
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1, JANUARY 1994 87 

Brief Contributions 

On Distributed Computing Systems Reliability Analysis 
Under Program Execution Constraints 

Deng-Jyi Chen, Member, IEEE, and Min-Sheng Lin 

Abstract-This correspondence presents an algorithm for computing 
the reliability of distributed computing systems (DCS). The algorithm, 
called the Fast Reliability Evaluation Algorithm, is based on the factoring 
theorem employing several reliability preserving reduction techniques. 
The effect of file distributions, program distributions, and various topolo- 
gies on reliability of the DCS is studied in detail using the proposed 
algorithm. Compared with existing algorithms on various network topolo- 
gies, file distributions, and program distributions, the proposed algorithm 
is much more economical in both time and space. To compute the 
distributed program reliability, the ARPA network is studied to illustrate 
the feasibility of the proposed algorithm. 

Index Terms-Distributed program, distributed system, factoring the- 
orem, graph theory, reliability, reliability-preserving reduction, spanning 
tree. 

I. INTRODUCTION 
Recently, the distributed computing system (DCS) has become 

increasingly popular because it offers higher fault tolerance, potential 
for parallel processing, and better reliability in comparison with other 
processing systems [1]-[5]. A typical DCS consists of processing 
elements (PE’s), memory units, data files, and programs as its 
resources. These resources are interconnected via a communication 
network that dictates how information could flow between PE’s. 
Programs residing on some PE’s can run using data files at other 
PE’s as well. For successful execution of a program, it is essential 
that the PE containing the program and other PE’s that have the 
required data files, and communication links between them must be 
operational. Using this concept, distributed program reliability (DPR) 
is defined as the probability of successful execution of a distributed 
program that runs on some PE’s and needs to communicate with other 
processing elements for remote files. Distributed system reliability 
(DSR) is defined as the probability that all programs with distributed 
files can run successfully despite some faults occurring in the PE’s 
and/or in the communication links [6]. 

In [6], a minimum file spanning tree (MFST) is proposed to 
represent the multiterminal connection required for executing a 
distributed program, and a two-pass method for the reliability analysis 
of DCS is developed. In this method, all MFST’s are obtained by 
using the breadth-search method. After finding the MFST’s, since 
they are not disjoint with each other, the algorithm requires other 
reliability evaluation algorithms such as SYREL [ 121 to generate 
the reliability expression. Although the method is elegant, it does 
generate a lot of replicated trees during the processing and thus will 
be inefficient. Instead of generating MFST’s, one algorithm, called 
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FARE, has been proposed in [13] and [14] to compute DPR directly 
by using a connection matrix. Based on the assumption that the 
PE’s (nodes) in the DCS are perfect, it does not require additional 
reliability evaluation algorithms to convert a multiterminal connection 
into a reliability expression. The shortcoming of this algorithm is that 
it is not applicable for distributed programs running on more than 
one node. 

In this correspondence, we propose a new algorithm called the Fast 
Reliability Evaluation Algorithm (FREA) that employs a differeht 
concept to compute the reliability of DSR and DPR. It is based on 
the generalized factoring theorem with several reliability preserving 
reductions to reduce the computation tree. The factoring theorem 
for the exact computation of li-terminal reliability in undirected 
networks has been proposed since 1958 by Moskowitz [15]. Recently, 
several papers have addressed worst case computational complexity 
and the optimality of classed factoring algorithms and related algo- 
rithms, for example, Ball [16], Chang [17], Satyanarayana and Chang 
[ 181, and Wood [ 191 to name a few. Unlike the I<-terminal reliability 
problem, where li-terminal nodes are fixed and given, the distributed 
program reliability problem does not have fixed Zi -terminal nodes. 
The li-terminal nodes in the distributed program reliability analysis 
can be changed dynamically due to the effects of link or node failure, 
using data files and programs distribution, and the topology of the 
network. Therefore, we may say the network reliability problem is 
considered to be static-oriented, whereas the distributed program re- 
liability problem is dynamic-oriented. Naturally, distributed program 
reliability problems are considerd to be more complex and difficult 
than computer network reliability problems. 

11. NOTATIONS AND DEFINITIONS 
Notations and definitions used in the rest of correspondence are 

summarized here. 

FST 

MFST 
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Undirected DSC graph in which the set of vertices 
(nodes) in 1 ~ represents the PE’s and the links (edges) 
in E represent the communication links. 
Node representing a processing element i .  
Link between processing elements i and j. 
G with a node ss. called starting node, indicates 
where the FREA algorithm begins to generate sub- 
graphs. 
Probability that link .rl 
Data file I .  

Distributed program i .  

Set of programs that can be run at processing element 
.r , . 
Set of data files available at processing element 2,. 
Set of data files needed to execute P,. 
Set of programs to be executed. 
Set of data files needed to execute all programs in 
P S  (i.e., FS  = UP,EP\  FA’Vt). 
Spanning tree that connects the root node (the pro- 
cessing element that runs the program under consid- 
eration) to other nodes, such that its vertices hold all 
the needed files for the program under consideration. 
An FST such that there exists no other FST that is 
a subset of it. 

works (fails). 
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Fig. 1. Simple distributed computing system. Fig. 2. Simple distributed computing system with different file distribution. 

