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An Ordinal Optimization Theory-Based Algorithm
for Solving the Optimal Power Flow Problem

With Discrete Control Variables
Shin-Yeu Lin, Yu-Chi Ho, and Ch’i-Hsin Lin

Abstract—The optimal power flow (OPF) problem with discrete
control variables is an NP-hard problem in its exact formula-
tion. To cope with the immense computational-difficulty of this
problem, we propose an ordinal optimization theory-based algo-
rithm to solve for a good enough solution with high probability.
Aiming for hard optimization problems, the ordinal optimization
theory, in contrast to heuristic methods, guarantee to provide a
top % solution among all with probability more than 0.95. The
approach of our ordinal optimization theory-based algorithm
consists of three stages. First, select heuristically a large set of
candidate solutions. Then, use a simplified model to select a
subset of most promising solutions. Finally, evaluate the candidate
promising-solutions of the reduced subset using the exact model.
We have demonstrated the computational efficiency of our algo-
rithm and the quality of the obtained solution by comparing with
the competing methods and the conventional approach through
simulations.

Index Terms—Discrete control variables, nonlinear program-
ming, optimal power flow, ordinal optimization.

NOMENCLATURE

-dimensional vector of discrete con-
trol variables such as switching shunt
capacitor banks and transformer taps.

-dimensional vector of continuous
variables consisting of real and reactive
power generation, real and imaginary
parts of bus complex voltage.
Sample space of .
Real and reactive power flow balance
equations.
Inequality constraints such as thermal-
limit security constraints, security limits
on voltage magnitude, and real and re-
active power generation limits.
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Objective function such as the total
power generation cost or the total
system losses.

MDCP Mixed discrete-continuous nonlinear
optimization problem such as the op-
timal power flow (OPF) problem with
discrete control variables.
mixed discrete-continuous nonlinear
optimization problem (MDCP) for a
given .
Representation of a typical objective
function in ordinal optimization theory.
Continuous version of .
Lower and upper limit of .
The component of and .

CP Continuous nonlinear optimization
Problem formed by replacing in
MDCP with .
Local optimal solution of continuous
nonlinear optimization problem (CP).
The component of .
Nearest discrete value of to on
the right-hand (left-hand) side of .

or .
Deviation of optimal objective value
caused by .
Lagrange multiplier associated with

at the optimal solution
of CP.

Partial derivative of w.r.t.
evaluated at .

Partial derivative of w.r.t.
evaluated at .

Deviation of optimal objective value of
CP due to the change of from to

.
Representative set of .
Number of samples in .

SS Selected subset or estimated good
enough subset which consists of the
estimated top % samples of .
Number of samples in SS.
Approximate solution of

.
Number of top samples in SS ordered
by the objective values of the quadratic
approximate solutions of
that are guaranteed to consist of a good
enough solution of MDCP.
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I. INTRODUCTION

THE OPF problem has a long history in power-system
research. Numerous numerical techniques had been

developed for this problem such as the successive linear
programming method [21]–[23], successive quadratic program-
ming (SQP) method [4], [6], [26], Lagrange Newton method
[19], [24], [25], the interior point method [28]–[30], and the re-
cent dual-type method [11], [12], [14]. However, these methods
are designed for purely continuous-variable OPF. In reality, the
power systems consist of several discrete control variables such
as the switching shunt capacitor banks, which are switched
on and off in order to correct the voltage profile and reduce
active power transmission losses and transformer taps, which
are adjusted step by step to ensure that a voltage-controlled
bus maintains its voltage within acceptable limits. In most of
the existing OPF algorithms including the above-mentioned
ones, discrete controls are treated as continuous variables until
they are approximately optimized. Then they are rounded off
to their nearest discrete values. Simply rounding off discrete
controls can cause a considerable increase of the objective
value and/or violations of inequality constraints. This defi-
ciency had been recognized by Tinney et al. in [27]. A linear
programming-based method was developed in [2] to deal with
this type of mixed discrete-continuous nonlinear programming
problems; however, it is too time consuming.

To cope with the computational intractability and the disad-
vantages induced by arbitrarily rounding off technique, a pe-
nalized discretization algorithm is proposed by Liu et al. in
[15]. They employed a complicated six rules to introduce the
quadratic limit penalty of a discrete control during the solution
process of a Newton OPF. They finally fix the penalized contin-
uous discrete-control at its discrete value based on a local con-
vergence criteria. In other words, they proposed a rounding off
technique based on a penalized discretization. Thus, this method
cannot completely resolve the problem of infeasibility caused
by not treating the discrete control variables in their exact form.
To solve the OPF with discrete control variables in a more exact
manner, Bakirtzis et al. proposed an enhanced genetic algo-
rithm (GA) in [1], which needs only the power flow solutions
for fitness evaluation, however, sacrificing the hard restriction
on branch flow limits. Thus, violations of inequality constraints
may occur in this method. Recent methods that treat the discrete
control variables in their exact form and take the feasibility of
OPF into account are the mean field theory-based annealing al-
gorithm [5], the evolutionary algorithm [17], and the tabu search
method [9]. However, these methods use global searching tech-
nique, which is very computationally time-consuming provided
that the size of the search space is huge.

