
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004 309
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Abstract—In this paper, a new technique for the Chinese
text-to-speech (TTS) system is proposed. Our major effort focuses
on the prosodic information generation. New methodologies for
constructing fuzzy rules in a prosodic model simulating human’s
pronouncing rules are developed. The proposed Recurrent Fuzzy
Neural Network (RFNN) is a multilayer recurrent neural network
(RNN) which integrates a Self-cOnstructing Neural Fuzzy Infer-
ence Network (SONFIN) into a recurrent connectionist structure.
The RFNN can be functionally divided into two parts. The first
part adopts the SONFIN as a prosodic model to explore the
relationship between high-level linguistic features and prosodic
information based on fuzzy inference rules. As compared to
conventional neural networks, the SONFIN can always construct
itself with an economic network size in high learning speed.
The second part employs a five-layer network to generate all
prosodic parameters by directly using the prosodic fuzzy rules
inferred from the first part as well as other important features of
syllables. The TTS system combined with the proposed method
can behave not only sandhi rules but also the other prosodic
phenomena existing in the traditional TTS systems. Moreover,
the proposed scheme can even find out some new rules about
prosodic phrase structure. The performance of the proposed
RFNN-based prosodic model is verified by imbedding it into a
Chinese TTS system with a Chinese monosyllable database based
on the time-domain pitch synchronous overlap add (TD-PSOLA)
method. Our experimental results show that the proposed RFNN
can generate proper prosodic parameters including pitch means,
pitch shapes, maximum energy levels, syllable duration, and
pause duration. Some synthetic sounds are on-line available for
demonstration.

Index Terms—Chinese text-to-speech system, fuzzy inference
engine, prosodic information, recurrent neural network, sandhi
rules, speech synthesizer.

I. INTRODUCTION

T EXT-TO-SPEECH system (TTS) is the automatic conver-
sion of a text into speech that resembles a native speaker

of the language reading the text. The potential applications of
high-quality TTS systems are numerous, for example, telecom-
munications services, language education, aid to persons with
disabilities, talking books and toys, vocal monitoring, human-
machine communication, etc. An ideal text-to-speech synthe-
sizer could mimic the pronunciation style of human beings in
order to generate natural, and fluent speech for any input text.
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As human reading, the TTS system comprises a natural lan-
guage processing (NLP) module, capable of producing a pho-
netic transcription of the next text to be read, together with the
desired intonation and rhythm, and a digital signal processing
(DSP) module, which transforms the symbolic information it
receives into natural-sounding speech.

There are three procedures when the text-to-speech conver-
sion is performed. The first is text analysis, or alternatively lin-
guistic analysis. The task is to convert an input text, which is
usually represented as a string of characters, into a linguistic rep-
resentation. This linguistic representation is usually a complex
structure that includes information about the word sequence, the
part-of-speech (POS) tags [1], tonal properties, prosodic phase
information, or any combinations of those information on the
grammatical categories or pronunciation of words. The second
procedure is to generate suitable prosodic parameters according
to the linguistic representation. These prosodic parameters may
be the fundamental frequency, duration, energy, and pause. The
last procedure is the synthesis of a speech waveform [2] using
the desired speech segments and prosodic parameters. A con-
ventional approach used in the last procedure is to record a
speech inventory that consists of all the basic units for the target
language, and use a prosodic algorithm to modify and concate-
nate the units to generate output. In the followings, we discuss
the major problems in most existing TTS systems.

1) Synthesis Approach is not Complete: Among existing
synthetic techniques, the approach based on acoustic pa-
rameters can adjust both segmental and supra-segmental
features of synthetic units flexibly and can be considered as
the most reasonable synthetic technique in theory. However,
the parameter-based synthesizer is over-dependent on the
developments of parameter extracted methods, and the model
of speech production is still unperfect; the intelligibility of
synthetic speech does not satisfy the requirement of real
applications. Therefore speech synthesis of the intelligibility
and naturalness for limited vocabulary are raised. It can be used
in some practical fields, such as talking toys. Since only the
simple waveform concatenating techniques are used, once the
waveforms of concatenating units are determined, they can’t be
changed afterwards, and the prosody of synthetic speech can’t
be adjusted according to different context. In this paper, the
time-domain pitch-synchronous-overlap-add method [3]–[6], is
used as the synthesis algorithm. It not only preserves the main
segmental features of original waveforms, but also adjusts the
pitch contour, the duration, and the intensity of the waveform
of each concatenating unit before concatenation.
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2) Knowledge of Natural Language is not Enough: Lan-
guage processing is generally concerned with the attempt to rec-
ognize a large pattern (sentence) by decomposing it into small
subpattern according to the rules that reduce entropy. But the
language processing is a complicated and difficult task, and its
practicability is weak. In most TTS systems, the homograph
processing is too simple and the language processing is only to
convert an input text into a linguistic representation.

3) Prosodic Information is not Complete: In the case of
Mandarin, each character is pronounced as a base syllable
(word). Only about 1300 phonetically distinguishable syllables
comprise the set of all legal combinations of 411 base-syllables
and five tones. Each syllable is composed of an optional
consonant initial, a vowel final, and five tones. While these
tone types have rather clear manifestation in the time-contour
of fundamental frequency in the case of isolated syllables,
they undergo various variations in continuous speech due to
coarticulations. The tone contour of a syllable changes due to
the influences of tones of adjacent syllables in a word or phrase.
In most current TTS systems, limited rules are adopted to meet
the prosodic information, but these rules are not enough for
natural speech. The lack of synthesis rules is due to the lack of
philological knowledge.

The first TTS system is proposed in 1986 for English. Since
then, many other TTS systems have been proposed for various
languages. Over the past years, TTS systems usually adopted
the rule-based approach to generate prosodic information. In the
rule-based methods [7]–[18], input text is analyzed firstly and
then parsed based on some predefined lexicon to extract useful
linguistic features. These features include word syllables, pho-
netic structures, syntactical structure, intonation patterns, and
semantic interpretations, etc. Although some of them have high
performance, it is still difficult to disclose the set of rules for
synthesizing high-quality and natural synthetic speech. On the
other hand, the effects of mutual interactions among different
linguistic features are complex and hard to be analyzed.

