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Fig. 1. Percent error versus the number of iterations cycles. 

good representation of the original signal. We verified this observation 
in this paper. If there are multiple solutions of the signal recovery 
problem then our algorithm converges to one of the solutions because 
every solution is a member of the intersection set, CO,  as described 
in the beginning of this section. 

The signal recovery technique can also be extended to multidi- 
mensional wavelets. 

REFERENCES 

S. G .  Mallat, “A theory for multiresolution signal decomposition: The 
wavelet representation,” IEEE Trans. Part. Anal. Mach. Intell.. vol. 1 I ,  
pp. 674693, 1989. 
Y. Meyer, Ondelettes et OpePateurs. Paris: Hermann, 1988. 
J. Stromberg, “A modified Franklin system and higher order systems 
of R” as unconditional bases for Hardy spaces,” Conf. in harmonic 
analysis in honor of A.  Zygmitnd, Wadsworth Math. Series, vol. 2, pp. 
475493. 
I .  Daubechies, “Orthogonal bases of compactly supported wavelets,” 
Commun. Pure Appl. Marh., vol. XLI, pp. 909-996, 1988. 
S. G. Mallat and S.  Zhong, “Complete signal representation with 
multiscale edges,” Courant Inst., New York Univ., New York, Tech. 
Rep. 483, Dec. 1989. 
S. G. Mallat, “Zero-crossing of a wavelet transform,” IEEE Trans. 
Informar. Theory, vol. 37, pp. 1019-1033, 1991. 
D. C. Youla and H. Webb, “Image restoration by the method of Convex 
Projections, Part 1-Theory,” IEEE Trans. Med. Imaging, vol. I ,  pp. 

P. L. Combettes and M. R. Civanlar, “The foundations of set theoretic 
estimation,” ICASSP’91, pp. 2921-2924. 
M. 1. Sezan and H. Stark, “Image restoration by the method of convex 
projections, Part 2: Applications and numerical results,” IEEE Trans. 
Med. Imaging, vol. 1, pp. 95-101, 1982. 
A. E. Cetin, “An iterative algorithm for signal reconstruction from 
bispectrum,” IEEE Trans. Signal Processing, vol. 39, pp. 2621-2628, 
1991. 
S. Mallat and S.  Zhong, “Characterization of signals from multiscale 
edges,” Courant Inst., New York Univ., New York, Tech. Rep. 592, 
Nov. 1991. 
S. Mallat and W. L. Hwang, “Singularity detection and processing with 
wavelets,” IEEE Trans. Informat. Theory, vol. 38, pp. 617443, Feb. 
1992. 

81-94, 1982. 

1131 Y. Meyer, “Un contre-example a la conjecture de Marr et a celle de S. 
Mallat,” preprint, 1991. 

[I41 Z. Berman and J. S.  Baras, “A study on discrete multiscale edge 
representations,” in Conf. Informat. Sri. and Sysr., Princeton Univ., 
Princeton, NJ, Mar. 1992. 

Inverting Periodic Filters 

Ching-An Lin and Chwan-Wen King 

Abstract-We consider linear periodic filters. We give simple necessary 
and sufficient conditions for the filter to he invertible and a simple 
formula to compute its inverse. If the filter is not invertible, we propose 
a method to compute its optimal approximate inverse. An illustrative 
example is given. 

I. INTRODUCTION 

Periodic filters have been found useful in speech scrambling [3], in 
filtering of cyclostationary signals [ 1 J, and in decimator-interpolator 
filter design to reduce the required computations 171. The inverse or 
an “approximate inverse” of a periodic filter is required to recover the 
scrambled signal [3]. Inverting a class of periodic filters is discussed 
in [IO].  

We study the problem of finding the inverse or an approximate in- 
verse of a linear periodic filter. We use the state equation description. 
We give necessary and sufficient conditions for the existence of the 
inverse, and we give a simple formula to compute it as a periodic 
filter with the same period. In case the inverse does not exist, i.e., 
in not implementable as a causal filter, we propose a method to find 
an approximate inverse which has a property that, when it cascades 
with the original periodic filter, the overall cascade connection is a 
pure delay of minimal possible length. 

