
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994 87

Brief Contributions

On Distributed Computing Systems Reliability Analysis
Under Program Execution Constraints

Deng-Jyi Chen, Member, IEEE, and Min-Sheng Lin

Abstract-This correspondence presents an algorithm for computing
the reliability of distributed computing systems (DCS). The algorithm,
called the Fast Reliability Evaluation Algorithm, is based on the factoring
theorem employing several reliability preserving reduction techniques.
The effect of file distributions, program distributions, and various topolo-
gies on reliability of the DCS is studied in detail using the proposed
algorithm. Compared with existing algorithms on various network topolo-
gies, file distributions, and program distributions, the proposed algorithm
is much more economical in both time and space. To compute the
distributed program reliability, the ARPA network is studied to illustrate
the feasibility of the proposed algorithm.

Index Terms-Distributed program, distributed system, factoring the-
orem, graph theory, reliability, reliability-preserving reduction, spanning
tree.

I. INTRODUCTION
Recently, the distributed computing system (DCS) has become

increasingly popular because it offers higher fault tolerance, potential
for parallel processing, and better reliability in comparison with other
processing systems [1]-[5]. A typical DCS consists of processing
elements (PE’s), memory units, data files, and programs as its
resources. These resources are interconnected via a communication
network that dictates how information could flow between PE’s.
Programs residing on some PE’s can run using data files at other
PE’s as well. For successful execution of a program, it is essential
that the PE containing the program and other PE’s that have the
required data files, and communication links between them must be
operational. Using this concept, distributed program reliability (DPR)
is defined as the probability of successful execution of a distributed
program that runs on some PE’s and needs to communicate with other
processing elements for remote files. Distributed system reliability
(DSR) is defined as the probability that all programs with distributed
files can run successfully despite some faults occurring in the PE’s
and/or in the communication links [6].

In [6], a minimum file spanning tree (MFST) is proposed to
represent the multiterminal connection required for executing a
distributed program, and a two-pass method for the reliability analysis
of DCS is developed. In this method, all MFST’s are obtained by
using the breadth-search method. After finding the MFST’s, since
they are not disjoint with each other, the algorithm requires other
reliability evaluation algorithms such as SYREL [121 to generate
the reliability expression. Although the method is elegant, it does
generate a lot of replicated trees during the processing and thus will
be inefficient. Instead of generating MFST’s, one algorithm, called

Manuscript received March 7, 1991; revised November 15, 1991. This work
was supported in part by the National Science Council under Contract NSC-
80-0408-E009-16 and in part by the Chung San Institute of Technology under
Contract 7S79-0210-D009-03.

The authors are with the Institute of Computer Science and Information
Engineering, National Chiao-Tung University, Hsin Chu, Taiwan, Republic
of China.

IEEE Log Number 9204158.

FARE, has been proposed in [13] and [14] to compute DPR directly
by using a connection matrix. Based on the assumption that the
PE’s (nodes) in the DCS are perfect, it does not require additional
reliability evaluation algorithms to convert a multiterminal connection
into a reliability expression. The shortcoming of this algorithm is that
it is not applicable for distributed programs running on more than
one node.

In this correspondence, we propose a new algorithm called the Fast
Reliability Evaluation Algorithm (FREA) that employs a differeht
concept to compute the reliability of DSR and DPR. It is based on
the generalized factoring theorem with several reliability preserving
reductions to reduce the computation tree. The factoring theorem
for the exact computation of li-terminal reliability in undirected
networks has been proposed since 1958 by Moskowitz [15]. Recently,
several papers have addressed worst case computational complexity
and the optimality of classed factoring algorithms and related algo-
rithms, for example, Ball [16], Chang [17], Satyanarayana and Chang
[181, and Wood [191 to name a few. Unlike the I<-terminal reliability
problem, where li-terminal nodes are fixed and given, the distributed
program reliability problem does not have fixed Zi -terminal nodes.
The li-terminal nodes in the distributed program reliability analysis
can be changed dynamically due to the effects of link or node failure,
using data files and programs distribution, and the topology of the
network. Therefore, we may say the network reliability problem is
considered to be static-oriented, whereas the distributed program re-
liability problem is dynamic-oriented. Naturally, distributed program
reliability problems are considerd to be more complex and difficult
than computer network reliability problems.

11. NOTATIONS AND DEFINITIONS
Notations and definitions used in the rest of correspondence are

summarized here.

FST

MFST

0018-9340/94$04.00 0 1994 IEEE

Undirected DSC graph in which the set of vertices
(nodes) in 1 ~ represents the PE’s and the links (edges)
in E represent the communication links.
Node representing a processing element i .
Link between processing elements i and j.
G with a node ss. called starting node, indicates
where the FREA algorithm begins to generate sub-
graphs.
Probability that link .rl
Data file I .

Distributed program i .

Set of programs that can be run at processing element
.r , .
Set of data files available at processing element 2,.
Set of data files needed to execute P,.
Set of programs to be executed.
Set of data files needed to execute all programs in
P S (i.e., FS = UP,EP\ FA’Vt).
Spanning tree that connects the root node (the pro-
cessing element that runs the program under consid-
eration) to other nodes, such that its vertices hold all
the needed files for the program under consideration.
An FST such that there exists no other FST that is
a subset of it.

works (fails).

88 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

FA:FI.F4
P A R

x2.3
FAF1

FNI=(FI.F2.F3.F4]

Fig. 1. Simple distributed computing system. Fig. 2. Simple distributed computing system with different file distribution.