A new approach, which uses a statistical model and linear re-
gression methods to learn the rules from a large set of training
data, was recently proposed [19]–[23]. These models are trained
using large sets of real utterances and can automatically learn the
phonological rules from the database and store in the weights of
neural network and model parameters. Although some achieve-
ments have been reached by using this new approach, it is still
far away from the goal of generating proper prosodic informa-
tion to synthesize natural speech for unlimited texts.

As long as the neural network is extensively adopted in many
different applications, especially in signal processing, Chen et
al. proposed a RNN-based prosodic model used in their TTS
system in 1996 [24], [25]. However, this RNN-based prosodic
model lacks the explicitness of the hidden pronunciation states
which interpret the relation between the prosodic information
and the linguistic features of the input text. In other words, the
phonological rules of tone modification cannot be explicitly ex-
tracted from the RNN-based prosodic model, although they may
be implicitly learned and stored in the weights of the RNN. In
most current TTS systems, limited rules are adopted to deter-
mine the prosodic information, but these rules are not enough
for natural speech because of the lack of philological knowl-

edge. This motivates us to focus our major efforts on the study
of synthesizing proper prosodic information.

In this paper, a Recurrent Fuzzy Neural Network (RFNN) is
developed as the prosodic model for Chinese speech synthesis.
The RFNN integrates a Self-cOnstructing Neural Fuzzy Infer-
ence Network (SONFIN) [26] into a multilayer recurrent neural
network (RNN) [27], and can properly explore the hidden pro-
nunciation states which control the prosody information genera-
tion, based on interpreting the linguistic features of the input text
properly. The proposed RFNN-based prosodic model mimics
the experience of human experts as a speech knowledge-based
system where the knowledge is stored as a set of fuzzy IF-THEN
rules by forming a rule-based system [28]. Unlike other intel-
ligent systems, the fuzzy inference model can transfer human
knowledge or experience as fuzzy rules by implementing the
mapping from its input feature to the output space and store
the results in its knowledge base with the help of the learning
ability of the neural network. When there comes fresh knowl-
edge, the RFNN model can extend the knowledge base auto-
matically without causing any essential structure changes within
the knowledge base and expert model. When finding a relation-
ship between speech and text, the RFNN system primarily se-
lects the knowledge most closely related to the situation to be
solved from the knowledge base and processes it by using the
inference engine. The incorporation of SONFIN and RNN tech-
niques is motivated by this conception and is used to design the
complex prosodic model in which analytical technologies and
expert knowledge are combined.

There are several advantages of our proposed RFNN-based
prosodic model compared with the previously proposed
rule-based and neural-network-based methods [29], [30]. First,
our proposed approach provides a total solution to the problem
of prosodic information generation. Second, the proposed
RFNN-based prosodic model can generate accurate prosodic
information by automatically inferring the fuzzy rules in
SONFIN. Third, the start or the end of the prosodic phrase is
not necessary to be defined. Finally, all prosodic parameters
are automatically generated by the RFNN, since they are all
embedded in the weights of the RFNN.

This paper is organized as follows. Section II is the introduc-
tion of general background for Chinese text-to-speech (TTS)
system. The architectures of the SONFIN and RFNN are pre-
sented in Section III. In Section IV, experimental simulations are
presented to evaluate performance of the RFNN-based prosodic
synthesizer and a Chinese TTS system is implemented for the
subjective listening test. Finally, the conclusions are summa-
rized in Section V.

II. CHINESE TEXT-TO-SPEECH SYSTEM

A Chinese TTS system basically has several phases such as
text analysis, synthetic-units selection, prosodic-information
generation, and speech synthesis as shown in Fig. 1.

1) Text Analysis Phase: Text analysis can be generally
divided into several stages, such as word segmentation, syn-
tactic parsing, semantic interpretation, etc. Ambiguities would
probably occur in each stage, for instance, in looking up a
lexicon, in syntactic parsing, and so on. These ambiguities
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Fig. 1. Flowchart of a Chinese TTS system.

should be resolved in every stage in order to obtain feasible
results during the process of Chinese sentences. In Chinese,
the word, which is the smallest syntactically meaningful unit,
consists of one to several syllables. The phrase is considered
as a brief expression, sometimes a single word, but usually
two or more words form an expression by themselves, or
become a portion of a sentence. A Chinese sentence should
be segmented into a sequence of words before syntactic
analysis. There are several segmentations when dividing an
input sentence into a sequence of words. For example, the
sentence “hao3 ren2 cai2 sh4 nan2 de2 de5” (A talent man is
rare) can be segmented as “hao3 ren2 cai2 sh4 nan2 de2 de5”
or “hao3 ren2 cai2 sh4 nan2 de2 de5.” This phenomenon is
called as the word segmentation ambiguity.

In a Chinese lexicon, there may be multiple lexicon entries
for a word due to multiple syntactic functions. That is, a word
may have multiple POSs (part of speech). For example, “gong1
ji2” (attack) may play a verb role in “mei3 guo2 gong1 ji2 i1 la1
ke4” (American attack Iraq) or may play a noun role in “gong1
ji2 sh4 zui4 jia1 fang2 u4” (A attack is the best defense). We call
this phenomenon as the lexical ambiguity. These ambiguities
should be reduced before further processing of Chinese. Hence,
a text analyzer plays an important role in TTS systems, because
the segmentations and POSs of the sentence will influence the

prosody of speech such as pitch contour, the duration of syllable
or pause, and stress.

In this paper, we propose a process to resolve word segmen-
tation ambiguity and lexicon ambiguity based on statistical lan-
guage model as shown in Fig. 2. The steps for word segmenta-
tion and tagging by applying the dynamic programming algo-
rithm consists of i) read the probability file including bi-gram
probabilities; ii) read the input sentence; iii) scan the input sen-
tence as well as look up the dictionary and construct a multistage
graph; iv) apply the bi-gram Markov model in the multistage
graph, and use dynamic programming to find the tagging path
with the highest probability; v) output the tagging path with the
highest probability; and vi) repeat Step ii to Step vi for all sen-
tences in the input file.