G - x 2 , 3  
G CE 

Graph G with edge x,,, deleted. 
Graph G with edge x 2 , ,  contracted such that nodes 
z, and x, are merged into a single node. This new 
merge node contains all data files and programs that 
were in nodes z1 and 1,. 
Reliability of the DCS graph G. R ( G )  

Since trees and subgraphs are used to represent the intermediate 
communication structure of the DCS, they are used interchangeably 
in the rest of this correspondence. 

111. DISTRIBUTED PROGRAM RELIA~ILITY ANALYSIS 
Considering the distributed computing system in Fig. 1, there 

are four processing elements (II,ZZ, 2 3 ,  ~ 4 )  connected by links 
~ 1 , ~ , ~ 1 , 3 , ~ 2 , 3 , ~ ~ , 4 ,  and 2 3  4 .  Processing element xl contains two 
data files (FI  and F z )  and can run PI directly from here to 
communicate with other nodes for accessing data files required to 
complete the execution of PI .  Detailed information for each node is 
summarized in FA,,  PA, ,  and F N ,  ( 3  = 1,. . . ,4) in Fig. I .  

Let program PI require F1, F z ,  and F 3  to complete its 
execution in the DCS. Also, PI can be run on both nodes 
1 1  and z 4  in the DCS (Fig. I). We can identify some file 
spanning trees (FST’s) rooted on X I  from the DCS graph: 

Z 1 2 2 1 3 2 1 , 3 2 2 , 3 ,  5)  x i 1 3 Z q z 1 , 3 1 3 . 4 ,  6) x i k z ~ 3 ~ 4 x i , z ~ z , 3 ~ 3  4 ,  7) 
2 1 2 ~ 2 3 2 4 % i , z 2 ~ , 4 1 3 , 4 ,  8) 2 : 1 1 ~ 2 3 ~ z i , 3 x z , 3 x z  4 ,  and 9) Z I Z Z Z ~ ~ ~  

X I  , 3 x 3 , 4  x2,4. 

If PI can be run only on node X I ,  the MFST’s are 1) ~ 1 ~ 2 ~ 1 . 2 ,  

4) x 1 2 2 1 3 2 1 , 3 2 2 , 3 ,  and 5 )  2 1 1 3 1 4 2 1 , 3 2 3 , 4 .  

If we also consider the FST rooted on z 4 .  then the MFST’s 
for PI are 1) 2 1 2 2 2 1 , 2 .  4) 2 1 1 2 2 3 z 1 , 3 1 2 , 3 .  *) 1 3 x 4 1 3 4 ,  and *) 
1 2 2 3 3 4 X 2 , 3 2 2 , 4 .  The last two MFST’s marked by * are rooted on 
node z4 instead of zl. 

Since the MFST’s connect the root node (the PE that runs the 
program under consideration) to some other nodes such that its nodes 
hold all the needed files for the program under execution, the DPR 
can then be determined by computing the probability that at least one 
of these MFST’s is working. Thus the distributed program reliability 
for a given program j can be defined as the probability that at least 
one MFST of program j is working [6]. The DPR measures the 
reliability of a particular distributed program. For the entire DCS to 
be operational, several such programs or a given set of distributed 
programs must be operational. A system-level reliability measure for 
all distributed programs to be operational is defined in [6] as the 
probability that at least one MFST of all distributed programs is 
working. 

For computing the reliability of the entire DCS, the concept of 
MFST has been extended to the minimal file spanning forest (MFSF) 
[14]. Based on the concepts of the MFST and MFSF, Kumar and 
his colleagues developed algorithms to generate all MFST’s [6] 

1) z l Z Z z 1 , Z r  2) x 1 2 2 z 3 T I  2 x 2  3 .  3 )  z 1 1 2 z 4 1 1 , 2 2 Z , 4 7  4) 

and MFSF’s [20], respectively. Once the MFST’s and MFSF’s are 
obtained, SYREL [12] is called for evaluating the reliability. 

Although the concept of their algorithm is very straightforward, it 
generates many replicated trees during the MFST generating process. 
Considering the DCS in Fig. 2, for finding all the MFSPs  for PI ,  let 
us use Kumar’s algorithm [6] to generate the MFST’s. The algorithm 
starts from finding the MFST’s of size 0, and then size 1, . . . until size 
n - 1. As we can see in Fig. 3, the replicated trees (e.g., trees B, d2, 
and d4 are replicated) have been generated by their algorithm. Thus 
a procedure, called CLEAN, is required to remove these replicated 
trees. 

Because the MFST’s generated by the algorithm in [6] are not 
disjoint with each other, other reliability computation programs such 
as SYREL [ 121 are required to generate the reliability expression. 
For the node perfect case, one algorithm, called FARE, which can 
evaluate DPR in one pass, is reported in [13]. Since a matrix is used to 
represent the subgraphs in the FARE algorithm, the reliability analysis 
methods cannot be used to evaluate the reliability of a program 
running on more than one node. 

IV. DERIVATION OF FREA ALGORITHM 
In this section, we present a new algorithm, called FREA, for 

the reliability evaluation of DCS. The FREA algorithm is based 
on the generalized factoring theorem employing several reliability 
preserving reductions to reduce the size of computed graphs and to 
simplify the reliability computation. To illustrate our approach, we 
begin by presenting the concept of a generalized factoring theorem 
and then several reliability preserving reductions. 