G - x 2 , 3
G CE

Graph G with edge x,,, deleted.
Graph G with edge x 2 , , contracted such that nodes
z, and x, are merged into a single node. This new
merge node contains all data files and programs that
were in nodes z1 and 1,.
Reliability of the DCS graph G. R (G)

Since trees and subgraphs are used to represent the intermediate
communication structure of the DCS, they are used interchangeably
in the rest of this correspondence.

111. DISTRIBUTED PROGRAM RELIA~ILITY ANALYSIS
Considering the distributed computing system in Fig. 1, there

are four processing elements (II,ZZ, 2 3 , ~ 4) connected by links
~ 1 , ~ , ~ 1 , 3 , ~ 2 , 3 , ~ ~ , 4 , and 2 3 4 . Processing element xl contains two
data files (FI and F z) and can run PI directly from here to
communicate with other nodes for accessing data files required to
complete the execution of PI . Detailed information for each node is
summarized in FA,, PA, , and F N , (3 = 1,. . . ,4) in Fig. I .

Let program PI require F1, F z , and F 3 to complete its
execution in the DCS. Also, PI can be run on both nodes
1 1 and z 4 in the DCS (Fig. I). We can identify some file
spanning trees (FST’s) rooted on X I from the DCS graph:

Z 1 2 2 1 3 2 1 , 3 2 2 , 3 , 5) x i 1 3 Z q z 1 , 3 1 3 . 4 , 6) x i k z ~ 3 ~ 4 x i , z ~ z , 3 ~ 3 4 , 7)
2 1 2 ~ 2 3 2 4 % i , z 2 ~ , 4 1 3 , 4 , 8) 2 : 1 1 ~ 2 3 ~ z i , 3 x z , 3 x z 4 , and 9) Z I Z Z Z ~ ~ ~

X I , 3 x 3 , 4 x2,4.

If PI can be run only on node X I , the MFST’s are 1) ~ 1 ~ 2 ~ 1 . 2 ,

4) x 1 2 2 1 3 2 1 , 3 2 2 , 3 , and 5) 2 1 1 3 1 4 2 1 , 3 2 3 , 4 .

If we also consider the FST rooted on z 4 . then the MFST’s
for PI are 1) 2 1 2 2 2 1 , 2 . 4) 2 1 1 2 2 3 z 1 , 3 1 2 , 3 . *) 1 3 x 4 1 3 4 , and *)
1 2 2 3 3 4 X 2 , 3 2 2 , 4 . The last two MFST’s marked by * are rooted on
node z4 instead of zl.

Since the MFST’s connect the root node (the PE that runs the
program under consideration) to some other nodes such that its nodes
hold all the needed files for the program under execution, the DPR
can then be determined by computing the probability that at least one
of these MFST’s is working. Thus the distributed program reliability
for a given program j can be defined as the probability that at least
one MFST of program j is working [6]. The DPR measures the
reliability of a particular distributed program. For the entire DCS to
be operational, several such programs or a given set of distributed
programs must be operational. A system-level reliability measure for
all distributed programs to be operational is defined in [6] as the
probability that at least one MFST of all distributed programs is
working.

For computing the reliability of the entire DCS, the concept of
MFST has been extended to the minimal file spanning forest (MFSF)
[14]. Based on the concepts of the MFST and MFSF, Kumar and
his colleagues developed algorithms to generate all MFST’s [6]

1) z l Z Z z 1 , Z r 2) x 1 2 2 z 3 T I 2 x 2 3 . 3) z 1 1 2 z 4 1 1 , 2 2 Z , 4 7 4)

and MFSF’s [20], respectively. Once the MFST’s and MFSF’s are
obtained, SYREL [12] is called for evaluating the reliability.

Although the concept of their algorithm is very straightforward, it
generates many replicated trees during the MFST generating process.
Considering the DCS in Fig. 2, for finding all the MFSPs for PI , let
us use Kumar’s algorithm [6] to generate the MFST’s. The algorithm
starts from finding the MFST’s of size 0, and then size 1, . . . until size
n - 1. As we can see in Fig. 3, the replicated trees (e.g., trees B, d2,
and d4 are replicated) have been generated by their algorithm. Thus
a procedure, called CLEAN, is required to remove these replicated
trees.

Because the MFST’s generated by the algorithm in [6] are not
disjoint with each other, other reliability computation programs such
as SYREL [121 are required to generate the reliability expression.
For the node perfect case, one algorithm, called FARE, which can
evaluate DPR in one pass, is reported in [13]. Since a matrix is used to
represent the subgraphs in the FARE algorithm, the reliability analysis
methods cannot be used to evaluate the reliability of a program
running on more than one node.

IV. DERIVATION OF FREA ALGORITHM
In this section, we present a new algorithm, called FREA, for

the reliability evaluation of DCS. The FREA algorithm is based
on the generalized factoring theorem employing several reliability
preserving reductions to reduce the size of computed graphs and to
simplify the reliability computation. To illustrate our approach, we
begin by presenting the concept of a generalized factoring theorem
and then several reliability preserving reductions.