In our analysis, a single-input single-output (SISO) AT-periodic 
digital filter is represented as an -Y x S proper rational matrix in : 
with strictly proper upper off-diagonal entries, as discussed in [5] and 
[8J. This model corresponds to the block signal processing structure 
[9, ch. 101. This representation yields considerable simplification in 
analysis. 

In Section 11, we state precisely the problem under consideration 
and the transfer matrix representation for periodic filters. In Section 
111, we derive the necessary and sufficient condition for the existence 
of the inverse and a simple formula for computing it. A method of 
finding the optimal approximate inverse is proposed in Section IV. 
An illustrative example is given in Section V. Section VI is a brief 
conclusion. 
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Fig. 1. Cascade connection of two periodic filters 

11. PROBLEM STATEMENT AND TRANSFER MATRIX REPRESENTATION 

A .  Problem Statement 

y ,  described by 
Consider the N-periodic linear causal filter with input U and output 

where 

d k  for all k 2 0. 

the form 

E I R 7 ' X " , b k  E R 7 1 x 1 , c k  E I R ~ " ~ ,  a n d d k  E IR are s 
-periodic, i.e., Ak+!v = A k , b k + A '  = b k , C k + . v  = C k .  anddk+.v = 

The inverse of filter (2.1) is an S-periodic linear causal filter of 

such that the cascade connection (shown in Fig. 1) satisfies that, with 
xo = 0 and W O  = 0, the output s is identical to the input U. that is, 

If the inverse exists, then the filter is said to be invertible. 
The questions addressed in this correspondence are 1) under what 
conditions is the filter (2.1) invertible and if so, how do we compute 
its inverse; and 2) if the inverse does not exist, how do we construct 
a filter of the form (2.2) that is an optimal approximate inverse? 

We say the filter (2.2) is an approximate inverse of the filter (2.1) 
if the corresponding cascade connection shown in Fig. 1 is a pure 
delay. More precisely, with x o  = 0 and W O  = 0. for all input U. 

(2.3) 
U - - L  for some fixed L > 0. 

for 0 5 k < L.  
for all k 2 L 

s k = { O  

The optimal approximate inverse is the filter of form (2.2), so that 
(2.3) is satisfied with the smallest possible L. The construction of the 
optimal approximate inverse is described in Section IV. 

B. Transfer Matrix Representation 

is equivalent to an ,V-input AV -output linear time-invariant system 
Consider again the filter (2.1). It is shown in [8] that the filter (2.1) 

'By this definition, the filter (2.1) may have infinitely many inverses. The 
inverse refers to the equivulenr class of filters yielding the same input-output 
relation. 

where 

We note that with .RI = 70 = 0. the systems (2.1) and (2.4) 
exhibit identical input-output relation, except that in (2.4) the input 
and output are sequences of vectors of dimension Y. 

The transfer matrix of the system (2.4), defined as 

G(: )  = C ( s I - x ) - ' B + D  (2.6) 

is an Y x proper rational matrix with G ( w )  = D. From the 
definition (2.5), we note that '5 is lower triangular. 

Thus, each linear S-periodic SISO filter is represented by an 
3- x S proper rational matrix G ( z )  with G ( K )  lower triangular. 
The converse is also true. 

Proposition 2.1 [SI, [6]: Let G ( z )  be an N x N proper rational 
matrix. Then G( s ) can be realized as an ,V-periodic SISO system of 

0 
The following results will be used in establishing the main results 

of this correspondence. 
Proposition 2.2 [5]: The system (2.1) is BIB0 stable if and only 

if G(x).  defined in (2.6), has all its poles inside the unit disk. 
Proposition 2.3 [SI: Let G ( s )  and F ( z )  be the X x X proper 

rational matrices representing the S-periodic filters (2.1) and (2.2), 
respectively. Let H ( z )  be the transfer matrix associated with the 
cascade system shown in Fig. 1. We have 

the form (2.2) if and only if G( w )  is lower triangular. 