A. Generalized Factoring Theorem for Distributed 
Program Reliability 

The factoring theorem of network reliability [18] is the basis 
for a class of algorithms for computing h--terminal reliability. This 
theorem establishes the validity of the following conditional reliability 
formula: 

R(G) = p,, ,R(G g? zt,,) + qt,,R(G - ~ t , j ) .  (1) 

The theorem can be used to interpret topologically the following 
conditional reliability formula for a general binary system S with 
components I* ,, : 

R ( S )  = P,,,R(SIG,, works) + q Z , , R ( S l ~ , , ,  fails). (2) 

Thus, (1) can be generalized in the following manner. Suppose that 
nodez, isthestartingnodeofgraphG,, andx, , l ,z , ,2 , . . . ,  andxs,k 
are the edges incident on xs. We can obtain the following generalized 
equation: 
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* Replicated 

A = dl 
B = d2 = d4 
C = d3 
D = d 5  
E = d8 
F = d10 
G = d7 
H = d9 

e 
Fig. 3. Generation of replicated trees in MFST [61 algorithm 

+ qs,1qs,2 . . . qs,k- lps ,kR(G - 5 s  1 - xs,2 

Z s , k - l  @ z s , k )  - . . . _  
+ q s , 1 q s , 2  . . . q ~ , k R ( G - x ~ , l - x ~ , ~ - . . . -  xs,k) .  (3) 

Equation (3) is obviously true. For the proof of its correctness, 
readers are referred to [21]. Equation (3) can be recursively applied to 
the induced graph until either 1) the further induced graph with node 
zs containing all needed data files and all programs to be executed, or 
2) the further induced graph with no FST’s is obtained. The induced 
graph of the former case represents a success, wheres the latter case 
represents a failure. It is easy to see that subtrees (or subgraphs) 
generation based on (3) will be completely disjoint. Since all of 
these disjoint terms represent either a success or a failure, one can 
simply sum all these disjoint terms together to produce the reliability 
expression of the system. Thus, the dominant factor for the reliability 
computation becomes the subgraph generation which is the process to 
produce these disjoint terms. Since the subgraph generation based on 
(3) will be completely disjoint, it guarantees no replicated trees will 
be generated during the expansion of the tree. This is one of the key 
reasons why the FREA algorithm will generate less subgraphs than 
existing algorithms. The other major reason will be the use of several 
reliability preserving reduction techniques, which will be discussed 
in the following section, to reduce the size of the graph. 

B. Reliability Preserving Reductions for the 
DCS Reliability Evaluation 

To reduce the size of graph G and, therefore, reduce the state space 
of the associated reliability problem, reliability preserving reductions 

can be applied. Some reductions are designed and developed to speed 
up the reliability evaluation. 

Definition I: Degree-1 Reduction Degree-1 reduction is to re- 
move nodes and their incident edges that contain no needed data 
files and programs under consideration. Considering the DCS in Fig. 
4 for computing DPR1, since node x1 does not contain PI and any 
needed data files (F1, F2. and F3), the degree-1 reduction is applied 
to remove node ~1 and its incident edge s1 3 .  The resulting graph 
is also shown in Fig. 4. 

Definition 2: Irrelevant Component Deletion Let Go = (Vo ,  E o )  
be a connected component of G, and it is not connected to the rest of 
the components of G. If there are no FST’s in Go then the component 
Go is irrelevant and a reduction is applied to delete component Go. 

Definition 3: Parallel Reduction Let x ,  , and xi , be two parallel 
edges in G. Then, G’ is obtained by replacing x , , ~  and xi, ,  with a 
single edge X, (or pt,j  = p ,  + p : , ,  - 
p : , , p : , J ) .  The parallel reduction for DPR and DSR problems is the 
same as the parallel reduction for the h--terminal network reliability 
problem. 

Definition 4: Series Reduction There are some differences in se- 
ries reduction between the DCS reliability problem and the K -  
terminal network reliability problem. The series reduction for the 
Zi-terminal network reliability problem is defined in [19] and is 
recalled here. 

Let zt,3 and x t  k be two series edges in G such that degree 
(z,) = 2 and xI $! K. Then, G’ is obtained by replacing x ~ , ~  and 
x, ,k  with a single edge X , , k  such that p, k = p:,kp,,,. 

The series reduction for the DCS reliability problem is the same 

such that p ,  , = 1 - qt*3qi 
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Fig. 4. Example of degree-1 reduction. 

Fig. 5. Example of series reduction. 

Fig. 6. Example of degree-2 reduction. 

as the preceding description except that the condition of st li is 
replaced by FA,  n F N  = 0 and P A ,  n PN = 0. In other words, 
if degree (xt )  = 2 and node spz contain no needed data files and 
programs to be executed, then we apply the series reduction on G. 
For example, Fig. 5 presents a case of series reduction for computing 

For the case of degree (s2) = 2 and node xt contains some needed 
data files or programs to be executed, the series reduction may be 
performed. The details of this case will be described later in the 
degree-2 reduction. 

