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Tracking a Maneuvering Target Using
Neural Fuzzy Network

Fun-Bin Duh and Chin-Teng Lin, Senior Member, IEEE

Abstract—A fast target maneuver detecting and highly accu-
rate tracking technique using a neural fuzzy network based on
Kalman filter is proposed in this paper. In the automatic target
tracking system, there exists an important and difficult problem:
how to detect the target maneuvers and fast response to avoid miss-
tracking? The traditional maneuver detection algorithms, such as
variable dimension filter (VDF) and input estimation (IE) etc., are
computation intensive and difficult to implement in real time. To
solve this problem, neural network algorithms have been issued
recently. However, the normal neural networks such as backprop-
agation networks usually produce the extra problems of low con-
vergence speed and/or large network size. Furthermore, the way to
decide the network structure is heuristic. To overcome these defects
and to make use of neural learning ability, a developed standard
Kalman filter with a self-constructing neural fuzzy inference net-
work (KF-SONFIN) algorithm for target tracking is presented in
this paper. By generating possible target trajectories including ma-
neuver information to train the SONFIN, the trained SONFIN can
detect when the maneuver occurred, the magnitude of maneuver
values and when the maneuver disappeared. Without having to
change the structure of Kalman filter nor modeling the maneu-
vering target, this new algorithm, SONFIN, can always find itself
an economic network size with a fast learning process. Simulation
results show that the KF-SONFIN is superior to the traditional IE
and VDF methods in estimation accuracy.

Index Terms—Doppler shift, feature extraction, Kalman filter,
maneuvering, neural fuzzy network, system covariance, target
tracking.

I. INTRODUCTION

FOR the surveillance purpose, a radar system, such as plane
pulsed search radar, is installed to search for targets and

provide reliable detection within the given region. The radar
can measure the range of the target by calculating the delay
time between the transmission of a pulse signal and the recep-
tion of the echo of target, the bearing of the target by the angle
measurement device such as synchro and radial component of
the target speed by the measurement of the Doppler frequency
shift. However, the search radar isn’t provided with the ability
of target tracking and the operator must decide whether targets
detected on the current scan are the same as that detected on
a previous scan or scans. The track-while-scan (TWS) system
is constructed for automatic target tracking in a plane pulsed
search radar system. With the function of TWS, the search radar
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can track a target or targets while scanning. Such an elegant
combination of searching and tracking in the radar system is
referred to the TWS radar [1]–[3] as shown in Fig. 1. In the
TWS radar system, the radar signals’ pulse repetitive frequency
(PRF), video echo and bearing are processed by the radar signal
processor and plot extractor. The former is to reduce the noise
interference and degrades the effect of clutter, while the latter
extracts the plot position data which are then sent to the radar
data processor by bearing and range sequences at a discrete in-
terval of time. As the searching radar passes by each target of
interest, the radar data processor, which is with the TWS pro-
gram, gives a track and predicts the target’s trajectory [4], [5].

The main function of the radar data processor is to execute
the tracking program in which the tracking algorithms are
developed such as - filter [5], [6], - - filter [6], [7] and
Kalman filter [8]–[15], [23]–[40]. The performance of a tracking
algorithm is mainly governed by the performance of the state
estimator. The Kalman filter is a recursive algorithm developed
to solve the state estimation problems of a known system based
on certain assumptions about the system’s mathematic model.
These assumptions include the input forcing functions and
noise statistics. As we shall describe in Section II, the process
of state estimation in the Kalman filter comprises two parallel
iteration cycles that are estimation of the state and estimation of
the state covariance. The Kalman filter has high complexity and
large computation requirement, but it also has fast convergence
ability and an optimal mean-square-error (MSE) filter process.
Due to the faster computing speed of current computers, more
and more systems use the Kalman filter to track the target.
In practical systems there are many factors originating from
the tracked targets and the tracking system that lead to target
loss. The tracking performance degradation arising from the
tracking system itself can be improved by promoting the sensor’s
accuracy, increasing the signal processing ability to decrease
the measurement noise input and setting the parameters of the
tracking filter properly. However, in spite of the recent advances
in sensor technology, there are no devices that can detect the
manned maneuvers of a tracked target in the surveillance and
guidance systems. This sudden maneuver of a target implies to
a tracking system that it is accelerating unexpectedly and that
acceleration may be time-varying and following an unknown
profile. Even a short-term acceleration can cause a bias in
the measurement sequence and will result in divergence, if
no compensations are used in time. This is the key reason
that the simple Kalman filter always misses the tracked target
if the target produces maneuvers. To solve this problem, a
number of researchers have proposed techniques to modify the
conventional Kalman filter for maneuvering target tracking.
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Fig. 1. Block diagram of the TWS radar system.

For good maneuvering target tracking, there are three key
steps that must be done well to avoid miss-tracking. First, when
the target maneuver occurs it must be detected immediately.
Second, the magnitude of the maneuver value must be estimated
accurately at as short time intervals as possible. Third, according
to the magnitude of the maneuver value, the tracking filter state
estimate must be compensated correctly. This is the mechanism
to be developed for detecting, estimating and compensating the
unexpected maneuvers in an automatic target tracking system.
To get the best tracking performance the maneuver compensa-
tion must be done well and to get the best compensation the
initial maneuver detection and estimation must be done well.

Based on these steps, several approaches have been proposed.
Generally, the Kalman filter-based ones were used to track a ma-
neuvering target by modifying the Kalman filter parameters or
by using different structures to predict the maneuvers. These we
call adaptive tracking filters. In the past three decades, several
algorithms were proposed. Among these algorithms the most
familiar adaptive filters are introduced as follows. For detecting
and obtaining the maneuvers of a tracked target, Chan et al. [10]
utilized the generalized least square estimation approach to es-
timate the acceleration input and used the estimate to update
the Kalman filter directly. This algorithm is called input estima-
tion (IE). It can track a constant velocity target to convergence
very well, but under a noisy environment the target maneuver
cannot be estimated accurately enough. A different approach by
Bar-Shalom and Birmiwal [11] does not estimate the maneuver
value to compensate the filter, but introduces extra state compo-
nents in the state model when a maneuver is detected and reverts
back to the quiescent state when it disappears. This is called
variable dimension filter (VDF). It employs a sliding window
to find the fading memory average of innovation from the esti-
mator based on the quiescent state to detect the maneuver. How-
ever, because the fading memory average is unable to detect
target maneuver immediately, it leads to a time delay. More-
over, the augmented state results in computational loading and
the switches between the quiescent and nonquiescent states may
give rise to a discontinuity problem. All of these will degrade
the tracking performance, especially while the noise is changing
greatly.