A. Generalized Factoring Theorem for Distributed
Program Reliability

The factoring theorem of network reliability [18] is the basis
for a class of algorithms for computing h--terminal reliability. This
theorem establishes the validity of the following conditional reliability
formula:

R(G) = p,, ,R(G g? zt,,) + qt,,R(G - ~ t , j) . (1)

The theorem can be used to interpret topologically the following
conditional reliability formula for a general binary system S with
components I* ,, :

R (S) = P,,,R(SIG,, works) + q Z , , R (S l ~ , , , fails). (2)

Thus, (1) can be generalized in the following manner. Suppose that
nodez, isthestartingnodeofgraphG,, andx, , l ,z , ,2 , . . . , andxs,k
are the edges incident on xs. We can obtain the following generalized
equation:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994 89

* Replicated

A = dl
B = d2 = d4
C = d3
D = d 5
E = d8
F = d10
G = d7
H = d9

e
Fig. 3. Generation of replicated trees in MFST [61 algorithm

+ qs,1qs,2 . . . qs,k- lps ,kR(G - 5 s 1 - xs,2

Z s , k - l @ z s , k) - . . . _
+ q s , 1 q s , 2 . . . q ~ , k R (G - x ~ , l - x ~ , ~ - . . . - xs,k) . (3)

Equation (3) is obviously true. For the proof of its correctness,
readers are referred to [21]. Equation (3) can be recursively applied to
the induced graph until either 1) the further induced graph with node
zs containing all needed data files and all programs to be executed, or
2) the further induced graph with no FST’s is obtained. The induced
graph of the former case represents a success, wheres the latter case
represents a failure. It is easy to see that subtrees (or subgraphs)
generation based on (3) will be completely disjoint. Since all of
these disjoint terms represent either a success or a failure, one can
simply sum all these disjoint terms together to produce the reliability
expression of the system. Thus, the dominant factor for the reliability
computation becomes the subgraph generation which is the process to
produce these disjoint terms. Since the subgraph generation based on
(3) will be completely disjoint, it guarantees no replicated trees will
be generated during the expansion of the tree. This is one of the key
reasons why the FREA algorithm will generate less subgraphs than
existing algorithms. The other major reason will be the use of several
reliability preserving reduction techniques, which will be discussed
in the following section, to reduce the size of the graph.

B. Reliability Preserving Reductions for the
DCS Reliability Evaluation

To reduce the size of graph G and, therefore, reduce the state space
of the associated reliability problem, reliability preserving reductions

can be applied. Some reductions are designed and developed to speed
up the reliability evaluation.

Definition I: Degree-1 Reduction Degree-1 reduction is to re-
move nodes and their incident edges that contain no needed data
files and programs under consideration. Considering the DCS in Fig.
4 for computing DPR1, since node x1 does not contain PI and any
needed data files (F1, F2. and F3), the degree-1 reduction is applied
to remove node ~1 and its incident edge s1 3 . The resulting graph
is also shown in Fig. 4.

Definition 2: Irrelevant Component Deletion Let Go = (Vo , E o)
be a connected component of G, and it is not connected to the rest of
the components of G. If there are no FST’s in Go then the component
Go is irrelevant and a reduction is applied to delete component Go.

Definition 3: Parallel Reduction Let x , , and xi , be two parallel
edges in G. Then, G’ is obtained by replacing x , , ~ and xi, , with a
single edge X, (or pt,j = p , + p : , , -
p : , , p : , J) . The parallel reduction for DPR and DSR problems is the
same as the parallel reduction for the h--terminal network reliability
problem.

Definition 4: Series Reduction There are some differences in se-
ries reduction between the DCS reliability problem and the K -
terminal network reliability problem. The series reduction for the
Zi-terminal network reliability problem is defined in [19] and is
recalled here.

Let zt,3 and x t k be two series edges in G such that degree
(z,) = 2 and xI $! K. Then, G’ is obtained by replacing x ~ , ~ and
x, ,k with a single edge X , , k such that p, k = p:,kp,,,.

The series reduction for the DCS reliability problem is the same

such that p , , = 1 - qt*3qi

IEEE

n

.F3 1 I -. . ._ . _ _

TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

Fig. 4. Example of degree-1 reduction.

Fig. 5. Example of series reduction.

Fig. 6. Example of degree-2 reduction.

as the preceding description except that the condition of st li is
replaced by FA, n F N = 0 and P A , n PN = 0. In other words,
if degree (xt) = 2 and node spz contain no needed data files and
programs to be executed, then we apply the series reduction on G.
For example, Fig. 5 presents a case of series reduction for computing

For the case of degree (s2) = 2 and node xt contains some needed
data files or programs to be executed, the series reduction may be
performed. The details of this case will be described later in the
degree-2 reduction.

Definition 5: Reducible Node A node xz is called a reducible node
for distributed program Pj in graph G if and only i f 1) the degree
of node x1 is two in graph G, and 2) the degree of node zt in the
MFST’s of P, that contains node xt must also be two.

Theorem 1: Node x z is a reducible node for distributed program
P, if it satisfies the following conditions:

a) Node degree is two, and
b) FA, 2 (F A , n FN) and PA, 2 (P A , n P N) and FAk 2

(F A , f l F N) and PAk _> (Pd, f l PLY) (where node SI, and
x, are the two adjacent nodes of x r) .

Proof: Case 1 : Some MFSTt generated for DPR, contain node
st. Suppose sz satisfies the properties of Theorem 1 and zt is not
a reducible node, then it implies either i) s,’s node degree is not
two, or ii) xz’s node degree in the MFST is not two according to
the definition of a reducible node. In the former case, that z2’s node
degree is not two is violated in the first given property in Theorem

DPRi .