0 

111. NECESSARY AND SUFFICIENT CONDITION 
FOR THE EXISTENCE OF THE INVERSE 

Consider the filter (2.1) and the associate transfer matrix G( z )  
defined by (2.4), (2.5), and (2.6). Clearly, the filter (2.2) is the inverse 
of filter (2.1) if and only if the transfer matrix associated with the 
cascade connection in Fig. 1 is H (  2 )  = 1. the :V x X identity matrix. 
From Proposition 2.3, this implies that 

F ( 2 )  = G ( z ) - ' .  (3.1) 

By Proposition 2.1, for the transfer matrix F ( : )  to be realizable as 
an S-periodic system of the form (2.2), we must have that 1) F ( - )  
is proper and 2) F (  x ) is lower triangular. 

It is well known that the transfer matrix G(:)- '  is proper iff 
G( x) is nonsingular. And, if G( z )  = ?( 11 - x)-'B + D with D 
nonsingular, then [4, p. 6561 
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We note that if D is nonsingular and lower triangular, then so is D-' . 
The following result follows directly from the above discussions. 

Proposi t ion 3.1: The periodic filter (2.1) has an inverse of the 
form (2.2) if and only if the transfer matrix G ( z )  associated with 

0 
Comment:  It follows from Proposition 2.2 that the inverse of 

the filter (2.1) is BIBO stable if and only if G(z)- '  has all its poles 
inside the unit disk. From (3.2), the inverse is BIBO stable if the 
matrix ;I - BD-'C has all its eigenvalues inside the unit disk. 

Clearly, since G( x) = D is lower triangular, it is nonsingular if 
and only if d k  # 0 for k = 0, .  . . , -V - 1. The following theorem 
gives a necessary and sufficient condition for the existence of the 
inverse. 

Theorem 3.2: The periodic filter (2.1) is invertible if and only if 
0 

If the system (2.1) is invertible, then G( z)- '  is the transfer matrix 
associated with its inverse. A minimal realization of G ( z ) - '  in 
the form (2.2) can be obtained by the method proposed in [6]. A 
straightforward realization is given as follows. 

Theorem 3.3: Suppose the filter (2.1) is invertible, then its inverse 
of the form (2.2) can be computed as 

(2.1) has a proper inverse. 

d k  # 0 for all k .  

Ek = A k  - b k d ; l C k ?  fk = b k d , ' ,  g k  = - d k l C k .  

and 

h k  = d ; ' .  (3.3) 

Proof: We have to show that the cascade connection in Fig. 1 
with 20 = O , W O  = 0 satisfies that, for all U .  

S k  = U k .  and k 2 0. 

We prove it by induction. For 1 = 0, we have 50 = W O  = 0 and 

SO = hoyo  = d , ' ( d o ~ o )  = u o  

where we have used that vo = yo. Assume that for 1 = i ,  we have 
S, = U ,  and wZ = s,. Then 

W * + I  = E,u~ ,  + ftyt 

= ( A ,  - b t d ; l ~ t ) ~ ,  + b t d ; l ( c 2 x t  + d , ~ , )  

= A z z z  + b t u l  = X ~ + I .  

and 

Iv .  COMPUTING THE OPrIMAL APPROXIMATE INVERSE 

If the filter (2.1) is not invertible, the associated transfer matrix 
G ( z )  does not have a proper inverse. Then we wish to construct 
a system of the form (2.2) so that the input-output relation of the 
cascade connection shown in Fig. 1 is a pure delay. A delay of m 
steps is a linear shift-invariant system and thus can be regarded as 
an S-periodic system. Let n2 = p + qiV, where p ,  q are nonnegative 
integers with 0 5 p < dV. The transfer matrix associated with the 
m-step delay, viewed as an Y-periodic system, is 

H,,(z) = [ I.Y-p 0 2-2p (4.1 ) 

where IL  denotes the L x L identity matrix. Since a cascade 
connection of an m-step delay and an I-step delay is an ( m  + 1)-step 
delay, the following lemma follows from Proposition 2.3. 