Recently, neural networks applied to maneuvering targets
were proposed with information fusion capabilities and fuzzy
logic schemes with intelligent adaptation were also proposed
[12]–[19]. However, many complex factors must be considered
when detecting target maneuvers. It is not easy to train the
neural network well enough and the forward structure of
fuzzy logic is neither easy to find the exact parameters nor
is it easy to partition the parameters. Chin [12] employed the
backpropagation (BP) neural network in a forward loop to
aid the Kalman filter to reduce the estimation error. During
operation, the output of the trained neural network is used to
compensate the state estimate. This algorithm does not change

the structure or parameter of the standard Kalman filter. The
defect is that it will not be easy to compensate well enough
when large errors are generated by the Kalman filter tracker.

Jing [13] did not attempt to find out the quality of maneuver
to compensate the tracking filter, but rather he simply employed
a trained neural network to adjust the system variance of the
filter. He used a BP network to fuse all state information from
two filters. All the fused state information of both filters is used
as samples to train the BP network off-line. When in applica-
tion, the trained BP network’s output is used to adjust the filter
variance according to the input fused data.

To cope with the drawbacks encountered in neural networks
and fuzzy logic schemes whilst still keeping their advantages,
a new novel solution to the problem of tracking the maneu-
vering target algorithm with a neural fuzzy network is proposed
in this work. It is a self-constructing neural fuzzy inference net-
work called SONFIN that we proposed previously in [20]. The
SONFIN is a feedforward multilayer network that integrates
the basic elements and functions of a traditional fuzzy system
into a connectionist structure. In this connectionist structure,
the input nodes represent the desired signal process and, in the
hidden layers, there are nodes functioning as membership func-
tions and fuzzy logic rules. The proposed algorithm can find
the proper fuzzy logic rules dynamically on the fly. Also the
SONFIN can always find itself an economical network size in
high learning speed. Therefore, it can avoid the need of empir-
ically determining the number of hidden layers and nodes in
ordinary neural networks. Since the structure of the SONFIN is
constructed from fuzzy IF–THEN rules, expert knowledge can be
put into the network as a priori knowledge, which can usually
increase its learning speed and estimation accuracy [21], [22].
These properties make SONFIN an attractive candidate for con-
structing an inverse mapping.

The SONFIN here is used as a feedforward mechanism in
a closed loop with a Kalman filter and it is applied to approxi-
mate the function relationship between the target maneuvers and
some features extracted from radar outputs and the innovation
of the filter. With well trained SONFIN, the onset time and the
quality of the maneuver can be estimated accurately. As well as
the fact that the acceleration inputs into the Kalman filter can
compensate the maneuvering bias directly, we can also modify
the system variance adaptively according to the estimated ma-
neuver quality so that both the Kalman filter structure and its
parameter are compensated concurrently. The simulation results
show that this algorithm produces a great accuracy with no time
delay. The proposed scheme is called KF-SONFIN algorithm.

The rest of this paper is organized as follows. Section II gives
the problem formulation. In Section III, the basic structure and
function of the SONFIN is briefly introduced and the features
input to SONFIN are proposed. The system covariance of
Kalman filter is given also. Section IV describes the perfor-
mance of KF-SONFIN by comparing it with the IE and VDF
algorithms. Conclusions are summarized in Section V.

II. PROBLEM FORMULATION

In the plane search radar, the measurement sequences are in
polar coordinates for the range and the bearing. As the target
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dynamics are best described in Cartesian coordinates, coordi-
nates transformation is needed. This can be found in [1]. Here
we assume the measurement sequences described in Cartesian
coordinates are available.

Because of the measured data and computational loading,
most of tracking systems using position and velocity two-state
models are considered, but these models cannot reflect target
maneuver actions practically. Models with target acceleration
as a state variable can track the maneuvering target well as
maneuver occurs, but in the absence of target maneuver such
models tend to be inaccurate and waste the computational time.
For example, if the target does not have acceleration, using a
third model can only increase the estimation errors for both posi-
tion and velocity. And if employing the jerk model [23] in which
the third derivative of the target position exists, more errors will
be generated. To improve the tracking performance of the ma-
neuvering target, the acceleration inputs must be considered in
the system model because the filter bias caused by the target ma-
neuver implies that the target is just deviating from the assumed
constant velocity, straight line motion. Unlike Bar-Shalom et al.
[11] using two state models and switching them in the system,
we model the maneuver as the driving input in this paper. This
model is similar to that used by [10] and is attractive as it has a
simple structure. It can compensate the maneuver bias directly
and it does not have to assume any a priori knowledge of the
maneuver target.

The problem of interest is described by the linear discrete
time-invariant measurement equation as

(1)

with

(2)

where is the time index, is
the state vector representing the relative positions and velocities
of the target in the two-dimension plane, is the radar mea-
surement vector, is the input vector
consisting of the acceleration components in the and direc-
tions and and are the process noise and measurement
noise; both sequences are assumed to be uncorrelated with white
Gaussian noise sequence with zero means and the variance ma-
trices and , respectively.

In (1) and (2), is the model state transition matrix, is the
coupling matrix for maneuver inputs, is the process noise
input matrix, is the model output matrix, is the model output
matrix. The related matrices are given by

where is the sampling time interval.

The variance matrices of system noise and measurement
noise are given by

where is the variance of the noise process and

where and are predefined variances in the and
directions, respectively. For adapting the maneuver, is
changed to correspond to the magnitude of the maneuver. We
will explain this in Section III.