1 that declares the degree of node xt is two (since we assume xt
satisfies the properties of Theorem 1). Thus, it must be the latter
case, that is, st ’s node degree in the MFSTt is not two. Since the
first given property in Theorem 1 states that the degree of node xt is
two, the MFSTt that contains node s, can only have the degree of
node z1 less than or equal to two. Furthermore, in the latter case, we
assume that the degree of node sz in the MFST is not two; then it
must be one. This implies that node s, is a leaf node in the MFSTt .
Based on the second given property in Theorem 1, it implies that
node st contains a subset of needed data files in node sj or X k and
a subset of programs to be executed in node .rl or SI, . From these
facts, we conclude that x z is one of the nodes in MFSTt is incorrect.
In other words, MFSTt is not a minimal file spanning tree. Thus, the
assumption that node s, is not a reducible node is not true. Therefore,
node .rt must be a reducible node.

Case 2: No MFST’s contain node x , . Theorem 1 is obviously true
for this case.

Using Theorem 2, it is easy to verify the following corollary.
Corollury 1: If a node s, satisfies the following properties: 1) the

degree is two, and 2) FA, f l F S = 0 and P A , f l PiV = 0, then
node .r2 is a reducible node.

Definition 6: Degree-2 Reduction Suppose node s, is a reducible
node, then one can apply series reduction on node sz and move data
files and programs within node s, to one of its adjacent nodes x J or
Sk. This reduction case is called degree-2 reduction. Fig. 6 presents
an example of such reduction.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1 , JANUARY 1994 91

PA:Fl.FZ

FNl-{Fl.PZ.F3.F4)

MPSTflI):

Fig. 8. Basic node structure of trace tree.

....
@' GO'

Fig. 7. Example of DCS and all MFST's for program 1 under consideration.

To prove degree-2 reduction is correct for DPR analysis is trivial;
readers are referred to [21]. In fact, the series reduction is just
a special case of degree-2 reduction that meets the properties of
Corollary 1.

No
C. Identification of Reducible Nodes

In this subsection, we propose an algorithm to identify all reducible
nodes in a DCS graph.

Let us consider the DCS shown in Fig. 7. Although s1 and S I are
reducible nodes by the definition of the reducible node, only xq can
be identified based on Corollary 1. Thus, the problem is how to find
all the reducible nodes in the DCS graph. The most straightforward
solution is to find all the MFST's, and then to validate the nodes
of those MFST's that contain the reducible nodes. However, such a
solution inherits the problem in Kumar et ai. [6], which will generate
several replicated trees and therefore is not a good approach.

In the following, we present a new algorithm, called RE-
DUCIBLE-NODE, to identify all the reducible nodes without the
generation of all MFST's. The basic concept of the algorithm can be
explained from the following statements.

Let G be the original graph that contains node sI with node degree
= 2. Edges s t , and s, k are the two incident edges on st . Suppose
node .r, is not a reducible node, then it must be a leaf node of some
MFSTt (also discussed in the proof of Theorem 2) . Thus, node .rz
must contain some needed data files or programs to be executed that
are not resident at other nodes in the same MFSTt.

To test which data file causes the node I , that becomes a leaf node
of the MFSTt, we can repeatedly check each needed data file, Fa. in
node st. The following procedures are used to check if needed data
file Fa in node zt is the one that causes s, not to be a reducible node.

Step 1: G1 = G - s,
Step 2: delete all nodes in G1 that contain data file Fa

I* G1 is G with deleting edge s,

except node s,.
/* sz is the only node that contains
data file Fa in G1 */

Step 3: check if there are some FST's in the component of G1
that contains s,.
I* using the Depth-First-Search
algorithm */

*I

3.1: If there are some FST's in this component
then sI must be a leaf node of some MFST's.
Thus, .rl is not a reducible node. Stop checking node .rl .

Step 4: G1 = G - s,
Step 5: the same as step 2.
Step 6: the same as step 3.

/* G1 is G with deleting edge s, k */

6.1: the same as step 3.1.

..

Fig. 9. Trace tree structure.

We repeat the preceding steps to check the other needed data files
and programs under consideration that are also in sl. If the checking
procedure cannot identify st as an irreducible node (Step 3.1 or Step
6.1) then s, is a reducible node. The maximal number of the iteration
of the checking procedure for node sz is equal to the number of
elements in the set of (F A , n FA\-) U (P-4, n P N) . The formal
REDUCIBLE-NODE algorithm is given at the bottom of the page.

D. FREA Algorithm
Once the way of finding all the reducible nodes is understood,

we can use (3) and the reliability preserving reductions discussed in
Section IV-B to compute the DPR and DSR. The complete FREA
algorithm is listed on the next page.

E. Numeric Examples
The reliability analysis process of the FREA algorithm can be

represented by a trace tree. A trace tree depicts the relationship
among intermediate trees or subgraphs generated using the reductions
concepts incorporated in the FREA algorithm. A trace tree node
consists of four components, G. G', G", and G"', as shown in Fig.
8, which represents the intermediate trees or subgraphs from the
reduction process.

The relationship of trees within a trace tree node, using notation
defined in FREA, can be explained by the following example. A
trace tree is given in Fig. 9.

Suppose intermediate tree Gb in the trace node N o has started
node .rs with k incident edges, then the maximal number of trace
tree nodes that trace tree node -1-0 can derive is k + 1 (refer to (3)).