Lemma 4.1:  Let m and 1 be positive integers, then 

H m ( z ) H f ( z )  = H m + l ( Z ) .  (4.2) 

0 
Finding the optimal approximate inverse of (2.1) is the same as 

finding the minimal L and a proper transfer matrix F ( z )  with F (m)  
lower triangular such that 

F ( z ) G ( z )  = HL(z) (4.3) 

where HL. ( 2 )  is the transfer matrix associated with the L -step delay. 
This is equivalent to finding the minimal L so that 1) HL(z )G(z ) - '  
is proper, and 2) H~(z)G(z)-'l~=~ is lower triangular. We shall 
first find the smallest ml such that H,, ( z ) G ( z ) - l  is proper. 

Write G(z) - '  = [ , ~ * , ( z ) / ~ ~ , ( z ) ] ~ ~ ~ , , ~ ~ ~ ,  where S, , (z)  and 
a*,(;) are polynomials in z with real coefficients. Let S ( p )  denote 
the degree of the polynomial p .  Let m = max,,[S(&) - ~(cu,,)]. 
The 7 i i  so defined is the largest relative degree of entries of G ( z ) - ' .  
Since G( 2)-' is not proper, iii 2 1. Suppose i o  is such that 

max[S(&., 1 - 6(az,, )I 
- = m and max[h(,3,,) - 6(fit,)] < m. 

l < l O . l  

In other words, i o  is the smallest row number in which 777 is attained. 
Let 

nz1 = (-V - i o  + 1) + (m - l ) A V  = m-V - i o  + 1. (4.4) 

Then 

and H m 1 ( z ) G ( z ) - '  is proper. To see that H m L 1 ( z ) G ( z ) - '  is proper, 
let us partition 

and the maximal relative degree of where Q l ( z )  E Rp(z)(zo-l'x-v 
entries of Q l ( z )  is m - 1. Thus, 

0 H,, ( z ) G ( z ) - '  = 
- 1 ["'"'I = [7z:mQ2(Z) ] 

Q z ( z )  --"+'Qi(z) 

which is clearly proper. It can be checked that for all 1 < 
m l ,  HI(z)G(z)-' is not proper. Thus, m = m l ,  defined in (4.4), is 
the sma!lest possible integer such tha! H V , ( z ) G ( z ) - '  is proper. 

Let F(,-)*= H n L 1 ( z ) G ( z ) - ' .  If F ( K )  is lower triangular, then 
F(I) := F(i) is the transfer matrix which yields the optimal 
approximate inverse. This would- result in ml steps delay in the 
cascade connection of Fig. 1. If F (  x) is not lower triangular, then 
more delay is required. The resulting F ( z )  will have the form 

F ( Z )  = H m 2 ( 2 ) F ( Z )  

with F (m)  lower triangular. Write F(cx-) = [it,]. Let 1 5 T 5 
N - 1 be the smallest integer such that f r J  = OAfor all j > i + T .  

The number r is called the upper bandwidth of F(m)  [2, p. 61 and 
is a measure of how far the matrix is from being lower triangular. If 
it, # 0 for all j > i ,  then T = -1;- 1. The follo-wing result shows that 
the smallest number n12 thatAyields H7,,2 ( z e ) F ( c c )  lower triangular 
is the upper bandwidth of F ( K ) .  

Proposi t ion 4.2: Let r be the upper bandwidth 0': F(cx). Then 
nz2 = r is the smallest integer such that H , r , 2 ( z e ) F ( m )  is lower 
triangular. 
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Comment: 

1) Thus, the best approximate inverse of (2.1) is given by the 
transfer matrix 

where we have used Lemma 4.1, L = 771 1 + T i l  2 is the smallest 
amount of delay, m l  defined in (4.4) relates to the relative 
degree of G( z ) - ' .  and n12 is the upper bandwidth of F( x) .  

2 )  The method proposed in [6] can then be used to realize F ( :  ) 
as an N-periodic filter of the form (2.2), which then is the 
optimal approximate inverse of (2.1). 