According to the maneuver target model above, the
Kalman filter receives the measurement sequence ,

, to get the minimum mean square error
(MMSE) estimates and fast convergence by recursive perfor-
mance. The recursive steps are derived as follows.

The one-step predicted state is formed by taking the expected
value of state (1) conditioned on sequence and results in

(3)

The state prediction error is

(4)

and the state prediction covariance becomes

(5)

The predicted measurement is

(6)

The measurement prediction error (or measurement residual) is

(7)

and the measurement prediction covariance (or innovation co-
variance) is

(8)

The filter gain is defined as
and can be obtained by

(9)

The updated state estimate is

(10)

Finally, the updated covariance is

(11)
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It is obvious that the modified Kalman filter equations above
are similar to the simple Kalman filter except for the predicted
state. The addition of term in the predicted state is used
to compensate the acceleration input. In the case that the ac-
celeration input is unknown, especially the unexpected
man-made maneuver motion, the filter will not produce good
tracking performance (or even miss-tracking) unless the accel-
eration input is estimated immediately and correctly.

The key problem of the maneuvering target tracking in the
modified Kalman filter is to estimate the acceleration input.
The traditional algorithms to estimate the acceleration input,
such as input estimation, utilize the measurement residual to
find its least mean square over a finite sliding window for es-
timating onset time and magnitude of the target maneuver and
then develop a decision logic to determine whether to update
the state and covariance of the simple Kalman filter or not. The
conventional methods produce time delay and require a signif-
icant amount of computation, because they cannot detect the
target maneuver immediately. To improve these issues, a new
approach is needed.

From a different point of view, the input acceleration esti-
mation problem can be considered as a mapping of the feature
vectors extracted from plot output to the estimated acceleration
value for the Kalman filter

(12)

where is the angle between the target position and radar site,
is the trajectory heading change, is the change of

range rate and and are the measurement residuals
in the and directions, respectively. We will explain these
feature vectors in the following section.

From the intuitive justification, a target accelerating in both
cross track and along track directions naturally generates the
heading change of the target; the larger heading change is
reflected by larger acceleration in cross track and/or along
track directions and vice versa. It is a fact that a standard
Kalman filter can track a nonmaneuvering target very well with
a low measurement residual sequence, i.e., the Kalman filter
can predict the next position of the target correctly. However,
when a maneuver occurs, the measurement residual in the
Kalman filter will increase rapidly and this is the reason that
the Kalman filter cannot track the maneuvering target well.
In other words, we can get the maneuvering information of
the target from the observation of the measurement residual.
The Doppler effect causes a shift in the frequency. When a
radio wave is reflected from an object moving toward the
radiating source, the wave is compressed. On the contrary, the
wave is spread out, when the object is moving away from
the radiating source. In the case of a Doppler radar, when the
transmitted wave illuminates a moving target that has a radial
velocity component relative to the radar, the signal of Doppler
frequency shift is reflected from the target, which gives the
information about the target’s velocity. The greater the target’s
radial velocity, the greater the effect will be. From sensing
the Doppler frequency shift and calculating its change, the

Doppler radar can acquire the change of the target’s radial
velocity. This change implies the acceleration of the target.

In each recursive filtering step, the available feature vectors
are fed into the trained network and the maneuver estimate can
be obtained from the network output directly without any time
delay. Once the maneuver is gained, the system noise covariance
is adjusted according to the maneuver in that recursive step.

In our application, we use a neural fuzzy network (SONFIN)
to approximate the mapping function for acceleration estima-
tion of a tracked target. As shown in (12), there are five input
elements and one output vector in the SONFIN. Prior to this
network working, it must be well-trained with the training data
pair

The objective of learning is to minimize the error function

(13)

where and are the desired network outputs and
and are the actual outputs in the and directions,

respectively.

III. ESTIMATION OF MANEUVER USING A NEURAL FUZZY

NETWORK

In this section, we shall introduce a neural fuzzy network
called SONFIN and then propose a high-accuracy maneuver es-
timation scheme based on this network integrated into a Kalman
filter. Besides, adaptive system covariance of Kalman filter is
derived. The proposed estimation mechanism is, thus, called
KF-SONFIN.

A. KF-SONFIN for Maneuver Estimation

As we know, there are no exact relations between the radar
output signal and the target maneuver (including onset time and
magnitude), but there exists a complex nonlinear mapping be-
tween them. The plane pulsed Doppler radar can provide not
only the position measurement sequence of the target in two
dimensions but also its range rate sequence. To map the input
vector to the target acceleration vector accurately, it is impor-
tant to find the effective input elements, which are acquired from
radar output and tracking filters. Fig. 2 shows the flow chart of
the maneuver estimation using the proposed KF-SONFIN based
on a feature vector composed of five elements that are acquired
from plane pulsed Doppler radar and Kalman filter.

The purpose of feature extraction is to extract the feature data
from different existing data available and accessible to generate
the useful inputs for the estimation network. As we know, except
the radar sensor, there are other sensors integrated in a modern
surveillance system, such as infrared, laser, TV, etc. We can ac-
quire more data with different characteristics from these sen-
sors to generate other features that are helpful for the neural
fuzzy network to find the man-made target maneuver. In our
system, we use three feature extraction processes to produce
five features for our estimation system as shown in Fig. 2. For
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Fig. 2. Flowchart of KF-SONFIN estimation.

the purpose of separating the effects in the and directions,
we calculate the Doppler-shift-difference feature and measure-
ment-residual feature in the and directions, respectively, in
addition to the heading-change feature.

In Fig. 2, the neural fuzzy network (SONFIN) implements
data fusion from five input feature elements and estimates the
unexpected maneuver motion of the target including the ma-
neuver onset time and magnitude. Upon the target maneuver oc-
curring, the SONFIN will produce the estimated accelerations as
a response. The estimated acceleration will not only be fed into
the Kalman filter to compensate the error caused by the target
maneuver, but also be used to adjust the system covariance of
Kalman filter and forms a closed loop mechanism for the ma-
neuver target tracking system.