92 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

FREA ALGORITHM
begin

G = the original DCS graph
F N = Up, tp , \ FA\-,
R=O
search a node x , that contains program P, E P S
if node s, is not found then

/* all the needed data files for program P, in P T */
/* the reliability set to 0 */

begin
output(R)
stop

end
s = 2

R = REL(G,)
output(R)
stop

end (* FREA *)
function REL(G,)
begin

/* starting node’s number */

Step 1: The checking step
if F A , _> F N and PA, _> PA* then

begin
REL = 1
return

if there are no FST’s in G, then
end

begin
/* using DFS algorithm to check this */

REL = 0
return

/* no FST’s in G , */

end
Step 2: The reduction step for G,

repeat
Perform degree-I reduction
Perform series reduction
Perform parallel reduction
Perform degree-2 reduction /* using REDUCIBLENODE algorithm *I

Until no reductions can be made

Step 3: The formulating step for equation (3)
3.1:
3.2:

GL = the new graph after the above reduction
G’,” = GY = G’,
R=O
C = l
for all s s , j E the set of edges incident on starting node .rs do

/* G’,I and GY are temporary variables for graph GI5 */
/* set reliability to 0 */
/* the constant terms, . . . qs . l q s . . . p , h . of equation (3) */

c = C ’ P S J

c = c*q,,
3.3: R = R + C* REL(G’,” .r,)

G” - G$ - 3.4: s - x S J

3.5: G‘,“ = the new graph after deleting irrelevant components from GY
if ss isdeleted then

go to step 4

Step 4: The choosing step to find the new staring node
od

if finding a node s k in G”’ that contains the programs under consideration then
begin

s = k
R = R -k C*REL(G$”)

end
REL = R

end (* REL *)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994 93

Since only k + 1 terms (intermediate subgraphs) can be generated,
components GY+l and G;kl within the trace tree node .\ik+l are
nil. S, represents the operations to be applied from G’ in trace tree
node YO to trace tree node N j . The operations available for S,
can be deleting, merging, or combinations of merging and deleting.
For example, S, = G x s , 2 means that edge ss 1 in component
Gb is deleted and then Gb is merged with edge xs,2 to produce
a new intermediate subgraph G, within trace tree node .Vj. The
symbol + indicates which intermediate subgraph is generated by
which intermediate subgraph. For example, G1 in trace tree node

by applying
operation SI (written as G1 = Gb@x, 1 using the notation defined in
FREA). The rest of the relations are listed at the bottom of the page.

If the starting node I, in component G within trace tree node LVj
holds all data files required and programs to be executed, then is
a leaf node of the trace tree. Fig. 10 depicts the trace tree for program
1 to be executed in Fig. 1, where link 11 2 corresponds to link 1, link
s1,3 corresponds to link 2, . . . , etc.

is obtained from the Gb within trace tree node

DPRl can be computed as

DPRi = p i + qipz(p3 + 4 3 ~ s) + ~ 1 ~ 2 ~ 6

=pl + q1p2 (p3 + 93p5

=pl + qlpZp3 + qlp2q3pS + qlq2P3P4

+ q l q 2 (p3p4 + pS - p3p1p5)

+ qlq2p.5 - qlqZp3p4pS.

where p , is the probability of link I in Fig. 10, and qz = 1 - p , .

computed to 0.99891.
Let the probability of any operational link be 0.9, then DPRl is

V. ALGORITHM COMPARISON
Unlike the li-terminal reliability problem, where li -terminal

nodes are fixed and given, the distributed program reliability problem

does not have fixed I<-terminal nodes. The li -terminal nodes in the
distributed program reliability analysis can dynamically be changed
due to the effects of link or node failure, the ways of data files and
program distribution, and the topology of the network. Therefore,
we may say the network reliability problem is considered to be
static-oriented while the distributed program reliability problem is
dynamic-oriented. Naturally, the DPR problem is considered to be
more complex and difficult than the computer network reliability
problem. In fact, computing reliability of this type of problem has
been known as a NP-hard problem.

In this section, comparisons with existing algorithms [6], [13], [14],
[20] are given. The algorithms presented in [6], [13], [14], and [20],
in the worst case, can generate as many as (n - l)€-’ intermediate
trees (or subgraphs), where n denotes the number of nodes and c is
the maximum in-degree of a node in the graph. However, in practical
conditions, it seldom occurs since once an MFST is found the tree
expansion is stopped. The FREA algorithm employs the generalized
factoring theorem with several reduction concepts to speed up the
whole reliability evaluation. A rational comparison for these different
algorithms can be made based on the counting approach, which
counts the number of intermediate trees or subgraphs generated during
the whole reliability evaluation. From such a comparison, one can
approximate how much memory space and time units are required for
their algorithms to run the distributed programs under the effects of
different sizes of DCS, data file distributions, program distributions,
and topologies. We also provide some actual execution results to
support these analyses. The following subsections focus on these
different comparisons.

A. Effect of Different Sizes on Performance of Different Algorithms
Fig. 11 is a well-known example of a computer communication

network-the ARPA computer network in which there are 21 nodes

REDUCIBLE-NODE (G)
begin

for all node x, E G do

begin
if degree (1 ~ ~) = 2 then

/* assume that the two edges incident on node .rl are .rl and s, k */
G I = G - x , ,
for all files f E (FA, rl FA\-) and all program p E (PA, n P S) do

/* delete xt from G */

delete all nodes in G1 that contain file f or program p from G1 except node x t .
G2 = the component that contains node x2 in G1
if there are some FST’s in G2 then

go to checkaextaode
od
G l = G - x , k

the same as the above for-loop

I* delete I, k from G */
.