2) Synthetic-Unit Selection Phase: Mandarin is a tone lan-
guage. Each word is pronounced as a monosyllable according
not only to its phonetic sign but also to its tonality. There are
only five basic tones in Mandarin speech, namely Tone1, (high-
level tone, with symbol “—”), Tone2 (mid-rising tone “ / ”),
Tone3 (mid-falling-rising tone “ ”), Tone4 (high-falling tone
“ ”), Tone5 (Neutral tone “ ”). The information of the tonality
of a word mainly appears on its pitch contour [31] so that we
have only five basic shapes of pitch contour for Tone1 to Tone4
as shown in Fig. 3. The pitch contour of Tone5 is highly con-
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Fig. 2. Block diagram of the text analysis module.

text dependent and it is always pronounced short and light. After
the processing of text analysis, the linguistic representation in-
cludes information on word pronunciation. In our system, the
unit selection phase tends to choose the monosyllable from the
speech corpus containing 4111 monosyllables and to concate-
nate the synthesized speech.

3) Prosodic-Information Generation Phase: There are two
main factors affecting the prosody information in Mandarin
speech. One is low-level linguistic feature (word pronunciation
mechanism), such as word phonetic structures, which is defined
as the pronunciation of the syllable composed of a consonant,
a vowel, and five phonetic signs. The other one is high-level
linguistic feature (syntactic pronunciation mechanism), such as
a syntactic boundary [32]. The term “prosody” refers to certain
properties of the speech signal such as audible changes in pitch,
loudness, and syllable length [33], [34]. The set of prosodic
features also includes aspects related to speech timing such as
rhythm (mostly determined by the timing of stressed syllables)
and speech rate. Synthesis system has such a prosodic model in
the sense that fundamental frequency, duration, and stress must
be assigned in the production of speech.

A simple system for Mandarin might assign to each syllable a
tone shape selected by the lexical tone, and assign constant du-
ration and constant stress to each phone or just specifies the fun-
damental frequency (F0) contours of Mandarin lexicon tones. It
was realized that even a few simple tonal rules can improve the
smoothness of the synthesized speech.

The prosodic model in early Mandarin synthesis systems did
not go much beyond this simple description. Later systems have
fairly sophisticated models predicting variations of tone and du-
ration suitable for the context. Modeling of expressive reading
styles is even harder, especially since no TTS system can claim
to truly understand what it is reading. Thus, important informa-
tion such as when to emphasize a word and how much emphasis

1The total number of phonologically allowed syllables in Mandarin speech is
only about 1300, and there are only 411 monosyllables regardless of tones.

Fig. 3. Standard pitch contour of four tones.

to put in, can’t generally be reliably predicted. Only a few pa-
pers on Mandarin synthesis system report on duration and stress
models [14], [15].

Among these relative few systems reported on duration mod-
eling, several different approaches are taken. Some use hand-
crafted duration rules, while some derive duration and stress
values from a labeled speech database, such as the researchers in
Bell Labs and the Department of Communication Engineering
of Chiao-Tung University (NCTUCE), Taiwan [24], [25]. The
Bell-Lab model is a parametric mathematical model and the pa-
rameters are trained based on duration and stress values in the
database. The NCTUCE system is based on neural networks.
The results of these two systems are better than those of simple
rule-based systems.

Many systems implemented the rules, including the neutral
tone rules, tone sandhi rules,2 the half Tone3 rules, and the half
Tone4 rules. Some systems also include tone rules that are in-
tended to capture the tendency for pitch drop as the sentence
proceeds. For example, a Tone1 following a Tone3 is replaced
by a variant of tone1 with lower pitch. The tone of “zong3” is
Tone3 but it becomes Tone2 in “li3 zong3 tong3” (President
Lee). Some systems are with the help of a full acoustic into-
nation model, which examines prosodic data at a higher level
and accounts for F0 curves with a limited number of parame-
ters, such that it is possible to perform a wide range of prosodic
effects by changing the parameters [35].

4) Speech Synthesis Phase: Three modern approaches,
called articulatory synthesis, formant synthesis, and concatena-
tive synthesis, have a long history. The main difference between
these three basic synthesis methods is the way in which the sets
of transfer functions for an utterance are computed.

2The sandhi rule is defined as tones vary based on their context. These
changes, and the rules with which they are associated, are called tone sandhi.
The canonical sandhi of Mandarin relates primarily to Tone3.
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TABLE I
COMPARISON OF TTS SYSTEMS [37]

Articulatory synthesis attempts to model the articulators—the
tongue, the lips, and so forth. But the difficulty is how to mimic
human articulator motion and compute acoustic properties from
vocal tract shapes.

Formant synthesis bypasses the difficulty of articulator syn-
thesis by using a set of carefully designed rules to compute
spectral properties and transfer function directly from the lin-
guistic representation. The early well-known formant system is
designed by Klatt in 1980 [36]. Designing a set of rules to do
this is certainly easier than constructing an articulator model,
but it is still a difficult task.

The simplest approach is the concatenative synthesis, since it
takes real recorded speech, cuts it into segments, and concate-
nate these segments back together during synthesis. Some sys-
tems, such as the Bell-Lab system, use recorded speech coded
by linear predictive coding (LPC), and the other systems per-
form the synthesis directly in the time domain (e.g., PSOLA)
by storing and concatenating waveform segments. In general,
the speech quality of these systems that use the time-domain
method is higher than that of LPC-based systems. According to
Table I, we can find that most Mandarin systems are concate-
native, and time-domain (PSOLA) as well as frequency (LPC)
domain coding schemes are equally used. Syllables are mostly
used as the basic units among these systems.