In the following Sections III-B– III-D, we shall introduce the
feature extraction processes, SONFIN and the adaptive system
covariance of Kalman filter in details, which constitute the pro-
posed KF-SONFIN.

B. Feature Extraction

We construct three feature extraction processes to extract
useful feature data for our maneuver estimation network,
SONFIN. They are measurement residual feature extraction,
heading change feature extraction and Doppler shift feature
extraction [15]. We now explain the relations between these
features and the maneuver of the target as follows.

1) Measurement Residual Feature Extrac-
tion: Measurement residual (innovation) is one of the most
useful features to detect target maneuver. Most researchers
in maneuvering target tracking used this concept to detect
maneuvers, [11], [12], [24]–[29].

For the Kalman filter, the innovation sequence is represented
as , where

, . When a target is in nonmaneuver
state, the mean of the innovation is zero. However, when
the target begins to maneuver the mean of the innovation is no
longer zero. This is a fact that measurement residual can be uti-
lized to detect maneuvers [29].

In many previous researches, the concept of measurement
residual was utilized to find the maneuver, based on the fact that
a maneuver manifests itself as a large innovation. Chan’s IE al-
gorithm [10] used the innovations as a linear measurement of the
unknown input that models the target maneuvers. Bar-Shalom’s

VDF algorithm [11] employed a fading memory average based
on the normalized innovation squared from the estimator in the
quiescent model and according to this fading memory average
the effective window length is obtained over which the pres-
ence of a maneuver is tested. A maneuver is declared when a
fading memory average of the normalized innovations exceeds
a threshold and the onset of the maneuver is then taken as the
beginning of the sliding effective window. R. K. Mehra [24]
used the so-called covariance-match techniques to implement
the adaptive filter. The basic idea of the covariance of innova-
tion sequence must be consistent with their theoretical covari-
ance. If the actual covariance of is much larger than
( ) obtained from the Kalman filter, then
the adaptive actions are taken.

Chang and Tabaczynski [27] regarded the maneuver detec-
tion problem as the problem of discriminating two hypotheses,
the maneuvering target and nonmaneuvering target hypotheses,
based upon filter residuals. A generalized likelihood ratio test
is defined to compare with a threshold value and therefore the
maneuver is declared when the generalized likelihood ratio ex-
ceeds this threshold.

From the above practical research examples, it is evident that
the measurement residual has a strong relationship to the target
maneuver. In this paper, the measurement residual feature is ex-
tracted from normalizing the measurement residual with respect
to its covariance in the and directions, respectively

(14)

(15)

where and are the measurement residuals in
the and directions, respectively and and

are the diagonal elements of the covariance matrix.
2) Heading Change Feature Extraction: We use the change

in heading to estimate the target maneuver, which depends on
the fact that the first derivative of the target heading is angular
velocity (turn-rate), which represents a turning motion of target.
When a target performs a maneuver, it can be modeled as cross-
track and along-track accelerations, respectively.
The target model, as described in [1], [30], uses the track-ori-
ented coordinates to explain the relation of accelerations with
the Cartesian coordinates

(16)

(17)

(18)

(19)

(20)

(21)

where and are the Cartesian components of acceler-
ation, is the target velocity, is the heading of the target
path and is the turn-rate of the target.
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If the target is in circular motion and
we get

(22)

(23)

In this case, it is obvious that the magnitude of the target accel-
eration , is the function of the target
turn-rate.

J. P. Helferty [31] extended the work of Singer [32] by
modeling the maneuver process as a linear system with the
constant forward velocity assumption. He used the turn-rate
distribution for acceleration modeling to improve maneuvering
target tracking. Although this model gave an increase in the
number of states for the maneuver model and hence increased
the computational load of the Kalman filter, it has illustrated that
the turn-rate cannot be neglected when processing maneuver
behavior of a target. Other researches, such as [33]–[35], used
the turn-rate to deal with the target maneuver tracking problem.

There are many methods to estimate the heading of the target
path from noisy position measurements, which can be found in
[36], [37]. For simplicity and taking use of the robustness of
neural fuzzy networks, we take as the
heading change of the target path and use the following equation
to estimate the heading of the target:

(24)

where , and is
the number of measurements used to estimate the heading of a
target. In this paper, we set .

3) Doppler Shift Feature Extraction: The radial velocity
(range rate) measurement of the pulsed Doppler radar has
been applied in target tracking for a long time, [5], [38]–[40].
For example, A. Farina and S. Pardini [5] developed a TWS
algorithm with and without radial velocity measurement. From
the simulations, it has proved that the radial velocity makes
an improvement of track mean life for the strong acceleration
target.

The feature of Doppler shift is extracted from the Doppler
radar, which provides a frequency shift to measure the radial
velocity of a moving target. The Doppler shift frequency is given
by [40]

(25)

where is the radial velocity of the target relative to radar,
is the wavelength of the radar transmitter, is the mag-

nitude of the target velocity and is the angle between the
target velocity and line of sight to the sensor.

Simplifying the target trajectory model to allow movement in
a straight line which includes acceleration,

(26)

then the change of the Doppler shift is given by

(27)

That is, the change of the Doppler shift is proportional to accel-
eration of the target.

In this paper, we use the change in Doppler shift normalized
by its variance as a feature, which is related to the variance of
the range rate, i.e.,

(28)

where , and
is the angle between the target position and radar site.

C. SONFIN

The neural fuzzy network used in our maneuver estimation
system is called self-constructing neural fuzzy inference
network (SONFIN) that we proposed previously in [20]. The
SONFIN is a general connectionist model of a fuzzy inference
system, which can find its optimal structure and parameters
automatically. There are no rules initially in the SONFIN. They
are created and adapted as on-line learning proceeds via simul-
taneous structure and parameter learning, so the SONFIN can
be used for normal operation at any time as learning proceeds
without any assignment of fuzzy rules in advance. A novel
network construction method for solving the dilemma between
the number of rules and the number of consequent terms is
developed. The number of generated rules and membership
functions is small even for modeling a sophisticated system.
The SONFIN always produces an economical network size and
the learning speed and modeling ability are superior to ordinary
neural networks.