.
/* the x2 is a reducible node, apply degree-2 reduction */

G = G - X I - x ,] - I , k + , r : k

p:,k = p z 3 j * pz k

Fz4, = FA, U FA, (or F d k = FAk U FA,)
PA, = PA, U PA, (or Pd4k = PAk U P A ,)

end
checkaextmode:

end (* REDUCIBLENODE *)
od

94 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

Leeend:
series reduction

$ degree-2 reduction
1 parallel reduction
0 starting node

Fig. 10. Trace tree of FREA for example of Fig. 1 .

and 26 links. Suppose that there are 12 data files and 10 programs
distributed in the ARPA computer network, and the file distribution,
program distribution, and files needed for a program to be executed
are given in Tables I, 11, and 111, respectively. The number of
subgraphs generated for different programs under consideration are
given in Table IV.

It is clear that the FREA algorithm is thousands of times less than
that of the existing algorithms in a large and complex distributed
network such as ARPA.

B. Effect of Topology on Performance of Different Algorithms
In this study, we want to see the effect of topological configuration

on the performance of different algorithms used. Thus, we run a
different set of programs and file distributions over various topologies
starting from a simple loop to a completely connected graph. These
topologies are shown in Fig. 12, and the file distributions, program
distributions, and data files needed for the program to be executed are
given in Tables V, VI, and VII, respectively. These topologies, file

TABLE 1
FILE DISTRIBUTIONS

Files Nodes

F1 11 , 14, 19
F2 1 , 14, 21
F3 2, 5, 17
F4 9, 15
F5 6, 12, 20
F6 1, 5, 18
F7 3, 11, 15
F8 9, 16
F9
F10
F11
F12

10, 18
4, 10, 13

2, 7
8

distributions, and program distributions are the same as those used
in [13]. Fig. 13 shows the number of subgraphs generated versus
different topologies based on program 1 as executed at node 1.

G 1 = GO’ r S , 1

G1’ = the reduction graph of G1
G I ” = G1’ - S, 1

G1”’ = the reduction graph of G1”
Gi = Gz”‘ - 1 1 .rs ,
GI‘ = the reduction graph of G /
Gl’’ = Gl”’ - 1 - .r-. ,
Gi”’ = the reduction graph of G!’ fori = 2.3.. . . . k
Gk + 1 = Gk“‘ with a new starting node
Gk‘ + 1 = the reduction graph ofGli + 1

I* step 3.2 and 3.3 *I
I* step 3.1 * I

I* step 3.5 * I
/* step 3.3 *I
I* step 3.1 * I
I* step 3.4 * I
I* step 3.5 * I

I* step 3.1 *I

/* step 3.2 and 3.4 * I

/* step 4 *I

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1 , JANUARY 1994 95

SRI UTAH NCAR AWS CASE

Fig. 11. ARPA computer network.

TABLE I1
PROGRAM DISTRIBUTIONS

Programs Nodes

P1 1
P2 14
P3 2
P4 15
P5 9
P6 21
P7 19
P8 6
P9 8
P10 4

TABLE 111
DATA FILES NEEDED FOR EXECUTING A PROGRAM r,

~ _ _ _ _ _

Programs Files Required

P1 F1, F3, F5, F7
P2 F2, F4, F6, F8
P3 F9, F10, F11
P4 F10, F11, F12
P5 F6, F7
P6 F1, F6, F7
P7 F1, F8, F12
P8 F3, F4, F5, F6
P9 F1, F11

P10 F4, F8, F12

Other results also follow a similar curve and are reported in [21].
From these comparisons, it is clear that the FREA algorithm is the
fastest (best) one, compared with the other algorithms, in any of
these different topologies.

C. Effect of Data File Distributions on Performance
of Different Algorithms

Eight different sets of data file distributions, generated randomly
based on the topology in Fig. 14 for the comparison of three
algorithms, are listed in Table VIII. The program distribution and data
files needed for the program to be executed are referred to Tables VI
and VII, respectively. Fig. 15 depicts that the number of subgraphs
versus different data file distributions based on program 4 is executed
at node 2. Other results also follow the similar curve and are reported
in [21].

From the preceding comparisons, it is clear that the FREA algo-
rithm has the best performance in these different data file distribu-
tions.

D. Effect of Program Distributions on Performance
of Different Algorithms

Fig. 16 shows the effect of programs running on different nodes
based on the DCS in Fig. 14. The data file distributions and data files

12 x4 d 14

'2 14 12 14

16

r3 r5 13 IS

Fig. 12. Various topologies.

h g r a m 1 executed at node 1

.X.MFST[61 9 FARE[131 -FRFA

450

Number of 300
subgraphs 2.50

150
100
so

generaled 200

Topology

Fig. 13. Number of subgraphs generated versus different topologies.

TABLE IV
NUMBER OF SUBGRAPHS GENERATED AND DPR
FOR EXAMPLE OF ARPA COMPUTER NETWORK

p2 Pi Pl p5
Program

Algorithm "
MFST [6] 55700 70842 172907 197541 17292
FARE [13] 20007 13923 35515 38120 3300

FREA 412 57 70 184 75
DPR 0.9708450 0.9739356 0.9766832 0.9345704 0.9847566

p; r8 P9 PI 0
Program

Algorithm "
MFST [6] 39893 82759 44017 72005 257333
FARE [I31 13075 25135 11141 22436 66752

FREA 95 25 152 55 290
DPR 0.9334858 0.9143801 0.9821738 0.9703900 0.9695497

needed for each program to be executed are referred to in Tables V
and VII, respectively. Other results also follow the similar curve and
are reported in [21].