To retain the merits of the above three methods in handling
the discrete control variables and the feasibility of OPF while
avoiding their immense computational-complexity, we intend to
use the ordinal optimization (OO) technique, which is recently
developed by Ho and his colleagues [7], [8]. This optimization
technique can effectively reduce the number of search samples
of the huge sample space formed by all discrete control variables
and seek a good enough solution with high probability instead
of searching the best for sure. Thus, the purpose of this paper

is to propose an OO theory-based algorithm to solve for a good
enough solution of the OPF with discrete control variables effi-
ciently. The approach of our algorithm consists of three stages.
First, select heuristically a large set of candidate solutions. Then,
use a simplified model to select a subset of most promising so-
lutions. Finally, evaluate the candidate promising-solutions of
the reduced subset using the exact model.

Since OO is a rather new optimization technique, we will in-
clude some relevant materials in the appendices for easier ref-
erence. Thus, our paper is organized in the following manner.
In Section II, a mathematical formulation of the OPF problem
with discrete control variables will be presented. In Section III,
we will present our approach based on the OO theory to solve for
a good enough solution of the OPF problem with discrete con-
trol variables. In order not to affect the fluency of presentation, a
detailed review of the OO theory [7], [8], the applications of the
alignment probability [10] to our problem and a comment for
addressing the question regarding infeasible solutions are given
in Appendices A, B, and C, respectively. In addition, an efficient
dual-type method for solving a set of quadratic programming
problems, which are induced from our approach as stated in Sec-
tion III, is presented in Appendix D. We concluded Section III
by presenting an online algorithm for obtaining a good enough
solution of the OPF problem with discrete control variables. The
test results and the comparisons of our online algorithm with the
conventional approach and the competing methods on the IEEE
118-bus system and the IEEE 244-bus system are presented in
Section IV. Finally, we make a conclusion in Section V.

II. MATHEMATICAL FORMULATION OF THE OPF PROBLEM

WITH DISCRETE CONTROL VARIABLES

The OPF problem with discrete control variables is a type of
MDCP, which can be formulated as

subject to

(1)

This optimization problem is to find the continuous and dis-
crete control settings so as to minimize the objective function
while satisfying the required constraints.

We can rewrite the MDCP shown in (1) as

(2)

where we denote the optimization problem inside the bracket
for a given as , that is

(3)

In convention and practical applications of power systems,
a local solution of the OPF is usually sought. However, in the
MDCP shown in (2), we can tell that even if we require a local
solution only, we still need to solve the for all sam-
ples . Thus, suppose each discrete control variable has
p possible discrete values, then there will be samples in the
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sample space . To give a flavor of the numerical value of
the size of , assuming , and , there will be

samples in . Therefore, it will be computation-
ally intractable to solve for a local optimal solution of MDCP
shown in (2) using a global searching technique.

III. OO THEORY-BASED APPROACH

Denoting the optimal objective value of the optimization
problem for a given as a function of , say

, then (2) becomes which has exactly
the same form as the optimization problem treated in OO
theory [7], [8]. Before stating our approach for the MDCP in
(2), we will briefly state the idea of OO theory in the following
while the details are given in Appendix A.

A. Review of OO Theory

The OO theory is a new methodology designed to cope with
hard problems such as the lack of structure problems, prob-
lems with uncertainties, or problems with huge sample space
that grows exponentially with respect to the problem size. The
problem considered in this paper is of the latter kind. There
are two basic tenets of the OO theory. The first is that of order
versus value in decision making. It is obvious that determining
whether is much easier than determining

: consider the intuitive example of deter-
mining which of the two boxes in two hands is heavier versus
identifying how much heavier one is than the other. The second
tenet is the goal softening. Instead of asking the best for sure in
optimization, it settles for the good enough with high proba-
bility. A conclusion drawn from the OO theory is the following.

Suppose we simultaneously evaluate a large set of alternatives
very approximately and order them according to the approxi-
mate evaluation. Then there is high probability that we can find
the actual good alternatives if we limit ourselves to the top %
of the observed good choices.

Thus, first, we use only a very rough model to order the good-
ness of a solution relying on the robustness of ORDER against
noise and model error to separate the good from the bad. Second,
we soften the goal of the problem and look for a good enough
solution, which is among the top % of the search space ,
with high probability. These two steps greatly reduce the com-
putational burden and search difficulties of the problem as will
be detailed in Appendix A. A summary of these search proce-
dures for obtaining a good enough solution of
with high probability can be described in the following: i)
Using either a uniform selection or a heuristic method to se-
lect a representative set with size N, say 1000, for the search
space . ii) Using an easily computed crude model to roughly
evaluate and order the performance of each sample in and
collect the top s samples to form a selected subset (SS), which
is the estimated good enough subset. The OO theory guar-
antees that SS consists of actual good enough solutions with
high probability. The value of in our approach determined
based on the alignment probability [10] is 50 as will be de-
scribed in Appendix A.II. iii) Evaluating the objective value of
the for each sample in SS to obtain the good
enough solution.