Proof: Suppose 1 5 S - 1; we have from (4.1) 

Let us partition P ( x )  as 

(4.6) 

w h e r e p l ~  is (~~-Z)x('~-Z),pii.P21. andp22 arewithcompatible 
dimensions. Thus, 

(4.7) 

The above product is lower triangular if and only if p12 is lower 
triangular. But is lower triangular if and only if 1 2 r.  Thus, the 
result follows. 0 

V. AN ILLUSTRATIVE EXAMPLE 

In this section, we give an example to demonstrate the computation 
of optimal approximation inverse. Consider the three-periodic filter 
given by 

b o =  E 
CO = [0 

0 0  

0 0  

1 0  

. b l =  E]. b 2 =  [+] 
1 01, C] = [l 1 41. 

c2 = [0 0 11. 

do = o .  dl  = 4. dz = 0. 

By computation 

1 G(z)- '  = ~ 2(42 + 1) 

1 4- + 1 -3 .I,-+ 1 
-43 - 1 

- ( 4 ~  + 1)(22 + 1) 
2 2 + 2  - 4 2 - 1  . 

3 ( 2 ~  + 1) -2(42 + 1) 
(5.1) 

Since G( : ) - I  is improper, the inverse does not exist. This also can be 
easily seen from that do = d 2  = 0. The optimal approximate inverse 
is computed as follows. From (5.1), the largest relative degree of 
G( :)-I is 1 and occurs at the third row. Thus, m = 1 and i n  = 3. 
Then T J ) ~  = 1 . 3 - 3 + 1 = 1 and 

F (  2 )  = H1(Z)G( : ) - l  

1 - -- 
2( .It+ 1) 

, [ - z p 1 ( 4 z + l ) ( 2 z + l )  3~-'(2:+1) - 2 ~ - ~ ( 4 2 + 1 )  
4:+1 -3 42+1 

-4:-1 2 2 + 2  -42- 1 

The upper bandwidth of $( x)  is 1, thus 7??2 = 1. The smallest delay 
then is 1 + 1 = 2, and the rational matrix of the optimal approximate 
inverse is 

F ( z )  = H z ( ; ) G ( - ) - '  
1 

2;(42 + 1) 
- - 

1 2 s + 2  - 4 2 - 1  
- ( 3 3  + 1 ) ( 2 ~  + 1) 3(22 + 1) - 2 ( 3 2  + 1) . 

;(.I; + 1) -3, -(.I,+ 1) 

-42 - 1 

By using the algorithm proposed in [6],  a realization of F(z) as a 
three-periodic filter of the form (2.2) is described by 

f n  = f l  = E]. f z =  [J 

0 

VI. CONCLUSION 

The transfer matrix associated with this periodic filter is 

, r 1  3 -11 

Periodic filters and their inverses are important in speech scram- 
bling applications. In this correspondence, we give simple necessary 
and sufficient conditions for the filter to be invertible, and a simple 
formula to compute its inverse. If the filter is not invertible, we 
propose a method to compute its optimal approximate inverse. An 
example is given to demonstrate the proposed method for constructing 
the optimal approximate inverse. 
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Reduction of the MSE in R-times Oversampled 
AID Conversion from O( 1/R) to U (  1/R2) 

Nguyen T. Thao and Martin Vetterli 

Abstract-In oversampled analog-to-digital conversion, the usual re- 
construction method using lowpass filtering leads to a mean squared 
error (MSE) inversely proportional to the oversampling ratio R. In this 
correspondence, we prove, under certain assumptions and with periodic 
analog input signals, that optimal reconstruction achieves an MSE with 
an oversampling ratio dependence order of at least U (  1/R2).  That is, an 
MSE slope of -6 dU per octave of oversampling is obtained, rather than 
the conventional -3 dU/octave slope of classical schemes. 