A key feature of the SONFIN structure is that a high-dimen-
sional fuzzy system is implemented with a small number of
rules and fuzzy terms. This is achieved first by partitioning the
input and output spaces into clusters efficiently through learning
proper fuzzy terms for each input/output variable and then by
constructing fuzzy rules optimally through finding proper map-
ping between input and output clusters in the SONFIN. In ad-
dition, due to the physical meaning of the fuzzy IF–THEN rule,
each input node in the SONFIN is only connected to its related
rule nodes through its term nodes instead of being connected to
all the rule nodes in Layer 3 of the SONFIN. This results in a
small number of weights to be tuned in the SONFIN.

The structure of the SONFIN is shown in Fig. 3. This six-
layered network realizes a fuzzy model of the following form.

Rule : IF is and … and is THEN is
, where is the fuzzy set of the th linguistic term of

input variable , is the center of a symmetric membership
function on and is the consequent parameter. It is noted that
unlike the traditional TSK model where all the input variables
are used in the output linear equation, only the significant ones
are used in the SONFIN; i.e., some ’s in the above fuzzy rules
are zero.

The SONFIN consists of nodes, each of which has some fi-
nite fan-in of connections represented by weight values from
other nodes and fan-out of connections to other nodes. Asso-
ciated with the fan-in of a node is an integration function
which serves to combine information, activation, or evidence
from other nodes. This function provides the net input for this
node

(29)
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Fig. 3. Structure of the SONFIN.

where are inputs to this node and
are the associated link weights. The su-

perscript ( ) in the above equation indicates the layer number.
This notation will also be used in the following equations. A
second action of each node is to output an activation value as
a function of its

(30)

where denotes the output of the th node in the layer
and denotes the activation function. We shall describe the
functions of the nodes in each of the six layers of the SONFIN
as follows.

Layer 1: No computation is done in this layer. Each node in
this layer, which corresponds to one input variable, only trans-
mits input values to the next layer directly. That is

and (31)

From the above equation, the link weight in layer one ( ) is
unity.

Layer 2: Each node in this layer corresponds to one lin-
guistic label (small, large, etc.) of one of the input variables in
Layer 1. In other words, the membership value, which speci-
fies the degree to which an input value belongs to a fuzzy set is
calculated in Layer 2. With the choice of Gaussian membership
function, the operation performed in this layer is

and

(32)

where and are, respectively, the center (or mean) and
the width (or variance) of the Gaussian membership function of
the th partition for the th input variable . Hence, the link
weight in this layer can be interpreted as .

Layer 3: A node in this layer represents one fuzzy logic rule
and performs precondition matching of a rule. Here we use the
following AND operation for each Layer-3 node

and (33)

where is the number of Layer-2 nodes participating in the
IF part of the rule, ,

. The weights of the links in Layer
3 ( ) have the value of one. The output of a Layer-3 node
represents the firing strength of the corresponding fuzzy rule.

Layer 4: The number of nodes in this layer is equal to that in
Layer 3 and the firing strength calculated in Layer 3 is normal-
ized in this layer by

and (34)

where is the number of rule nodes in Layer 3. Like Layer 3,
the link weight ( ) in this layer is unity too.

Layer 5: This layer is called the consequent layer. Two types
of nodes are used in this layer and they are denoted as blank
and shaded circles in Fig. 3, respectively. The node denoted by
a blank circle (blank node) is the essential node representing
a fuzzy set (described by a Gaussian membership function) of
the output variable. Only the center of each Gaussian member-
ship function is delivered to the next layer for the local mean
of maximum LMOM defuzzification operation and the width is
used for output clustering only. Different nodes in Layer 4 may
be connected to a same blank node in Layer 5, meaning that the
same consequent fuzzy set is specified for different rules. The
function of the blank node is

and (35)

where is the number of nodes in Layer 4 and is
the center of a Gaussian membership function. As to the shaded
node, it is generated only when necessary. Each node in Layer
4 has its own corresponding shaded node in Layer 5. One of
the inputs to a shaded node is the output delivered from Layer
4 and the other possible inputs (terms) are the input variables
from Layer 1. The shaded node function is

and (36)

where the summation is over the significant terms connected to
the shaded node only and is the corresponding parameter.
Combining these two types of nodes in Layer 5, we obtain the
whole function performed by this layer as

(37)

Layer 6: Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by
Layer 5 and acts as a defuzzifier with

and (38)

where is the number of nodes in Layer 5.
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Two types of learning, structure and parameter learning,
are used concurrently for constructing the SONFIN. The
structure learning includes both the precondition and conse-
quent structure identification of a fuzzy IF-THEN rule. Here
the precondition structure identification corresponds to the
input-space partitioning and can be formulated as a combina-
tional optimization problem with the following two objectives:
to minimize the number of rules generated and to minimize
the number of fuzzy sets on the universe of discourse of each
input variable. As to the consequent structure identification,
the main task is to decide when to generate a new membership
function for an output variable and which significant terms
(input variables) should be added to the consequent part (a
linear equation) when necessary. For the parameter learning,
based upon supervised learning algorithms, the parameters of
the linear equations in the consequent parts are adjusted by
either least mean squares (LMS) or recursive least squares
(RLS) algorithms and the parameters in the precondition part
are adjusted by the backpropagation algorithm to minimize a
given cost function. The SONFIN can be used for normal oper-
ation at any time during the learning process without repeated
training on the input/output patterns when on-line operation
is required. There are no rules (i.e., no nodes in the network
except the input/output nodes) in the SONFIN initially. They
are created dynamically as learning proceeds upon receiving
on-line incoming training data by performing the following
learning processes simultaneously: A) input/output space
partition; B) construction of fuzzy rules; C) optimal consequent
structure identification; D) parameter identification. In the
above, processes A, B, and C belong to the structure learning
phase and process D belongs to the parameter learning phase.