Definition 5: Reducible Node A node xz  is called a reducible node 
for distributed program Pj in graph G if and only i f  1) the degree 
of node x1 is two in graph G, and 2) the degree of node zt in the 
MFST’s of P, that contains node xt must also be two. 

Theorem 1: Node x z  is a reducible node for distributed program 
P, if it satisfies the following conditions: 

a) Node degree is two, and 
b) FA, 2 ( F A ,  n FN) and PA, 2 ( P A ,  n P N )  and FAk 2 

( F A ,  f l  F N )  and PAk _> (Pd, f l  PLY) (where node SI, and 
x, are the two adjacent nodes of x r ) .  

Proof: Case 1 :  Some MFSTt generated for DPR, contain node 
st.  Suppose sz satisfies the properties of Theorem 1 and zt is not 
a reducible node, then it implies either i) s,’s node degree is not 
two, or ii) xz’s node degree in the MFST is not two according to 
the definition of a reducible node. In the former case, that z2’s node 
degree is not two is violated in the first given property in Theorem 

DPRi . 

1 that declares the degree of node xt  is two (since we assume xt  
satisfies the properties of Theorem 1). Thus, it must be the latter 
case, that is, st ’s  node degree in the MFSTt is not two. Since the 
first given property in Theorem 1 states that the degree of node xt is 
two, the MFSTt that contains node s, can only have the degree of 
node z1 less than or equal to two. Furthermore, in the latter case, we 
assume that the degree of node sz in the MFST is not two; then it 
must be one. This implies that node s, is a leaf node in the MFSTt . 
Based on the second given property in Theorem 1, it implies that 
node st contains a subset of needed data files in node sj or X k  and 
a subset of programs to be executed in node .rl or SI, .  From these 
facts, we conclude that x z  is one of the nodes in MFSTt is incorrect. 
In other words, MFSTt is not a minimal file spanning tree. Thus, the 
assumption that node s, is not a reducible node is not true. Therefore, 
node .rt must be a reducible node. 

Case 2: No MFST’s contain node x ,  . Theorem 1 is obviously true 
for this case. 

Using Theorem 2, it is easy to verify the following corollary. 
Corollury 1: If a node s, satisfies the following properties: 1) the 

degree is two, and 2) FA,  f l  F S  = 0 and P A ,  f l  PiV = 0, then 
node .r2 is a reducible node. 

Definition 6: Degree-2 Reduction Suppose node s, is a reducible 
node, then one can apply series reduction on node sz and move data 
files and programs within node s, to one of its adjacent nodes x J  or 
Sk. This reduction case is called degree-2 reduction. Fig. 6 presents 
an example of such reduction. 
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PA:Fl.FZ 

FNl-{Fl.PZ.F3.F4) 

MPSTflI): 

Fig. 8. Basic node structure of trace tree. 

.... .... 
@' GO' 

Fig. 7. Example of DCS and all MFST's for program 1 under consideration. 

To prove degree-2 reduction is correct for DPR analysis is trivial; 
readers are referred to [21]. In fact, the series reduction is just 
a special case of degree-2 reduction that meets the properties of 
Corollary 1. 

No 
C. Identification of Reducible Nodes 

In this subsection, we propose an algorithm to identify all reducible 
nodes in a DCS graph. 

Let us consider the DCS shown in Fig. 7. Although s1 and S I  are 
reducible nodes by the definition of the reducible node, only xq can 
be identified based on Corollary 1. Thus, the problem is how to find 
all the reducible nodes in the DCS graph. The most straightforward 
solution is to find all the MFST's, and then to validate the nodes 
of those MFST's that contain the reducible nodes. However, such a 
solution inherits the problem in Kumar et ai. [6], which will generate 
several replicated trees and therefore is not a good approach. 

In the following, we present a new algorithm, called RE- 
DUCIBLE-NODE, to identify all the reducible nodes without the 
generation of all MFST's. The basic concept of the algorithm can be 
explained from the following statements. 

Let G be the original graph that contains node sI with node degree 
= 2. Edges s t ,  and s, k are the two incident edges on st .  Suppose 
node .r, is not a reducible node, then it must be a leaf node of some 
MFSTt (also discussed in the proof of Theorem 2) .  Thus, node .rz 
must contain some needed data files or programs to be executed that 
are not resident at other nodes in the same MFSTt. 

To test which data file causes the node I ,  that becomes a leaf node 
of the MFSTt, we can repeatedly check each needed data file, Fa.  in 
node st.  The following procedures are used to check if needed data 
file Fa in node zt is the one that causes s, not to be a reducible node. 

Step 1: G1 = G - s, 
Step 2: delete all nodes in G1 that contain data file Fa 

I* G1 is G with deleting edge s, 

except node s,. 
/* sz is the only node that contains 
data file Fa in G1 */ 

Step 3: check if there are some FST's in the component of G1 
that contains s,. 
I* using the Depth-First-Search 
algorithm */ 

*I 

3.1: If there are some FST's in this component 
then sI must be a leaf node of some MFST's. 
Thus, .rl is not a reducible node. Stop checking node .rl .  

Step 4: G1 = G - s, 
Step 5: the same as step 2. 
Step 6: the same as step 3. 

/* G1 is G with deleting edge s, k */ 

6.1: the same as step 3.1. 