I. INTRODUCTION 

Analog-to-digital conversion consists of discretizing an analog 
signal in time and in amplitude. Shannon’s well-known sampling 
theorem [ I ]  guarantees that when a bandlimited signal is sampled 
only in time at the Nyquist rate or above, no information is lost. 
It also gives an analytical expression for the reconstruction of the 
bandlimited signal from its samples. Results on reconstruction were 
also obtained by Logan [2 ]  when the analog signal is discretized 
only in amplitude. Under certain assumptions, he showed that an 
octave band signal is uniquely defined by its zero crossings, up to 
a multiplicative constant. This corresponds to amplitude quantization 
to regions having positive and negative values. However, in practical 
A/D conversion, analog signals are discretized both in time and 

Manuscript received June 26, 1992; revised February 23, 1993. The 
associate editor coordinating the review of this paper and approving it for 
publication was Dr. Barry Sullivan. This work was supported in part by the 
National Science Foundation under Grant ECD-88-1 1 1  11. 
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x[t] bandlimircd by f, X(k)=X[kT,] C(k) 
quantile * 

continuous -tunc drsmle-time ‘q) dimcte-”mc 
conunuous -amplitude ~ ~ = , ~ ~  CDnUnUDUE -ampIlNdC discrete-amplitude} 

Fig. I .  Discretization scheme of a bandlimited analog signal with maximum 
frequency f,,, . 

amplitude (see Fig. I) .  Few analytical results have been derived 
about the reconstruction of an analog signal from its discrete-time 
discrete-amplitude (DTDA) version. 

Of course, if the signal is sampled in time at the Nyquist rate and 
uniformly quantized with a step size q. then the quantization error is 
given by q2/12. A more interesting scenario results when the samples 
are taken above the Nyquist rate, i.e., when oversampling occurs. 
The classical reconstruction method consists in lowpass filtering the 
quantized signal, thus preserving the original bandlimited signal but 
reducing the power of the quantization error signal in proportion to 
the oversampling ratio R (under certain assumptions [3], [4]). 

However, the following insight indicates that the classical recon- 
struction method may not be optimal in the mean squared error 
(MSE) sense. Halving the amplitude quantization step size will 
reduce the quantization error by a factor of 4 in the MSE sense, but 
halving the sampling period will only reduce the quantization error 
by 2. This inhomogeneity in the time and amplitude dimensions is 
counterintuitive. We will show that optimal reconstruction leads to 
homogeneity, that is, halving either amplitude or time quantization 
leads to a reduction of quantization error by a factor of 4. 

The suboptimality in classical reconstruction stems from the fact 
that a requanfizarion of the lowpass filtered reconstruction does not 
in general lead to the same quantized signal [5], [6]. That is, the 
DTDA version of the original signal is different from the DTDA 
version of the lowpass filtered reconstruction. It was shown in [5] 
and 161 that an estimate which does not reproduce the DTDA version 
of the original signal can be automatically improved in terms of MSE. 
Therefore, by necessity, any optimal reconstruction scheme should at 
least provide an estimate which reproduces the DTDA version of the 
original signal. 

In this correspondence, we analyze the MSE of an estimate given 
by an oprimal reconstruction scheme, with the assumption that the 
analog signals are periodic in the time interval in which they are 
coded. Assuming that the original signal has a minimum number of 
quantization threshold crossings (QTC’s), we show that the MSE is 
at least inversely proportional to R2 instead of R. for R high enough. 

This result is the consequence of an analysis of the information 
present in the DTDA signal. After defining the mathematical context 
of our derivations in Section 11, we show in Section 111 that when 
the oversampling ratio is high enough, the DTDA signal gives the 
location of the analog signal’s QTC’s with a time uncertainty equal 
to the sampling period. As shown in Section IV, this implies the 
C?( l/R’) behavior of the MSE. 

11. MATHEMATICAL CONTEXT AND NOTATIONS 

As mentioned in the Introduction, we consider that the bandlimited 
signals are sampled and quantized on the time interval [O. T ]  and are 
T-periodic. We designate such signals using boldface italic capital 
letters. like X. We denote the value of X at time f by -I-[t]. 
Bandlimited and T-periodic real signals necessarily have a finite 

1053-587X/Y4$04.00 0 1994 IEEE 