In the structure identification of the precondition part of
the SONFIN, the input space is partitioned in a flexible way
according to an aligned clustering-based algorithm. As to the
structure identification of the consequent part, only a singleton
value selected by a clustering method is assigned to each rule
initially. Afterwards, some additional significant terms (input
variables) selected via projected-based correlation measure
for each rule will be added to the consequent part (forming a
linear equation of input variables). The combined precondition
and consequent structure identification scheme can set up an
economical and dynamically growing network automatically.
This means the SONFIN can grow its rule nodes, term nodes
and link weights upon necessary on the fly and, thus, own
the so-called self-construction capability. The details of the
learning processes for SONFIN can be found in Section IV.

D. Adaptive System Covariance of Kalman Filter

Consider the situation when a mismatch exists between
the true acceleration and the estimated acceleration used in
the tracking filter and this error causes the inferior tracking
accuracy. In order to further compensate the tracking filter and
reduce the tracking error arising from the maneuver estimation
error we would like to add an additional error covariance term
to help compensate for this uncertainty [41].

Referring back to the Kalman filter described in Section II,
the state equation with a deterministic input and random
disturbance can be given by

(39)

then the predicted covariance matrix is

(40)

In practice, we cannot find the deterministic input exactly;
there exists a difference between the true input and the estimated
deterministic input, . The state prediction and up-
date state estimate of the Kalman filter are

(41)

(42)

The update covariance matrix is

(43)

where

(44)

The state prediction variance is

(45)
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If it is assumed that the estimate of the target states can be so
close to the target states, , then

(46)

where and
. For , we

have

(47)

Assuming that the KF-SONFIN can estimate the acceleration
input no less than half of the true value in each axis and
here we take , then

(48)

where ( ) is the interval from the time the target starts to ma-
neuver to the time it stops maneuvering [42]. Here, we call
the length of acceleration.

IV. SIMULATION RESULTS

The estimation improvement obtained by the KF-SONFIN
presented in this paper is illustrated by the following examples.
In the experiments reported in this section, the following as-
sumptions and parameter values are used. The sampling time
interval is assumed to be 10 s, which is the time of the radar an-
tenna scanning a revolution. The radar measurement sequence
is assumed to have been transformed from polar coordinates
to Cartesian coordinates before the TWS tracking process. The
variances directions, and , are set to be 10 m and the
covariance set to be 500 m . For extracting the Doppler shift
in the KF-SONFIN, the wavelength of the radar transmitter is
known as 0.008 57 m (corresponding to -band radar) and the
standard variance of Doppler shift , is assumed to be 30 m/s.

The SONFIN is trained off-line with the three features men-
tioned in Section III. The training data are generated as follows.
We divide the range of the heading of the target path, 0 to 90 ,
equally into 90 intervals, with each interval being 1.0 . In these
90 trajectories, each trajectory has 30 position measurements,
with random accelerations being generated from 0 to 20 m/ .
We select the points with the maximum or minimum acceler-
ation as the training data in each trajectory. The corresponding
input feature vectors (with five-elements) and the desired output
vectors (with two-elements) are acquired. These two vectors
construct a training pattern pair in the form of (feature inputs,
desired outputs). Hence, as a total, we get 180 training patterns.
With the same procedure, we can obtain 172 (feature inputs, de-
sired outputs) pairs as testing patterns by dividing the range of
heading values, 1.5 to 89.5 , into 1 intervals.

The fuzzy rules resulting from the trained SONFIN are listed
as follows.

Fig. 4. Input training patterns and the final assignment of rules for x and x .

Fig. 5. Input training patterns and the final assignment of rules for x and x .

Fig. 6. Target’s trajectory versus the tracking results of KF-SONFIN and
standard Kalman filter with the mean values over 50 runs in Experiment 1. (a)
x direction. (b) y direction.
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(a)

(b)

Fig. 7. Comparisons of RMS position tracking error in Experiment 1. (a) x
direction. (b) y direction.

Rule 1: IF is and is
and is and

is
and is

THEN

.
Rule 2: IF is and is

and is and
is

and is
THEN

.
Rule 3: IF is and is

and is and
is

and is

THEN

.
Rule 4: IF is and is

and is and
is

and is
THEN

.
Rule 5: IF is and is

and is and
is

and is
THEN

.

In the above rules, represents a Gaussian member-
ship function with center and width , is the heading
change, is the change of the Doppler shift in direction,
is the change of the Doppler shift in direction, is the inno-
vation in direction, is the innovation in direction, is
the estimated acceleration in direction and is the estimated
acceleration in direction.

The input training patterns and the final assignment of rules
for and and and are shown in Figs. 4 and 5, re-
spectively. In Fig. 4, the lower ellipse is corresponding to Rules
2 and 5 and the upper ellipse is corresponding to Rules 1, 3,
and 4. The boundary of each ellipse represents the product of
the membership degrees of and with value ( ). The
major and minor axes of the ellipses represent half the width
of Gaussian membership function corresponding to and .
In Fig. 5, the lower left ellipse is corresponding to Rules 2 and
5, the right ellipse is corresponding to Rule 3 and the upper el-
lipse is corresponding to Rules 1 and 4. The boundary of each
ellipse represents the product of the membership degrees of
and with value . The major and minor axes of the el-
lipses represent half the width of Gaussian membership function
corresponding to and .

The initial estimates of the states in the and directions
are obtained from [11] for our proposed method as well as the
compared algorithms

(49)

(50)

(51)

(52)
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(a)

(b)

Fig. 8. Comparisons of RMS velocity tracking error in Experiment 1. (a) x
direction. (b) y direction.

where is the Gaussian noise. The initial covariance matrix
is set as

(53)

Experiment 1: As an evaluation of the new tracking scheme
and for the purpose of comparison with two existing algorithms,
VDF and IE, we modify the target scenario considered in [10],
[11] for simulation testing here. The initial position of the target
scenario is given by m m with an initial speed
of m/s m/s and on a constant course of
30 and speed until s, then it starts to accelerate with
values m/s , m/s . This maneuver com-
pletes at s and from then on it starts the other maneuver
at s with accelerations of m/s m/s .