E. DPR Analysis of Running the Same Distributed
Program from More than One Site

In this section, we compare the effect of the same program when
executed from more than one site (node). From the example in Fig.
17, PI can be executed at node SI or .rc: P2 can be executed at node

96 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994

TABLE V
FILE DISTRIBUTIONS

Files Nodes

F1 1, 2, 3
F2 2, 4
F3 3, 5
F4 3, 6
F5 1, 4
F6 5

TABLE VI
PROGRAM DISTRIBUTIONS

Nodes Program
1 P1
2 P4
3 P2, P3
4 P2, P3
5 P4
6 P1

x2 x4

X I x6

x3 xs
Fig. 14. Topology of DCS for 8-set of data file distributions.

120 T A

*n h generated

20

0 - T
1 5 6 7 8 2 3 4

File disaibutions

Fig. 15. Number of subgraphs versus different data file distributions.

TABLE VI1
DATA FILES NEEDED FOR EXECUTING A PROGRAM p,

Programs Files Required

P1 F1, F2, F3
P2 F2, F4, F6
P3 F1, F3, F5
P4 F1, F2, F4, F6

.r~ or s p : P3 can be executed at node s3 or X I : PI can be executed
at node .r2 or s5. Table IX shows the number of subgraphs generated
and the DPR of the same program to be executed from more than
one node of the example in Fig. 17. FARE [13] is not applicable for
distributed programs running at more than one node.

It should be noted that the current FARE algorithm [13] cannot
compute DPR of the same program executed from more than one
site.

TABLE VI11
DATA FILE DISTRIBUTIONS USED FOR COMPARISON

Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8
Files (nodes) (nodes) (nodes) (nodes) (nodes) (nodes) (nodes) (nodes)

Fi 2 , 4 , 5 2 , 3 , 6 4 , 5 , 6 1 , 2 , 3 1 , 4 , 6 1 , 3 , 6 3 , 4 , 5 2 , 3 , 6
F.r 4 , 5 3 , 5 2 , 3 4 , 5 2 , 5 3 , 6 1 , 2 3 , 5
Fs 5 , 6 3 , 4 4 ,5 1 , 6 3 , 4 1 , 2 5 . 6 1 , 6
F1 3 , 4 2 , 3 1 , 3 2 , 4 2 , 5 4 , s 5 , 6 2 , 6
F5 4 , 6 4 , 5 4 , 5 2 , 4 3 ,5 4 ,6 1.6 3 , 6
FG 6 3 6 3 5 5 5 4

Number of 20
svbnrmhs

1 2 3 4 5 6
me node w k r e pmg- I S~MJ 11s exezution

Fig. 16. Number of subgraphs versus different program distributions

TABLE IX
NUMBER OF SUBGRAPHS GENERATED A N D DPR FOR EXAMPLE OF FIG. 17

Pl pr r? PI Program
Algorithm

MFST [6] 42 98 58 103

FREA 30 22 27 58
- - - FARE [13) -

DPR 0.9995076 0.9976697 0.9997831 0.9976616

F. Actual Execution Time Comparison
Generally, an algorithm with less subgraphs generated during the

DPR analysis will have better execution efficiency since the execution
time required for the algorithm to analyze the reliability is dominated
by the expanding steps (the recursive part) to generate subgraphs.
When fewer subgraphs are generated during the analysis, it implies
that the size of the original graph has been reduced before subgraph
generation. Certainly, we expect that i t will take less time to analyze
a smaller graph. The time spent by reliability preserving reduction
routines incorporated in the FREA algorithm is less significant
than the subgraph expansion (the recursive part) which could grow
exponentially. To support this observation, we provide some actual
execution time comparisons among these algorithms. The compared
algorithms are all implemented using the C program under the same
hardware and software environments. The following execution results
are the analysis of the distributed programs 1 to 10 in the ARPA
network (Fig. 11) under the 1BM RISC/6000 workstation. I t is clear
that the proposed FREA algorithm outperforms existing algorithms
in execution of any of these distributed programs.

VI. CONCLUSION
The distributed computing system (DCS) has become very popular

for its high fault tolerance, potential for parallel processing, and
better reliability performance. One of the important issues in the
design of the DCS is the reliability performance. Traditional reliability

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. I , JANUARY 1994 91

M 4 4 FI .FZ.F4,F6)

Fig. 17. Example of the same program executed at more than one site.

TABLE X
EXFCUTION TIME (IN StCONDs) BY DIFFERENT ALGORITHMS FOR DISTRIBUTED

PROGRAMS 1 TO 10 IN ARPA NETWORK UNDER IBM RlSCi6000 WORKSTATION

Algorithm ‘I r 2 p4 PI A Program

MFST [6] 58.22 275.33 1462.69 >1800 15.59
FARE [13) 4.08 2.93 7.29 7.75 0.78

FREA 1.44 0.27 0.28 0.68 0.24
DPR 0.9708450 0.9739356 0.9766832 0.9345704 0.9847566

P, P,, r, 0 Program
Algorithm ‘I’

MFST [6] 03.31 474.28 104.00 246.17 >1800
FARE [13] 2.27 5.1 1 2.39 4.56 13.4

FREA 0.28 0.07 0.43 0.2 0.77
DPR 0.9334858 0.9 143801 0.9821738 0.9703900 0.9695497

indexes such as source-to-terminal [7] , survivability [8], multiterminal
reliability [101, and Zi-terminal reliability [ll] are not directly
applicable for the analysis of the distributed reliability property in
DCS without appropriate modification. Thus, new approaches and
algorithms for the reliability analysis of the DCS must be developed.