.. 

Fig. 9. Trace tree structure. 

We repeat the preceding steps to check the other needed data files 
and programs under consideration that are also in sl. If the checking 
procedure cannot identify st as an irreducible node (Step 3.1 or Step 
6.1) then s, is a reducible node. The maximal number of the iteration 
of the checking procedure for node sz is equal to the number of 
elements in the set of ( F A ,  n FA\-) U (P-4, n P N ) .  The formal 
REDUCIBLE-NODE algorithm is given at the bottom of the page. 

D. FREA Algorithm 
Once the way of finding all the reducible nodes is understood, 

we can use (3) and the reliability preserving reductions discussed in 
Section IV-B to compute the DPR and DSR. The complete FREA 
algorithm is listed on the next page. 

E. Numeric Examples 
The reliability analysis process of the FREA algorithm can be 

represented by a trace tree. A trace tree depicts the relationship 
among intermediate trees or subgraphs generated using the reductions 
concepts incorporated in the FREA algorithm. A trace tree node 
consists of four components, G. G', G", and G"', as shown in Fig. 
8, which represents the intermediate trees or subgraphs from the 
reduction process. 

The relationship of trees within a trace tree node, using notation 
defined in FREA, can be explained by the following example. A 
trace tree is given in Fig. 9. 

Suppose intermediate tree Gb in the trace node N o  has started 
node .rs with k incident edges, then the maximal number of trace 
tree nodes that trace tree node -1-0 can derive is k + 1 (refer to (3)). 
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FREA ALGORITHM 
begin 

G = the original DCS graph 
F N  = Up, tp , \  FA\-, 
R=O 
search a node x ,  that contains program P, E P S  
if node s, is not found then 

/* all the needed data files for program P, in P T  */ 
/* the reliability set to 0 */ 

begin 
output(R) 
stop 

end 
s = 2  

R = REL(G,)  
output( R )  
stop 

end (* FREA *) 
function REL(G,) 
begin 

/* starting node’s number */ 

Step 1: The checking step 
if F A ,  _> F N  and PA, _> PA\* then 

begin 
REL = 1 
return 

if there are no FST’s in G, then 
end 

begin 
/* using DFS algorithm to check this */ 

REL = 0 
return 

/* no FST’s in G ,  */ 

end 
Step 2: The reduction step for G, 

repeat 
Perform degree-I reduction 
Perform series reduction 
Perform parallel reduction 
Perform degree-2 reduction /* using REDUCIBLENODE algorithm *I  

Until no reductions can be made 

Step 3: The formulating step for equation (3) 
3.1: 
3.2: 

GL = the new graph after the above reduction 
G’,” = GY = G’, 
R=O 
C = l  
for all s s , j  E the set of edges incident on starting node .rs do 

/* G’,I and GY are temporary variables for graph GI5 */ 
/* set reliability to 0 */ 
/* the constant terms, . . . qs . l  q s  . . . p ,  h .  of equation (3) */ 

c = C ’ P S J  

c = c*q,, 
3.3: R = R + C* REL(G’,” .r, ) 

G” - G$ - 3.4: s - x S J  

3.5: G‘,“ = the new graph after deleting irrelevant components from GY 
if ss isdeleted then 

go to step 4 

Step 4: The choosing step to find the new staring node 
od 

if finding a node s k  in G”’ that contains the programs under consideration then 
begin 

s = k  
R = R -k C*REL(G$”) 

end 
REL = R 

end (* REL *) 
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Since only k + 1 terms (intermediate subgraphs) can be generated, 
components GY+l and G;kl within the trace tree node .\ik+l are 
nil. S, represents the operations to be applied from G’ in trace tree 
node YO to trace tree node N j .  The operations available for S, 
can be deleting, merging, or combinations of merging and deleting. 
For example, S, = G x s , 2  means that edge ss 1 in component 
Gb is deleted and then Gb is merged with edge xs,2 to produce 
a new intermediate subgraph G, within trace tree node .Vj. The 
symbol + indicates which intermediate subgraph is generated by 
which intermediate subgraph. For example, G1 in trace tree node 

by applying 
operation SI (written as G1 = Gb@x, 1 using the notation defined in 
FREA). The rest of the relations are listed at the bottom of the page. 

If the starting node I, in component G within trace tree node LVj 
holds all data files required and programs to be executed, then is 
a leaf node of the trace tree. Fig. 10 depicts the trace tree for program 
1 to be executed in Fig. 1, where link 11 2 corresponds to link 1, link 
s1,3 corresponds to link 2, . . . , etc. 

is obtained from the Gb within trace tree node 

DPRl can be computed as 

DPRi = p i  + qipz(p3 + 4 3 ~ s )  + ~ 1 ~ 2 ~ 6  

=pl  + q1p2 (p3  + 93p5 

=pl  + qlpZp3 + qlp2q3pS + qlq2P3P4 

+ q l q 2  (p3p4 + pS - p3p1p5 ) 

+ qlq2p.5 - qlqZp3p4pS. 

where p ,  is the probability of link I in Fig. 10, and qz = 1 - p , .  

computed to 0.99891. 
Let the probability of any operational link be 0.9, then DPRl is 

V. ALGORITHM COMPARISON 
Unlike the li-terminal reliability problem, where li -terminal 

nodes are fixed and given, the distributed program reliability problem 

does not have fixed I<-terminal nodes. The li -terminal nodes in the 
distributed program reliability analysis can dynamically be changed 
due to the effects of link or node failure, the ways of data files and 
program distribution, and the topology of the network. Therefore, 
we may say the network reliability problem is considered to be 
static-oriented while the distributed program reliability problem is 
dynamic-oriented. Naturally, the DPR problem is considered to be 
more complex and difficult than the computer network reliability 
problem. In fact, computing reliability of this type of problem has 
been known as a NP-hard problem. 

