5q51/2, which
has a zero drifting velocity, and the evolution of the system
governed by pure diffusion process—the random walk.

For another generalization we assume that the drifting
locity v varies with time, that is,

]r

]t
1v~ t !

]r

]x
5D

]2r

]x2
. ~29!

Defining x(t) as the time integral ofv(t):

x~ t !5E
0

t

v~ t8! dt8, ~30!

and adopting the initial condition~13!, then

r~x,t !5
1

A4pDt
expF2

~x2x~ t !!2

4Dt G . ~31!

Similarly, for the diffusion equation on a circle with a time
dependentv(t) and initial condition~15!

]r

]t
1v~ t !

]r

]f
5D

]2r

]f2
, ~32!

and the solution is

r~f,t !5
1

A4pDt
(

n52`

`

expF2~f2f~ t !12np!2

4Dt G .
~33!

Here

f~ t !5E
0

t

v~ t8! dt8. ~34!

The reason whyv andv can freely vary with time relies
on Eq. ~28!. Recall that in our original multiurn Ehrenfes
model or thepq model both the time interval between tw
steps and the distance~angle difference! between two urns
are undefined. Thus in deriving the continuous limit of the
models we do not have to adopt a constantDt at each step or
a fixedDx (Du) between two neighboring urns. If we rela
the restriction in Eq.~28! and modify them toDts and Dxi
(Du i), then the continuous limit of these quantities lead
v(t) or v(t).

It is interesting to note that the solutions for the diffusio
equation ~10! can be used to find the wave function
2-3
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Green’s function of some time-dependent quantum mech
cal problems@7#. The main idea is to define a transformatio
appropriately between the parameters used in the diffu
equation~10! or ~4! and ~6! and those used in the corre
sponding Schro¨dinger equations. For instance, consider
quantum point particle of chargeq and massm moving under
the influence of a vector potentialA(t) @8#:

i\
]c

]t
5

1

2m S 2 i\“2
qA~ t !

c D 2

c, ~35!

here we have assumed thatA(t) is a function of timet only.
Executing the transformation

c5expF 1

2i\mE
0

tS qA~ t8!

c D 2

dt8G c̃, ~36!

then Eq.~35! can be rewritten as

]c̃

]t
5

i\

2m
“

2c̃1S qA

mcD •“c̃. ~37!

Comparing Eq.~37! with ~10!, we find that they can be
transformed to each other by the substitution

D↔ i\

2m
, v↔2S qA

mcD , r↔c̃. ~38!

To be more specific, consider the case where the par
is moving on a circle of radius 1. Suppose the circle is lyi
on the xy plane and centered at (x,y)5(0,0). The vector
potential can be chosen asA(t)5A(t) êf and is generated
by a time-dependent magnetic fluxF(t) tube going through
the origin and pointing along thez axis

A~ t !5A~ t ! êf5
F~ t !

2p
êf . ~39!

Choosing the initial condition as

c̃~f,0!5c~f,0!5d~f!, ~40!

then

c~f,t !5
U~ t !

A2p i\t/m
(

n52`

`

expF2~f2f~ t !12np!2

~2i\t/m! G .
~41!

Here
-

s
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U~ t !5expF 1

2i\mE
0

tS qA~ t8!

c D 2

dt8G , ~42!

and

f~ t !52
q

mcE0

t

A~ t8! dt8. ~43!

Note that thec in Eq. ~41! is nothing but the Green’s
function G(f,f0 ;t,t0) for the quantum particle withf0
5t050. If A(t)50, Eq. ~41! gives the well known results
@9#:

G~f;t !5
1

A2p i\t/m
(

n52`

`

expF2
~f12np!2

~2i\t/m! G , ~44!

and

G~f;t !5
1

2p
1

1

p (
n51

`

e2n2( i\/2m)tcosnf ~45!

for small and larget, respectively.
In conclusion, we have derived the continuous limit of

mutiurn Ehrenfest model, which is a diffusion equation w
a drifting velocity term. Solving the equation gives us t
correct time evolution behavior of the ball distribution.
transformation was introduced, which changes the solu
of the diffusion equation to the corresponding solution
the problem of a quantum particle moving under the infl
ence of a time-varying magnetic field.

Note added.After submission of the present report w
noticed another paper concerning diffusion equation@10#,
where the dynamics of the breakdown of granular clust
was investigated using a multiurn Ehrenfest model. In th
model the evolution of particle concentration in one urn d
pends on both the local concentration and the concentra
in the neighboring urns, and the transition probabilities to
two neighboring urns are equal. For a broken cluster th
found both the normal and anomalous diffusion behavi
depending on the form of flux function they choose. Now,
one modifies the transition probability to an asymmet
form as ourpq model~their model in theT→` limit is our
pq model withp5q51/2), then other features such as co
centration oscillation might appear. However, we expect t
the diffusion exponent has nothing to do with the asymme
since it contributes only a drift velocity in the continuou
limit.
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