(a)

(b)

Fig. 9. Mean value of acceleration estimated by SONFIN versus true
acceleration value in Experiment 1. (a) x direction. (b) y direction.

This maneuver stops at s. For the purpose of com-
parison on the convergence performance after the above two
maneuvers, the target scenario lasts for 1000 s (100 samples).
The trajectory of the target with the corresponding accelera-
tions, which make the trajectory with a sharp left turn in five
scans and then a sharp right turn in 4 scans, is shown in Fig. 6.

With the same Gaussian noise input, a Monte Carlo sim-
ulation of 50 runs is performed for VDF, IE, and trained
KF-SONFIN algorithms. The RMS of the estimation values
is computed. Fig. 7 is the plot of the RMS errors of and
positions versus time for the three algorithms and Fig. 8 is the
plot of RMS errors of and versus time. Fig. 9 is the plot of
the mean value of acceleration estimated by SONFIN over 50
runs. Fig. 10 shows that the system covariance of KF-SONFIN
is adaptive to the estimated acceleration value. All of these
results are the mean values over 50 runs.

Experiment 2: In this experiment, the initial position of the
target is km km with respect to the radar site
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(a)

(b)

Fig. 10. Adapted system covariance of KF-SONFIN by the estimated
acceleration in Experiment 1. (a) x direction. (b) y direction.

and with an initial speed of m/s m/s that is
radially moving away from the radar site with a heading angle
of 45 . The sampling time s is chosen. The maneuver
starts at time 470 s with m/s , m/s
and lasts for three scans, which is followed by a second ma-
neuver occurring at 500 s with accelerations of m/s ,

m/s for two scans. The 5 scan maneuvers make a
U-turn trajectory as shown in Fig. 11. The measurement noise
and the tracking parameters are set as those in Experiment 1
for all KF-SONFIN, VDF and IE algorithms. The tracking re-
sults are shown in Figs. 12 and 13 for comparisons in RMS
errors of position and velocity. Fig. 14 is the plot of the mean
value of acceleration estimated by SONFIN over 50 runs versus
time. Fig. 15 shows that the system covariance of KF-SONFIN
is adaptive to the estimated acceleration value. All of these re-
sults are the mean values over 50 runs.

Experiment 3: In this experiment, the initial position of the
target is m m apart from the radar site with an
initial speed of m/s m/s . The target is then
assumed to undergo a convention coordinate-turn maneuvers

Fig. 11. Target’s trajectory versus the tracking results of KF-SONFIN and
standard Kalman filter with the mean values over 50 runs in Experiment 2.

(a)

(b)

Fig. 12. Comparisons of RMS position tracking error in Experiment 2. (a) x
direction. (b) y direction.
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(a)

(b)

Fig. 13. Comparisons of RMS velocity tracking error in Experiment 2. (a) x
direction. (b) y direction.

during the 200th s and 400th s (i.e., the 20th scan to the 40th
scan with sampling time s) by

where and are the amplitudes of the acceleration in
and directions and are set to 0.2 m/s and 0.16 m/s , respec-
tively. The turning rate is set to 0.2 rad/s, the phase shift in

direction is set to 90 and in direction is set to 0 .
This maneuver makes the trajectory a more sharp left turn in
four scans. After the above maneuver, the target path is with no
maneuver during the 410th s and 500th s and then undergoes a
second maneuver with m/s , m/s from the
510th s to 550th s. This maneuver makes the trajectory a second
sharp turn. The trajectory of the target and its corresponding ac-
celerations with time-varying functions during the maneuvering
period are shown in Figs. 16 and 19, respectively. The measure-

(a)

(b)

Fig. 14. Mean value of acceleration estimated by SONFIN versus true
acceleration value in Experiment 2. (a) x direction. (b) y direction.

ment noise and the tracking parameters are set as those in Exper-
iment 1 for KF-SONFIN, VDF and IE algorithms. The tracking
results are shown in Figs. 17 and 18 for comparisons. Fig. 19 is
the plot of the mean value of acceleration estimated by SONFIN
over 50 runs versus time. Fig. 20 shows that the system covari-
ance of KF-SONFIN is adaptive to the estimated acceleration
value. All of these results are the mean values over 50 runs.

V. DISCUSSIONS

From the results of Figs. 6, 11, and 16, it is clear that the stan-
dard Kalman filter cannot track the target while maneuver has
occurred; however, the KF-SONFIN, due to its precise estima-
tion of acceleration values and compensation, can always keep
tracking the target. The experimental results show the validity of
prediction of acceleration values, which are needed before the
system is applied to particular moving targets.

Figs. 7–8, 12–13 and 17–18 show the performance compar-
isons of IE, VDF, and the proposed KF-SONFIN methods based
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(a)

(b)

Fig. 15. Adapted system covariance of KF-SONFIN by the estimated
acceleration in Experiment 2. (a) x direction. (b) y direction.

on the indexes of position and velocity RMS errors in Exper-
iments 1, 2, and 3, respectively. The results indicate that the
KF-SONFIN has the best performance. We shall analyze these
results according to three kernel factors in target tracking.

1) real-time detection of maneuver occurrence;
2) accurate estimation of maneuver values;
3) efficient compensation to the tracking filter for reducing

the maneuver’s effects.

These three factors form the heart of the target-tracking mecha-
nism and have direct impact on tracking errors.

First, let us consider the detection of maneuver. The IE
and VDF methods consider innovation variations and use the
technology of sliding window with significance test to detect
the abrupt occurrence of maneuver for a constantly accelerating
target moving straightly. This approach cannot real-time detect
the onset time of maneuver efficiently and thus will prolong the
response to the maneuver. This phenomena can be observed from
Fig. 7 in Experiment 1, which indicates that the target changes

Fig. 16. Target’s trajectory versus the tracking results of KF-SONFIN and
standard Kalman filter with the mean values over 50 runs in Experiment 3.