In this correspondence, we propose an algorithm, called the Fast
Reliability Evaluation Algorithm (FREA), based on the generalized
factoring theorem by employing several reliability preserving reduc-
tions to speed up the reliability evaluation process. The use of the
generalized factoring theorem implies that all subgraphs generated
will be completely disjoint and, therefore, no replicated trees will
be generated. The use of various reliability preserving reduction
techniques implies that the size of the graph will be reduced and,
therefore, less subgraphs will be generated. Compared with existing
algorithms on various network topologies, file distributions, and
program distributions, the FREA algorithm is much more economical
in both time and space. This claim can also be supported by the actual
execution time analysis reported in Section V-F. The feasibility of the
proposed algorithm for distributed program reliability and distributed
system reliability analyses can easily be confirmed by analysis on the
ARPA computer network. The current FREA algorithm assumes that
all nodes are perfect in its current analysis. For an imperfect node
case, a slightly modified FREA algorithm can be used to generate all
minimum file spanning trees, and then SYREL or a similar reliability
package is called for the reliability evaluation. The more detailed
treatment is reported in [21]. Also, the effect from task migration
on the distributed program reliability is an important research issue,
which we will study in the future.

REFERENCES

[I] D. P. Agrawal, Advanced Computer Architecture. Tutorial Text, IEEE
Computer Society.

[2] T. C. K. Chou and J. A. Abraham, “Load redistribution under failure
in distributed systems,” IEEE Trans. Comput., vol. C-32, pp. 799-808,
Sept. 1983.

[3] D. W. Davies, E. Holler, E. D. Jensen, S. R. Kimbleton, B. W. Lampson,
G. Lelann, K. J. Thurber, and R. W. Watson, “Distributed systems
architecture and implementation,” in Lecture Notes in Computer Science,
vol. 105.

[4] P. Enslow, “What is a distributed data processing system?,” IEEE
Computer, vol. 11, Jan. 1978.

(51 J. Garcia-Molina, “Reliability issues for fully replicated distributed
database,” IEEE Computer, vol. 16, pp. 3 4 4 2 , Sept. 1982.

[6] V. K. Prasnna Kumar, S. Hariri, and C. S . Raghavendra, “Distributed
program reliability analysis,” IEEE Trans. Sofhvare Eng., vol. SE-12,
no. 1, pp. 42-50, Jan. 1986.

(71 A. Satyanarayna and J. N. Hagstrom, “New Algorithm for Reliability
Analysis of Multiterminal Networks,” IEEE Trans. Reliability, vol. R-30,
pp. 325-333, Oct. 1981.

[8] R. E. Merwin and M. Mirherkerk, “Derivation and use of survivability
criterion for DDP systems,” in Proc. 1980 Nat. Comput. Conj, May
1980, pp. 139-146.

[9] K. K. Aggrawal and S. Rai, “Reliability evaluation in computer-
communication networks,” IEEE Trans. Reliability, vol. R-30, pp.
32-35, Apr. 1981.

[IO] A. Grnarov and M. Gerla, “Multiterminal reliability analysis of dis-
tributed processing system,” in Proc. 1981 Int. Conf Parallel Process-
ing, Aug. 1986, pp. 79-86.

[111 R. Kevin Wood, “Factoring algorithms for computing I; -terminal
network reliability,” IEEE Trans. Reliability, vol. R-35, pp. 269-278,
Aug. 1986.

[I21 S. Hariri and C. S . Raghavendra, “SYREL: A symbolic reliability
algorithm based on path and cutset methods,” USC Tech. Rep., 1984.

[131 A. Kumar, S. Rai, and D. P. Agrawal, “Reliability evaluation algorithms
for distributed systems,” in Proc. IEEE INFOCOM 88, 1988, pp.
851-860.

[141 A. Kumar, S . Rai, and D. P. Agrawal, “On computer communication net-
work reliability under program execution constraints,” IEEE J . Selected
Areas Commun., vol. 6, no. 8, pp. 1393-1399, Oct. 1988.

[lS] F. Moskowitz, “The analysis of redundancy networks,” AIEE Trans.
(Commun. Electron.), vol. 29, pp. 627-632, 1958.

[161 M. 0. Ball, “Computing network reliability,” Opf. Res., vol. 27, pp.
132-143.

[171 M. K. Chang, “A graph theoretic appraisal of the complexity of network
reliability algorithms,” Ph.D. dissertation, Dept. of IEOR, Univ. of
California, Berkeley, 1981.

[IX] A. Satyanarayana and M. K. Chang, “Network reliability and the
factoring theorem,” Networks, vol. 13, pp. 107-120, 1983.

[191 R. K. Wood, “A factoring algorithm using polygon-to-chain reductions
for computing IC-terminal network reliability,” Networks, vol. 15, pp.
173-190, 1985.

(201 C. S. Raghavendra, V. K. Prasnna Kumar, and S. Hariri, “Reliability
analysis in distributed system,” IEEE Trans. Comput., vol. 37, pp.
352-358, Mar. 1988.

[21] D. J. Chen, “On the reliability analysis of the distributed computing
system,” Comput. Sci. Inform. Engineering, National Chiao Tung Univ.,
China, Tech. Rep. CSI-1991-005, July, 1991.

Berlin, Germany: Springer-Verlag, 1981.