III. RFNN-BASED PROSODIC INFORMATION SYNTHESIZER

In this section, a recurrent fuzzy neural network (RFNN) ar-
chitecture shown in Fig. 4 is proposed to perform the prosodic
model. The prosody mechanism interprets the linguistic features
including low-level lexical features such as the tone of a syl-

lable as well as word phonetic structures, and high-level fea-
tures such as a syntactic boundary. According to the above def-
inition of the high-level and low-level linguistic features, we
can divide the prosodic model into two parts. The upper part
of RFNN is a self-constructing neural fuzzy inference network
(SONFIN), which takes some high-level linguistic features in
the sentence as its inputs. The lower part of RFNN is a multi-
layer recurrent neural network (MLRNN) which takes some ad-
ditional low-level linguistic features as its inputs. The prosodic
phrase structure of Chinese speech can be automatically ob-
tained by training the RFNN through the use of a large set of
real speech and the associated texts. The detailed descriptions
of the SONFIN and MLRNN are given in Sections III-A and
III-B, respectively.

A. Self-cOnstructing Neural Fuzzy Inference Network
(SONFIN)

In our previous work [26], a neural fuzzy network architec-
ture, called the self-constructing neural fuzzy inference network
(SONFIN) as shown in Fig. 5 was proposed. The SONFIN is a
general connectionist model of a fuzzy logic system, which can
find its optimal structure and parameters automatically. Both
the structure and parameter identification schemes are done si-
multaneously during on-line learning without any assignment
of fuzzy rules in advance. The SONFIN can solve the dilemma
between the number of rules and the number of consequent
terms. The number of generated rules and membership func-
tions can be small even it is applied to model a sophisticated
system. The SONFIN can always construct itself with an eco-
nomic network size, and the learning speed as well as the mod-
eling ability is well appreciated. Comparing with other neural
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Fig. 4. Block diagram of the proposed RFNN-based prosodic model.

Fig. 5. Network structure of SONFIN in the proposed RFNN-based prosodic
model.

networks [38]–[43], in different areas including control, com-
munication, and signal processing, the on-line learning capa-
bility of the SONFIN has been demonstrated.

Fig. 5 shows the 6-layer structure of the SONFIN that realizes
a fuzzy model of the following form:

Rule IF is and and is

THEN is (1)

where is a fuzzy set, is singleton of an output, and is
a consequent parameter. It is noted that only the significant ones
are used in the SONFIN; i.e., some s in the above fuzzy rules
are zero. The following describes the functions of the nodes in
each of the six layers of the SONFIN.

1) In Layer 1, each node corresponds to one input variable
and only transmits input value to the next layer directly.

2) In Layer 2, each node corresponds to one linguistic label
(small, large, etc.) of the input variables in Layer 1. In

other words, the membership value which specifies to
what degree an input value belongs to a fuzzy set is cal-
culated in Layer 2.

3) In Layer 3, a node represents one fuzzy logic rule and
performs precondition matching of the rule.

4) In Layer 4, the number of nodes is equal to that in Layer
3, and the result (firing strength) calculated in Layer 3 is
normalized in this layer.

5) Layer 5 is called the consequent layer. Two types of nodes
are used in this layer, and they are denoted as blank and
shaded circles in Fig. 5, respectively. The node denoted
by a blank circle (blank node) is the essential node rep-
resenting a fuzzy set of the output variable. The shaded
node is added only when necessary. One of the inputs fed
to a shaded node is the output delivered from Layer 4, and
the other possible inputs (terms) are the selected signifi-
cant input variables from Layer 1. Combining these two
types of nodes in Layer 5, the whole function of this layer
performs as the linear equation on the THEN part of the
fuzzy logic rule shown in (1).

6) In Layer 6, each node corresponds to one output vari-
able. The node integrates all the actions performed by
Layer 5 and acts as a defuzzifier to produce the final in-
ferred output.

Firstly, we develop a novel on-line input space partitioning
method, which is an aligned clustering-based approach by
projecting the generated cluster onto each dimension of the
input space to form a projected one-dimensional membership
function for each input variable, and represent a cluster by the
product of the projected membership functions. Basically, it
aligns the clusters formed in the input space, so it reduces not
only the number of rules but also the number of membership
functions under a prespecified accuracy requirement.

This method creates only the significant membership func-
tions on the universe of discourse of each input variable by using
a fuzzy measure algorithm. It can thus generate necessary fuzzy
rules from numerical data dynamically based upon orthogonal
least square (OLS) method. The input membership functions are
all tunable; a rule is considered to be necessary and is generated
when it has a low overlapping degree with others.
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After partitioning, two types of learning, structure and
parameter learning, are used concurrently for constructing the
SONFIN. The structure learning includes both the precondition
and consequent structure identification of a fuzzy if-then rule.
Here the precondition structure identification corresponds
to the input-space partitioning and can be formulated as a
combinational optimization problem with the following two
objectives: to minimize the number of rules generated and to
minimize the number of fuzzy sets on the universe of discourse
of each input variable.

As to the consequent structure identification, the main task
is to decide when to generate a new membership function for
the output variable and which significant terms (input variables)
should be added to the consequent part (a linear equation) when
necessary. For the parameter learning based upon supervised
learning algorithms, the parameters of the linear equations in the
consequent parts are adjusted by either LMS or RLS algorithms
and the parameters in the precondition part are adjusted by the
backpropagation algorithm to minimize a given cost function.

After structure learning, the following parameter learning is
performed on the whole network no matter whether the nodes
(links) are newly added or are existent originally. The idea of
backpropagation [44] is used for this supervised learning. Con-
sidering the single-output case for clarity, our goal is to mini-
mize the error function

(2)

where is the desired output, and is the current output.
For each training data set, starting at the input nodes, a for-

ward pass is used to compute the activity levels of all the nodes
in the network to obtain the current output . Then starting at
the output nodes, a backward pass is used to compute
for all the hidden nodes layer by layer. Assuming that is the
adjustable parameter in a node (e.g., , and in the
SONFIN), the general update rule used is

(3)

(4)

where is the learning rate.
The SONFIN can be used for normal operation at any time

during the learning process without repeated training on the
input-output patterns when on-line operation is performed.
There are no rules (i.e., no nodes in the network except the
input-output nodes) in the SONFIN initially. They are created
dynamically as learning proceeds upon receiving on-line
incoming training data by performing the following learning
processes simultaneously: 1) input/output space partitioning;
2) construction of fuzzy rules; 3) optimal consequent struc-
ture identification; 4) parameter identification. In the above,
learning process 1), 2), and 3) belong to the structure learning
phase and 4) belongs to the parameter learning phase. The
details of these learning processes can be found in [26].