In this section, comparisons with existing algorithms [6], [13], [14], 
[20] are given. The algorithms presented in [6], [13], [14], and [20], 
in the worst case, can generate as many as ( n  - l)€-’ intermediate 
trees (or subgraphs), where n denotes the number of nodes and c is 
the maximum in-degree of a node in the graph. However, in practical 
conditions, it seldom occurs since once an MFST is found the tree 
expansion is stopped. The FREA algorithm employs the generalized 
factoring theorem with several reduction concepts to speed up the 
whole reliability evaluation. A rational comparison for these different 
algorithms can be made based on the counting approach, which 
counts the number of intermediate trees or subgraphs generated during 
the whole reliability evaluation. From such a comparison, one can 
approximate how much memory space and time units are required for 
their algorithms to run the distributed programs under the effects of 
different sizes of DCS, data file distributions, program distributions, 
and topologies. We also provide some actual execution results to 
support these analyses. The following subsections focus on these 
different comparisons. 

A. Effect of Different Sizes on Performance of Different Algorithms 
Fig. 11 is a well-known example of a computer communication 

network-the ARPA computer network in which there are 21 nodes 

REDUCIBLE-NODE (G) 
begin 

for all node x, E G do 

begin 
if degree ( 1 ~ ~ )  = 2 then 

/* assume that the two edges incident on node .rl are .rl and s, k */ 
G I  = G - x , ,  
for all files f E (FA,  rl FA\-) and all program p E (PA,  n P S )  do 

/* delete xt from G */ 

delete all nodes in G1 that contain file f or program p from G1 except node x t .  
G2 = the component that contains node x2  in G1 
if there are some FST’s in G2 then 

go to checkaextaode 
od 
G l = G - x , k  

the same as the above for-loop 

I* delete I, k from G */ 
. . . . . . . . . . 

. . . . . . . . . . 
/* the x2  is a reducible node, apply degree-2 reduction */ 

G = G -  X I  - x , ]  - I ,  k + , r : k  

p:,k = p z 3 j  * pz k 

Fz4, = FA, U FA,  (or F d k  = FAk U FA,)  
PA, = PA, U PA,  (or Pd4k = PAk U P A , )  

end 
checkaextmode: 

end (* REDUCIBLENODE *) 
od 
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Leeend: 
series reduction 

$ degree-2 reduction 
1 parallel reduction 
0 starting node 

Fig. 10. Trace tree of FREA for example of Fig. 1 .  

and 26 links. Suppose that there are 12 data files and 10 programs 
distributed in the ARPA computer network, and the file distribution, 
program distribution, and files needed for a program to be executed 
are given in Tables I, 11, and 111, respectively. The number of 
subgraphs generated for different programs under consideration are 
given in Table IV. 

It is clear that the FREA algorithm is thousands of times less than 
that of the existing algorithms in a large and complex distributed 
network such as ARPA. 

B. Effect of Topology on Performance of Different Algorithms 
In this study, we want to see the effect of topological configuration 

on the performance of different algorithms used. Thus, we run a 
different set of programs and file distributions over various topologies 
starting from a simple loop to a completely connected graph. These 
topologies are shown in Fig. 12, and the file distributions, program 
distributions, and data files needed for the program to be executed are 
given in Tables V, VI, and VII, respectively. These topologies, file 

TABLE 1 
FILE DISTRIBUTIONS 

Files Nodes 

F1 11 ,  14, 19 
F2 1 ,  14, 21 
F3 2, 5, 17 
F4 9, 15 
F5 6, 12, 20 
F6 1, 5, 18 
F7 3, 11, 15 
F8 9, 16 
F9 
F10 
F11 
F12 

10, 18 
4, 10, 13 

2, 7 
8 

distributions, and program distributions are the same as those used 
in [13]. Fig. 13 shows the number of subgraphs generated versus 
different topologies based on program 1 as executed at node 1. 

G 1 =  GO’ r S ,  1 

G1’ = the reduction graph of G1 
G I ”  = G1’ - S,  1 

G1”’ = the reduction graph of G1” 
Gi = Gz”‘ - 1 1 .rs , 
GI‘ = the reduction graph of G /  
Gl’’ = Gl”’ - 1 - .r-. , 
Gi”’ = the reduction graph of G!’ fori = 2.3.. . . . k 
Gk + 1 = Gk“‘ with a new starting node 
Gk‘ + 1 = the reduction graph ofGli + 1 

I* step 3.2 and 3.3 *I 
I* step 3.1 * I  

I* step 3.5 * I  
/* step 3.3 *I 
I* step 3.1 * I  
I* step 3.4 * I  
I* step 3.5 * I  

I* step 3.1 *I 

/* step 3.2 and 3.4 * I  

/* step 4 *I 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 1 ,  JANUARY 1994 95 

SRI UTAH NCAR AWS CASE 

Fig. 11. ARPA computer network. 