(a)

(b)

Fig. 17. Comparisons of RMS position tracking error in Experiment 3. (a) x
direction. (b) y direction.
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(a)

(b)

Fig. 18. Comparisons of RMS velocity tracking error in Experiment 3. (a) x
direction. (b) y direction.

its acceleration and heading direction two times at time 400 s
and 610 s, respectively. The IE and VDF methods detect each
maneuver at about the 5th sample after its occurrence and thus
produce large tracking errors. The situation is even worse for the
IE method. On the contrary, the proposed KF-SONFIN method
detects the occurrence of maneuver in real time and produces
much less position and velocity tracking errors. Fig. 9 shows
the trained SONFIN can detect the maneuver immediately.
Experiments 2 and 3 show the same results. This is mainly
due to the fact that the KF-SONFIN method considers the
features of “heading change” and “Doppler frequency shift”
in addition to the innovation values. The fusion of these three
features can indicate the occurrence of maneuver accurately.
Moreover, Figs. 7–8 and 12–13 indicate that the trajectories
detected by the VDF method contain obvious pulsation. This is
because the external stochastic disturbance existing in the testing
measurement sequence makes the VDF switch alternatively
between quiescent and nonquiescent states. This is the inherent
“discontinuity” problem of the VDF approach.

Second, let us focus on the factor of estimation of maneuver
values. After detecting the maneuver occurrence, the VDF
method uses the formula, ,
to estimate the acceleration at time ( ), where is the
effective length. The estimated acceleration value is used to
calculate the velocity at that time. With the estimated velocity
and the measured position, , at time ( ), we can
obtain the term , which becomes the state
estimate when the VDF enters its nonquiescent state (maneuver
state). It is noted that when the noise disturbance at time ( )
is large, the estimated acceleration value will deviate from
the true one greatly. This in turn will make the obtained state
estimate, , further away from the true one. This
incorrect state estimate will obviously cause the Kalman filter
to produce erroneous estimation. In the IE method, the estima-
tion of maneuver values is based on the assumption of constant
acceleration within the sliding window and the acceleration is
estimated by the least square estimation algorithm. Obviously,
the constant-acceleration assumption will make the IE method
produce large error in the situations with varying accelerations.
On the contrary, the error of KF-SONFIN comes directly from
the training error of SONFIN, without the IE- or VDF- like
chaining error propagation. Also, the training error can be
further reduced by collecting more on-site training information
and performing more extensive training on SONFIN.

Finally, the maneuver compensation scheme is considered.
In our simulations, the VDF and KF-SONFIN methods adopt
the same compensation scheme. They apply the estimated
maneuver values to the state equation of Kalman filter and
to tune the standard deviation of the filter’s process noise for
calculating the system covariance, . This scheme can compen-
sate the tracking filter directly and efficiently to overcome the
miss-tracking problem caused by maneuver. In other words, the
values in are adaptive according to the estimated maneuver
values. Traditionally, like the scheme used in the IE method,

is constant, which is difficult to choose. A fixed larger
will make the bandwidth of tracking filter large, which in turn
will produce larger tracking errors in nonmaneuver period. On
the other hand, a fixed small will result in larger tracking
errors in the maneuver period. Figs. 10, 15, and 20 show that
the system covariance of KF-SONFIN is adaptive according to
the estimated maneuver. From the comparisons of the tracking
error, they obviously indicate that such a -adaptive mech-
anism makes the tracking filter produce good compensation
effects. It is noted that the KF-SONFIN outperforms the VDF
since the former has more accurate estimation of maneuver
values.

According to the above performance analysis based on the
three factors of detection, estimation and compensation of ma-
neuver, we find out the reasons why the proposed KF-SONFIN
methods can outperform the other two compared counterparts.
The fusion of three features, including “heading change” and
“Doppler frequency shift” in addition to the common “innova-
tion variation” and the learning capability of SONFIN are be-
lieved to play the crucial roles in contributing to the superiority
of the proposed KF-SONFIN method for target tracking with
maneuver.
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Fig. 19. Mean value of acceleration estimated by SONFIN versus true acceleration value in Experiment 3. (a) x direction. (b) y direction.

Fig. 20. Adapted system covariance of KF-SONFIN by the estimated acceleration in Experiment 3. (a) x direction. (b) y direction.

VI. CONCLUSION

In this paper we have proposed a neural fuzzy scheme
for estimating the acceleration of a maneuvering target based
on the measurement residual, heading change and Doppler
shift feature extractions from the pulsed Doppler radar and
Kalman filter. Although the features used for the neural fuzzy
network are not unique, the features taken in this paper have
strong relationships to the target maneuver and have ever been
used in previous researches as described in Section III. These
features are considered and fused simultaneously to estimate
the accelerations in our KF-SONFIN scheme, which is different
from many previous researchers who have used only one of
these features to find the accelerations in their schemes. The
major contribution of this study is a demonstration of the
ability of the proposed SONFIN to fuse the information from
different sources which are nonlinear to the desired output in
a radar automatic tracking system. In addition, the scheme

of the adaptive system covariance of Kalman filter is derived
when the acceleration of the tracked target is detected and
estimated. Using the developed algorithm, when a tracked target
maneuver occurred it can be detected immediately to estimate
the magnitude and the maneuver value accurately in short
time intervals and then the tracking filter can be compensated
correctly by the estimated acceleration and system covariance.
Simulation results show that a well-trained SONFIN always
produces estimated output very close to the true maneuver values
that lead to good tracking performance and avoid miss-tracking
when the maneuver occurs.

Although some intelligent adaptation schemes such as neural
networks and fuzzy logic etc. have been proposed recently,
they cannot easily to train the neural network well enough
and obtain good fuzzy rules. However, the self-constructing
neural fuzzy inference network (SONFIN) can find its optimal
structure and parameters automatically and always produces
an economical networks size and learning speed. Comparing
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with the traditional schemes IE and VDF, SONFIN does not
need to model the maneuver input nor augment the dimension
of the tracking filter. In addition, from the simulation results
SONFIN shows that the performance is superior to the traditional
methods. This is an important benefit in a practical military
surveillance system or a civil air traffic control (ATC) system.
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