The TTS system with the proposed RFNN-based prosodic
model converts text to speech sentence by sentence. After text
analysis, a sentence is usually decomposed into several sub-
sentences, and then these subsentences are decomposed into

breathing groups, and finally these breathing groups are decom-
posed into words or phrases, where the word means a Chinese
monosyllable word and the phrase means a Chinese syntactic
word (may be composed of two or more monosyllable words).
According to the acoustic study, the position of the word of one
sentence affects the intonation of the word in a tonic language,
and the position of the syllable of one word indicates the stress
level of the word and reflects the rhythm [24], [45], [46]. There-
fore, the position of the word in a phrase (WordInPhrase) and the
position of the phrase in a sentence (PhraseInSen) are selected
to be the two inputs of SONFIN in order to learn these prosodic
phrase structure rules. Both the input variables WordInPhrase
and PhraseInSen are restricted to the interval .

The sentence “lao3 wang2 jiong3 de5 hen4 bu4 de2 zuan1
dao4 di4 dong4 li3 qu4” is used as an example to illustrate
how to calculate these two variables. After parsing, the sen-
tence is divided into 9 phrases; they are “lao3 wang2,” “jiong3,”
“de5,” “hen4 bu4 de2,” “zuan1,” “dao4,” “di4 dong4,” “li3,”
and “qu4.” The PhraseInSen of the phrase “di4 dong4” is cal-
culated as , and WordInPhrase of the word “di4”
is . In our method, the maximum word length in a
phrase (WordInPhrase) is ten after parsing in the text analysis.

The effects of these prosodic phrase structure rules can be
easily illustrated by graphics since the number of the input di-
mensions is two. After training, the membership functions in
layer 2 of these two inputs WordInPhrase and PhraseInSen are
shown in Fig. 6. The total amount of the generated output clus-
ters is 7. The final assignment distribution of fuzzy rules is
shown in Fig. 7. These fuzzy rules can be described by the fol-
lowing IF-THEN fuzzy rules:

IF WordInPhrase is and PhraseInSen is

THEN cluster is (5)

IF WordInPhrase is and PhraseInSen is

THEN cluster is (6)

IF WordInPhrase is and PhraseInSen is

THEN cluster is (7)

IF WordInPhrase is and PhraseInSen is

THEN cluster is (8)

IF WordInPhrase is and PhraseInSen is

THEN cluster is (9)

IF WordInPhrase is and PhraseInSen is

THEN cluster is (10)

IF WordInPhrase is and PhraseInSen is

THEN cluster is (11)

where means the position of the input variable
WordInPhrase relative to the corresponding phrases,
means the position of the input variable PhraseInSen relative
to the corresponding sentences. Fig. 8 shows the output distri-
bution of the two-input SONFIN. Seven clusters are
generated by SONFIN after training. That is, the strength of
the intonation of a word is classified into 7 groups representing
7 different strengthen degrees, respectively, and the prosody
information of each group ( ) corresponds to a fuzzy singleton
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Fig. 6. Distribution of the learned membership functions in the two-input SONFIN.

Fig. 7. Final assignment of rules in the two-input SONFIN.

output ( ) in the consequent part of fuzzy inference system.
The fuzzy singleton output is a crisp value that is learned
and generated without assigning any thresholds before/after
training. A crisp output value of fuzzy system is usually de-
fuzzified by taking the centroid or center of gravity according
to fuzzy inference theory. In this paper, we use center of gravity
method for defuzzification of SONFIN as shown in (12) at the

bottom of the page. Then these outputs were fed to the RFNN
for advanced learning.

B. Multilayer Recurrent Neural Network

The architecture of the multilayer recurrent neural network
(RNN) in the RFNN is shown in Fig. 9. Some important param-
eters in the architecture of this RNN are as follows.

Output
fuzzy output fuzzy singleton position of output fuzzy set

fuzzy output
(12)
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Fig. 8. Output function of the two-input SONFIN.

Fig. 9. Architecture of the multilayer recurrent neural network in the proposed RFNN-based prosodic model.

1) The number of nodes in the input layer is 51.
2) The number of nodes in hidden layer 1 is totally 20, which

are divided into four groups with 6, 6, 5, and 3 nodes,
respectively, as shown in Fig. 9.

3) The number of nodes in hidden layer 2 is 12.
4) The number of nodes in the output layer is 8, where one

for the maximum energy level, one for pause duration, 2
for syllable duration, and 4 for pitch contour.

5) The activation functions of nodes in all layers are sig-
moidal functions except the input layer.

6) The activation functions of nodes in the output layer are
bisigmoidal functions.

7) The nodes in the hidden and output layers are feedback to
themselves at the next time step.

The RFNN can be trained by the back-propagation through
time (BPTT) algorithm with a large set of utterances of real

speech. The BPTT algorithm can be regarded as an extension
of the standard back-propagation algorithm. It can be derived
by unfolding the temporal operation of the network into a mul-
tilayer feedforward network. The number of layers in the un-
folded structure grows by one at each time step. The detailed de-
scription of the BPTT algorithm can be found in [44], [47]–[50].

The input of the RFNN is the linguistic symbols extracted
from the database through the use of a text analysis model
which contains a 80 000-lexicon database and a Markov
probability model trained by a 2 300 000-word database with
bigram probability and lexical probability [51], [52]. The
linguistic input symbols are listed in Table II. Each linguistic
input symbol is encoded into 51 binary digits arranged as
Current Tone Previous Tone Last Tone Current Vowel
Current Consonant Last Consonant Current Punctuation .