TABLE I1 
PROGRAM DISTRIBUTIONS 

Programs Nodes 

P1 1 
P2 14 
P3 2 
P4 15 
P5 9 
P6 21 
P7 19 
P8 6 
P9 8 
P10 4 

TABLE 111 
DATA FILES NEEDED FOR EXECUTING A PROGRAM r, 

~ _ _ _ _ _  

Programs Files Required 

P1 F1, F3, F5, F7 
P2 F2, F4, F6, F8 
P3 F9, F10, F11 
P4 F10, F11, F12 
P5 F6, F7 
P6 F1, F6, F7 
P7 F1, F8, F12 
P8 F3, F4, F5, F6 
P9 F1, F11 

P10 F4, F8, F12 

Other results also follow a similar curve and are reported in [21]. 
From these comparisons, it is clear that the FREA algorithm is the 
fastest (best) one, compared with the other algorithms, in any of 
these different topologies. 

C. Effect of Data File Distributions on Performance 
of Different Algorithms 

Eight different sets of data file distributions, generated randomly 
based on the topology in Fig. 14 for the comparison of three 
algorithms, are listed in Table VIII. The program distribution and data 
files needed for the program to be executed are referred to Tables VI 
and VII, respectively. Fig. 15 depicts that the number of subgraphs 
versus different data file distributions based on program 4 is executed 
at node 2. Other results also follow the similar curve and are reported 
in [21]. 

From the preceding comparisons, it is clear that the FREA algo- 
rithm has the best performance in these different data file distribu- 
tions. 

D. Effect of Program Distributions on Performance 
of Different Algorithms 

Fig. 16 shows the effect of programs running on different nodes 
based on the DCS in Fig. 14. The data file distributions and data files 

12 x4 d 14 

'2 14 12 14 

16 

r3 r5 13 IS 

Fig. 12. Various topologies. 

h g r a m  1 executed at node 1 

.X.MFST[61 9 FARE[131 -FRFA 

450 

Number of 300 
subgraphs 2.50 

150 
100  
so 

generaled 200 

Topology 

Fig. 13. Number of subgraphs generated versus different topologies. 

TABLE IV 
NUMBER OF SUBGRAPHS GENERATED AND DPR 
FOR EXAMPLE OF ARPA COMPUTER NETWORK 

p2 Pi Pl p5 
Program 

Algorithm " 
MFST [6] 55700 70842 172907 197541 17292 
FARE [13] 20007 13923 35515 38120 3300 

FREA 412 57 70 184 75 
DPR 0.9708450 0.9739356 0.9766832 0.9345704 0.9847566 

p; r8 P9 PI 0 
Program 

Algorithm " 
MFST [6] 39893 82759 44017 72005 257333 
FARE [I31 13075 25135 11141 22436 66752 

FREA 95 25 152 55 290 
DPR 0.9334858 0.9143801 0.9821738 0.9703900 0.9695497 

needed for each program to be executed are referred to in Tables V 
and VII, respectively. Other results also follow the similar curve and 
are reported in [21]. 

E. DPR Analysis of Running the Same Distributed 
Program from More than One Site 

In this section, we compare the effect of the same program when 
executed from more than one site (node). From the example in Fig. 
17, PI can be executed at node SI or .rc: P2 can be executed at node 
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TABLE V 
FILE DISTRIBUTIONS 

Files Nodes 

F1 1, 2, 3 
F2 2, 4 
F3 3, 5 
F4 3, 6 
F5 1, 4 
F6 5 

TABLE VI 
PROGRAM DISTRIBUTIONS 

Nodes Program 
1 P1 
2 P4 
3 P2, P3 
4 P2, P3 
5 P4 
6 P1 

x2 x4 

X I  x6 

x3 xs 
Fig. 14. Topology of DCS for 8-set of data file distributions. 

120 T A 

*n h generated 

20 

0 - T 
1 5 6 7 8  2 3 4  

File disaibutions 

Fig. 15. Number of subgraphs versus different data file distributions. 

TABLE VI1 
DATA FILES NEEDED FOR EXECUTING A PROGRAM p, 

Programs Files Required 

P1 F1, F2, F3 
P2 F2, F4, F6 
P3 F1, F3, F5 
P4 F1, F2, F4, F6 

.r~ or s p :  P3 can be executed at node s3 or X I :  PI can be executed 
at node .r2 or s5. Table IX shows the number of subgraphs generated 
and the DPR of the same program to be executed from more than 
one node of the example in Fig. 17. FARE [13] is not applicable for 
distributed programs running at more than one node. 

It should be noted that the current FARE algorithm [13] cannot 
compute DPR of the same program executed from more than one 
site. 