We first encode each input symbol according to Table II.
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TABLE II
REPRESENTATION OF LINGUISTIC INPUT SYMBOLS FOR (a) TONE, (b) VOWEL,

(c) CONSONANT, AND (d) PUNCTUATION

(a)

(b)

(c)

(d)

The phonemes of each input symbol are then grouped by
using Table III according to their properties relative to the
time-domain waveform, frequency characteristics, manner of
articulation, place of articulation, type of excitation, and so on.
After encoding, binary codewords can be obtained by using
the bit allocation table listed in Table IV. For example, the
codeword of “yi2” in “jiao4 yi2 ke4 rou4 si1 mian4” is
“01000/00010/00010/00000000000010000/100000/000010/
00000000.”

The desired outputs of the RFNN are the manually extracted
prosodic parameters corresponding to each of linguistic input
symbols including pitch contour, energy level, syllable dura-
tion, and pause duration. The pitch contour of each syllable can
be represented by a smooth curve formed through orthonormal
polynomial expansion with coefficients up to the third order
[53]. The pitch contour is further divided into pitch mean and
pitch shape, where the pitch mean is defined as zero-order coef-
ficient and pitch shape is defined as the other three coefficients.
The syllable duration is also divided into initial duration and
final duration that denote the consonant and the vowel durations
of a syllable, respectively.

IV. EXPERIMENTAL RESULTS

Performance of the proposed RFNN prosody model can
be examined through the simulation of the TTS system. The
flowchart of the system is shown in Fig. 1. The system starts
from the text analysis module. After that, the corresponding
parameters are fed to RFNN prosodic module. Once obtaining
the prosodic information, the speech synthesis module uses
the time-domain pitch synchronous overlap add (TD-PSOLA)
method [4]–[6], [45] to synthesize the syllable waveform
based on a waveform dictionary containing 408 monosyllables.
Finally, the TTS system concatenates the synthetic waveforms
and inserts pause duration in proper position between two con-
tinuous syllables, and then delivers the concatenated synthetic
waveforms to the playback device.

The database used in this experiment contains 35 242 Chinese
syllables provided by the Telecommunication Laboratories,
NCTU, Taiwan. The database is divided into two independent
parts: 28 191 syllables for training and 7051 syllables for
testing. The texts in the database are all news selected from
a large news corpus to cover a variety of subjects including
business (12.5%), medicine (12%), social events (12%), sports
(10.5%), literature (9%), computers (8%), food and nutrition
(8%), movies (6.5%), family life (6.5%), tours (6%), politics
(2.5%), traffic and transportation (2.5%), etc. A male speaker
generated all utterances. They were all spoken naturally at a
speed of 3.5 to 4.5 syllables/s.

The learning process of the proposed TTS system consists
of two individual parts. At beginning, the SONFIN is trained
alone to learn the fuzzy rules and structures based on super-
vised learning with the input, output pair of two inputs and
one stress level output. Then the resulting parameters are fixed
and SONFIN is integrated to the RFNN to perform the prosody
model. The off-line training process of RFNN converged ap-
proximately 40 training epochs using greatest decent algorithm
with the mean square error functions. It took about 12 h run on
our Acer ultra-station workstation. The on-line operation of the
whole TTS requires: 1) Pentium 75 MHz, 2) Windows 95/98
or NT 4.0, 3) Hard disk with a minimum of 20 MB of storage,
4) 16 MB of RAM, and 5) SoundBlaster 16 or compatible sound
card.

The experimental results of the trained RFNN-based prosodic
model are firstly evaluated in Section IV-A. Two checks on the
tone concatenation prosodic rules and fuzzy inference rules for
prosodic phase structure learned by the proposed RFNN are
given in Sections IV-B and IV-C, respectively. Finally, we pro-
vide a subjective listening test to verify the naturalness and flu-
ency of the synthetic speech on our web sites [59], [60].

A. Evaluation Results of the Trained RFNN-Based Prosodic
Model

The average root-mean-square errors (RMSEs) per frame
(frame length: 22 ms) of the synthesis prosodic parameters by
using the RFNN-based prosodic model are listed in Table V,
where “Training” means that the training database is used, and
“Testing” means that the testing database is used. We also list
the RMSEs obtained in [24] for comparison. In order to further
verify the performance of our proposed prosodic model, each
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TABLE III
CLASSIFICATION OF CHINESE PHONEMES FOR (a) CONSONANT AND (b) VOWEL

TABLE IV
AN ENCODING SCHEME FOR INPUT LINGUISTIC SYMBOLS

TABLE V
AVERAGE RMSES PER FRAME OF PROSODIC INFORMATION GENERATED BY

THE RFNN-BASED PROSODIC MODEL WITH A TWO-INPUT SONFIN
AND THE RNN-BASED MODEL [24]. (FRAME LENGTH: 22 ms)

prosodic parameter generated by the RFNN-based prosodic
model is discussed below.

The average RMSEs of the synthetic pitch contour for the
training and testing databases are 0.86 ms and 1.06 ms per
frame, respectively. Since the influence of local linguistic
features on the pitch contour of a syllable in Chinese speech is
greater than that of global linguistic features, global linguistic
features and local linguistic features of a syllable should be
considered separately. This implies that the pitch mean and
the pitch shape of pitch contour belonging to global linguistic
features or local linguistic features should be separately con-
sidered. Some experimental results of the pitch shapes and
pitch means in the testing database are shown in Figs. 10 and

11, respectively. These two figures show that the trajectories of
the synthetic pitch shape and pitch mean are quite close to their
original counterparts of most syllables.

The RMSEs of the synthetic energy levels are 3.96 dB and
4.09 dB for the training and testing databases, respectively. The
synthetic energy levels are very similar to the original counter-
parts of most syllables as shown in Fig. 12(a). Because the initial
duration is very relevant to the final duration, they are simulta-
neously trained by using the same input text.

The RMSEs of the synthetic initial and final durations are
(19.81 ms, 20.26 ms), and (34.38 ms, 36.30 ms) corresponding
to the training and testing databases, respectively. Fig. 12(b) and
(c) display the synthetic initial and final durations of syllables.
These two figures show that the trajectories of the synthetic syl-
lable durations are also very close to their original counterparts
of most syllables.

However, the synthetic result of pause duration is not as good
as that of the previous parameters, since the RMSEs of the pause
duration are 42.22 ms and 44.79 ms for the training and testing
databases, respectively. The reason is that the pause duration in
the training database varies greatly in different speaking con-
ditions. For example, the pause duration between the end of
one sentence and the start of the next sentence is very long,
whereas the pause duration between two successive syllables
in a sentence is rather short. Fig. 12(d) shows the trajectory
of the synthetic pause duration. In addition, the RFNN-based
prosodic model also cannot track the trajectory of the pause du-
ration very well when the pause duration varies too quickly as
shown in Fig. 12(d). This situation often happens at the end of
a sentence. That is, the trajectory of the synthetic pause dura-
tion between the end of a sentence and the start of the next sen-
tence cannot be tracked very well by the RFNN-based prosodic
model. However, the pause duration between the end of a sen-
tence and the start of the next sentence does not influence in-
tonation very much. In other words, the synthetic speech with
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Fig. 10. Simulation results of pitch shapes in the “Testing” database, where solid and dashed lines correspond to the original and synthetic pitch contours,
respectively.

Fig. 11. Simulation results of pitch means in the “Testing” database, where solid and dashed lines correspond to the original and synthetic pitch means, respectively.

large mismatched pause duration does not cause terrible lis-
tening effects.

B. Check of the Learned Tone Concatenation Prosodic Rules

In our experiment, the shapes of the synthetic pitch contours
for bisyllabic words with two “Tone 3” tonalities look like the
standard patterns of “Tone 2” and “Tone 3,” respectively. This
result shows the famous sandhi rule of changing a “Tone 3”
to a “Tone 2” when “Tone 3” is followed by a “Tone 3” [10].
The followings show the sandhi rules that are correctly learned
by the RFNN. Fig. 13 shows three cases of the pitch contours
for (a) “jiu3 dian3” (Nine o’clock), (b) “zong3 tong3” (Pres-
ident), and (c) “hao3 ji3 ba3 xiao3 yu3 san3” (Several small
umbrellas). The pitch contour of “jiu3 dian3” is not a “Tone 3
+ Tone 3” pattern any more, but is a “Tone 2 + Tone 3” pat-
tern as shown in Fig. 13(a). This shows that the pitch contour of
“Tone 3 + Tone 3” pattern is influenced by its adjacent words.
The pattern “zong3 tong3” (President) also presents the same
sandhi rule as shown in Fig. 13(b). The sandhi rule is not re-
cursively applied to the sentence “hao3 ji3 ba3 xiao3 yu3 san3”
(Several small umbrellas), where all morphemes are of “Tone
3,” as shown in Fig. 13(c). This is because syntactic boundaries
within a sentence act like barriers. That is, the sandhi rule is ap-
plied to morphemes within syntactic categories only when the
preceding syntactic category consists of only one monosyllable
word.

The above experimental results confirm that the sandhi rule
for “Tone 3” has been automatically learned and memorized in

the RFNN-based prosodic model. Five other tone concatenation
rules [10]–[13], [54] of pitch contour modification for Chinese
speech learned by the RFNN-based prosodic model are also ex-
amined as follows.

1) : When a “Tone 4” precedes another “Tone
4” without any pause between them, the first Tone 4 will
be modified such that the slope of the pitch contour will
be decreased by an order of about 20%. An example is
shown in Fig. 14(a), where the two syllables “xing4 yun4”
(Lucky) both are Tone 4, and the difference in the slopes
between the two contours is quite clear.

2) : When a “Tone 3” follows a “Tone 4,” the
“Tone 3” will be modified such that the entire pitch
contour slightly shifts downward to make a continuous
contour connecting the preceding syllable. An example
is shown in Fig. 14(b), where the two syllables “hao4
ma3” (Number) have a continuous pitch contour which
is caused by a shift of the pitch contour of the second
syllable.

3) : When a “Tone 1” follows a “Tone 3”
or “Tone 4,” the pitch level of the “Tone 1” should be de-
creased by an order of about 30%. An example is shown
in Fig. 14(c), where the first and third syllables “wu1”
(House) and “fong1” (Wind) both are “Tone 1,” but their
pitch levels are different. The reason is that the third syl-
lable “fong1” following a “Tone 4” syllable “yi4” (Wing)
causes a slight decrease in pitch level of the following
“Tone 1.”
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Fig. 12. Simulation results of energy levels in the “Testing” database: (a) energy level, (b) initial duration, (c) final duration, and (d) pause duration, where solid
and dashed lines correspond to the original and synthetic signal, respectively.

Fig. 13. Simulation results of pitch contours for (a) Jiu-3 Dian-3, (b) Zong-3
Tong-3, and (c) Hao-3 Ji-4 Ba-3 Xiao-3 Yu-3 San-3.

4) : When a “Tone 1” follows another “Tone 1,”
any modification made on the first syllable will be natu-
rally repeated for the second one. An example is shown
in Fig. 14(d). The pitch level of the last two syllables
(both of them are “Tone 1”), is lower than that of the
first syllable (also “Tone 1”), since the last two syllables
“san1” (Three) and “yi1” (One) follow “er4” (Two) which
is “Tone 4,” so “yi1” (One) is shifted according to the pre-
vious rule 3) and “yi1” is then modified accordingly.

C. Check of the Learned Fuzzy Rules for Prosodic Phrase
Structure

In order to verify the performance of the learned fuzzy rules,
three well-known rules of the prosodic phrase structure, which
are explored and collected by the linguists due to the habits in
Chinese society [55]–[58] are used for testing. These three rules
are listed below.