TABLE VI11 
DATA FILE DISTRIBUTIONS USED FOR COMPARISON 

Set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 
Files (nodes) (nodes) (nodes) (nodes) (nodes) (nodes) (nodes) (nodes) 

Fi 2 , 4 , 5  2 , 3 , 6  4 , 5 , 6  1 , 2 , 3  1 , 4 , 6  1 , 3 , 6  3 , 4 , 5  2 , 3 , 6  
F.r 4 , 5  3 , 5  2 , 3  4 , 5  2 , 5  3 , 6  1 , 2  3 , 5  
Fs 5 , 6  3 , 4  4 ,5  1 , 6  3 , 4  1 , 2  5 . 6  1 , 6  
F1 3 , 4  2 , 3  1 , 3  2 , 4  2 , 5  4 , s  5 , 6  2 , 6  
F5 4 , 6  4 , 5  4 , 5  2 , 4  3 ,5  4 ,6  1.6 3 , 6  
FG 6 3 6 3 5 5 5 4 

Number of 20 
svbnrmhs 

1 2 3 4 5 6 
me node w k r e  pmg- I S~MJ 11s exezution 

Fig. 16. Number of subgraphs versus different program distributions 

TABLE IX 
NUMBER OF SUBGRAPHS GENERATED A N D  DPR FOR EXAMPLE OF FIG. 17 

Pl pr r? PI Program 
Algorithm 

MFST [6] 42 98 58 103 

FREA 30 22 27 58 
- - - FARE [ 13) - 

DPR 0.9995076 0.9976697 0.9997831 0.9976616 

F. Actual Execution Time Comparison 
Generally, an algorithm with less subgraphs generated during the 

DPR analysis will have better execution efficiency since the execution 
time required for the algorithm to analyze the reliability is dominated 
by the expanding steps (the recursive part) to generate subgraphs. 
When fewer subgraphs are generated during the analysis, it implies 
that the size of the original graph has been reduced before subgraph 
generation. Certainly, we expect that i t  will take less time to analyze 
a smaller graph. The time spent by reliability preserving reduction 
routines incorporated in the FREA algorithm is less significant 
than the subgraph expansion (the recursive part) which could grow 
exponentially. To support this observation, we provide some actual 
execution time comparisons among these algorithms. The compared 
algorithms are all implemented using the C program under the same 
hardware and software environments. The following execution results 
are the analysis of the distributed programs 1 to 10 in the ARPA 
network (Fig. 11) under the 1BM RISC/6000 workstation. I t  is clear 
that the proposed FREA algorithm outperforms existing algorithms 
in execution of any of these distributed programs. 

VI. CONCLUSION 
The distributed computing system (DCS) has become very popular 

for its high fault tolerance, potential for parallel processing, and 
better reliability performance. One of the important issues in the 
design of the DCS is the reliability performance. Traditional reliability 
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M 4 4  FI  .FZ.F4,F6) 

Fig. 17. Example of the same program executed at more than one site. 

TABLE X 
EXFCUTION TIME (IN StCONDs) BY DIFFERENT ALGORITHMS FOR DISTRIBUTED 

PROGRAMS 1 TO 10 IN ARPA NETWORK UNDER IBM RlSCi6000 WORKSTATION 

Algorithm ‘I r 2  p4 PI A Program 

MFST [6] 58.22 275.33 1462.69 >1800 15.59 
FARE [ 13) 4.08 2.93 7.29 7.75 0.78 

FREA 1.44 0.27 0.28 0.68 0.24 
DPR 0.9708450 0.9739356 0.9766832 0.9345704 0.9847566 

P, P,, r, 0 Program 
Algorithm ‘I’ 

MFST [6] 03.31 474.28 104.00 246.17 >1800 
FARE [13] 2.27 5.1 1 2.39 4.56 13.4 

FREA 0.28 0.07 0.43 0.2 0.77 
DPR 0.9334858 0.9 143801 0.9821738 0.9703900 0.9695497 

indexes such as source-to-terminal [7 ] ,  survivability [8], multiterminal 
reliability [ 101, and Zi-terminal reliability [ll] are not directly 
applicable for the analysis of the distributed reliability property in 
DCS without appropriate modification. Thus, new approaches and 
algorithms for the reliability analysis of the DCS must be developed. 

In this correspondence, we propose an algorithm, called the Fast 
Reliability Evaluation Algorithm (FREA), based on the generalized 
factoring theorem by employing several reliability preserving reduc- 
tions to speed up the reliability evaluation process. The use of the 
generalized factoring theorem implies that all subgraphs generated 
will be completely disjoint and, therefore, no replicated trees will 
be generated. The use of various reliability preserving reduction 
techniques implies that the size of the graph will be reduced and, 
therefore, less subgraphs will be generated. Compared with existing 
algorithms on various network topologies, file distributions, and 
program distributions, the FREA algorithm is much more economical 
in both time and space. This claim can also be supported by the actual 
execution time analysis reported in Section V-F. The feasibility of the 
proposed algorithm for distributed program reliability and distributed 
system reliability analyses can easily be confirmed by analysis on the 
ARPA computer network. The current FREA algorithm assumes that 
all nodes are perfect in its current analysis. For an imperfect node 
case, a slightly modified FREA algorithm can be used to generate all 
minimum file spanning trees, and then SYREL or a similar reliability 
package is called for the reliability evaluation. The more detailed 
treatment is reported in [21]. Also, the effect from task migration 
on the distributed program reliability is an important research issue, 
which we will study in the future. 
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