Prosodic-Phase-Rule (a): For bisyllabic words, the stress
usually falls on the second syllable.
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Fig. 14. Simulation results of pitch concatenation rules for (a) Xing-4 Yun-4,
(b) Hao-4 Ma-3, (c) Wu-1 Yi-4 Fong-1, and (d) San-1 Er-4 San-1 Yi-1.

Prosodic-Phrase-Rule (b) For trisyllabic or polysyllabic
words, the primary and secondary stresses usually fall on
the last and first syllable, respectively.
Prosodic-Phrase-Rule (c): The energy level and the pitch
frequency at the start of the sentence are larger than those
at the end of the sentence. In other words, the tendencies
for the energy level and the pitch-frequency mean of one
entire sentence goes downward.

The average RMSEs per frame of the prosodic parameters
generated by the RFNN-based prosodic model with a two-input
SONFIN are listed in Table V.

For example, one sentence, “lao3 wang2 jiong3 de5 hen4 bu4
de2 zuan1 dao4 di4 dong4 li3 qu4,” is used to realize this veri-
fication. The energy level and pitch-period contour of this sen-
tence are plotted in Fig. 15 and used to illustrate the following
testing results.

1) “di4 dong4”
The learned fuzzy rules of the bisyllables in the trained
SONFIN are listed in the following:

di4 WordInPhrase is and PhraseInSen is

THEN cluster is

dong4 WordInPhrase is and

PhraseInSen is THEN cluster is

According to Fig. 8, the output value of “dong4”-rule
is obviously larger than that of “di4”-rule .

This means that the stress (energy) of the bisyllabic
word “di4 dong4” lies on the second syllable “dong4”
as shown in Fig. 15. This is the verification of prosodic-
phrase rule (a).

2) “hen4 bu4 de2”
The learned fuzzy rules of the trisyllabic word in the
trained SONFIN are listed in the following:

hen4 WordInPhrase is and PhraseInSen is

THEN cluster is

Fig. 15. The energy levels and pitch-period contours of the sentence, “lao3
wang2 jiong3 de5 hen4 bu4 de2 zuan1 dao4 di4 dong4 li3 qu4,” where the
energy levels and pitch-period contours are plotted in the upper half and lower
half figures, respectively. The solid and dashed lines correspond to the original
and synthetic energy levels and pitch-period contours, respectively.

bu4 WordInPhrase is and PhraseInSen is

THEN cluster is

de2 WordInPhrase is and PhraseInSen is

THEN cluster is

The output values of these rules corresponding to
“hen4,” “bu4,” and “de2” syllables are , , and

in Fig. 8, respectively. The relation of the three
output values obviously are . This
relation reveals that the stress of the trisyllabic word is
on the last syllable “de2” and the secondary stress falls
on the first syllable “hen4,” as illustrated in Fig. 15.
This is the verification of prosodic-phrase rule (b).

3) “lao3 qu4”
The learned fuzzy rules of the two syllables, “lao3” and
“qu4,” at the start and the end of the sentence in the
trained SONFIN are listed in the following:

lao3 WordInPhrase is and PhraseInSen is

THEN cluster is

qu4 WordInPhrase is and PhraseInSen is

THEN is

According to Fig. 8, the output value of “lao3”-rule is
obviously greater than that of “qu4”-rule. This reveals
that the energy level and the pitch frequency of one
sentence at the start of the sentence are larger than those
at the end of the sentence, as illustrated in Fig. 15. This
is the verification of prosodic-phrase rule (c).

D. A Subjective Listening Test

In this section, we provide two ways for a subjective listening
test to verify the performance of the proposed RFNN-based
prosodic model by implementing a Chinese TTS system. Be-
cause the experience of “naturalness” and “fluency” is subjec-
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tive and is hard to be defined, the performance of the Chinese
TTS system is tried to be evaluated as follows. Five Chinese ar-
ticles randomly selected from the internet are prepared to do the
subjective listening test. These articles are firstly translated into
the synthetic speech by using the Chinese TTS system. Fifty
native Chinese-speakers living in Taiwan are randomly selected
to subjectively score the speech quality of the synthetic speech
generated by the TTS system. The evaluation includes intelligi-
bility and naturalness of the synthetic speech. The intelligibility
evaluation consists of the clarity of syllables and words. The nat-
uralness evaluation only considers the naturalness of sentences.
In our informal listening test, all synthetic speech of the five
Chinese articles sounds natural and intelligible. This confirms
that the proposed RFNN-based prosodic model can improve the
intelligibility and naturalness of the synthetic speech in Chi-
nese TTS systems, since intelligibility and naturalness of the
synthetic speech are mainly influenced by the prosodic model
in TTS systems. In addition, some synthetic-speech examples
compared with other Chinese TTS systems are put in our web
sites such that readers can listen to them and judge the perfor-
mance of our system [59], [60].

V. CONCLUSIONS

A novel prosodic-information synthesizer based on RFNN
for Chinese TTS is proposed in this paper. The RFNN-based
prosodic model integrates a multilayer recurrent neural net-
work (RNN) and a Self-cOnstructing Neural Fuzzy Inference
Network (SONFIN) into a recurrent connectionist structure in
order to explore the relationship between the linguistic features
and prosodic information. The experimental results confirm
that the RFNN-based prosodic model performs considerably
well. The advantages of combining SONFIN and RNN to
construct a connectionist fuzzy neural network include the
structured knowledge representation, approximate reasoning,
parallel fuzzy inference, and self-learning. Besides, this RFNN
can generate fuzzy IF-THEN rules to describe the relationship
between the linguistic features and prosodic information.

Our experimental results also shows that most synthesis
prosodic parameters generated by the proposed RFNN-based
prosodic model matched with their original counterparts well.
These prosodic parameters include pitch contour, energy
level, initial duration, final duration, and pause duration. In
addition, the experimental results confirm that the proposed
RFNN-based prosodic model can learn the tone concatenation
prosodic rules and fuzzy inference rules for prosodic phrase
structure. Besides, a subjective listening test indicates that the
proposed RFNN-based prosodic model can be used to improve
the intelligibility and naturalness of the synthetic speech in
Chinese TTS systems.
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