B. Three-Stage Approach

Based on the above search procedures, our three-stage ap-
proach for obtaining a good enough solution of the MDCP
shown in (2) is presented in the following.

i) Using a heuristic method to determine the set .
First, we define the MDCP shown in (2) as a contin-

uous nonlinear optimization problem (CP) if we replace
the discrete as continuous . Thus, the resulting CP
is shown in (4)

(4)

Our strategy to determine the set is to solve the CP
to obtain an optimal solution first. Then,
we can set each component of the discrete , say

, be either or . At this stage, we have
reduced the search space from to . In fact, this
is a similar intuition as the conventional approach for
solving the MDCP in (2), because we believe that good
solutions should be among the samples. However,
arbitrarily rounding off does not guarantee a good
enough solution with high probability. In general

, we need to reduce the search samples further.
To do so, we will estimate the deviation of the optimal
objective value caused by that is

, where
in which , if , and

. Based on the sensitivity theorem
in [16], we can obtain

(5)

Now if , a predetermined small posi-
tive real number, then we fix the discrete at if

or if . In
other words, if is set to be (or ) and the es-
timated deviation of the objective value is small, then we
fix at (or ). Suppose there are fixed
by this manner, there will be components of not
yet fixed. Thus, we have further reduced the search sam-
ples from to . The value is selected so that

. The above process constitutes our heuristic
method for determining the set .

ii) Determining the selected subset (SS) based on a crude
model.

Now let us denote the N samples in as
. To pick out the samples to form

SS, we will employ a crude model, which estimates the
deviation of the optimal objective value in (4), that is

, due
to the change of from to . The formula for es-
timating is an extension of the formula of (5)
by considering the vector increment
rather than the component increment and is stated
in the following:

(6)
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We order the samples in based on ob-
tained from (6) as follows. The sample with lower
value of , that is the sample being less sensi-
tive to the optimal objective value of (4), will be ranked
higher. In other words, the samples, which are likely
to retain the optimal objective value of (4) are ranked
higher. Consequently, the top ranked form SS,
where denotes the size of SS determined based on
the alignment probability [10] as will be detailed in Ap-
pendix I. The SS thus formed is the estimated good
enough subset. Now according to the OO theory [7], [8],
SS consists of actual good enough samples with high
probability.

iii) Finding the Good Enough Solution.
Let us denote the samples in SS by

. Suppose we solve the exactly
for each sample in SS, the sample that has the least
objective value will be the good enough solution that
we are looking for as have been concluded by the OO
theory [7], [8]. However, solving s ,
which are nonlinear constrained optimization problems,
is too time consuming to meet the requirement of online
power system operation. Thus, to resolve this computa-
tional difficulty, we employ a two-phase strategy based,
again, on the OO theory [7], [8]. Before presenting this
two-phase strategy, a tough question that may be raised
is what if all s samples in SS are infeasible? We have
addressed this question in Appendix C.

Now as shown in Fig. 1, the basic idea of our
two-phase strategy is to evaluate the s samples in SS
very approximately first and order them according to
this approximate evaluation. Then, the actual best
alternative will be contained in the top few observed
good choices. Thus, in phase 1, we can efficiently solve
for the approximate solutions of the s
and order them based on their corresponding objective
values, which represent the estimated performance of
the s . Then, in phase 2, we only solve for the exact
solutions of the for the few top ranked sam-
ples obtained in phase 1, and the one with least objective
value is the good enough solution that we look for. In
the following, we will describe this two-phase approach
in detail. In the first phase, we will solve the
approximately for a given by solving its quadratic
approximate problem as shown in the following:

(7)

where is an identity matrix, and is a small posi-
tive scalar but enough to make the Hessian of (7) positive
definite.

Fig. 1. Two-phase strategy for finding the good enough solution.

We let denote the optimal solution of (7), then
is the approximate solution

of the optimization problem inside the bracket of (2) for
. We have developed an efficient dual-type method called

DPPQN in [11], [12], [14], which is especially suited for solving
(7) for all samples . However, in order not to
affect the fluency of presentation, we will present this method
in Appendix D. Furthermore, this dual-type method can also re-
solve the computational difficulty caused by the infeasibility
of (7) for a given . Since the practical objective func-
tions of the OPF such as the total generation cost and the total
system losses are mostly convex, the quadratic-approximated

shown in (7) should be a good approximate model
of the actual , thus the order of
ordered based on the objective value should
be closely related to the order of , ordered
based on the objective value .

Therefore, we can estimate the number of top ranked sam-
ples in that will consist of the actual top
sample based on the alignment probability [10]. That is,
to estimate the such that .
Once is estimated, we need only to solve the exact solution of

for . In our problem,
and the detailed procedures for obtaining based on the align-
ment probability [10] are described in Appendix B.

C. OO Theory-Based Algorithm for Solving the MDCP

Now, we are ready to state our algorithm for solving the
MDCP shown in (2) to obtain a good enough solution.

Step 1) Solve the CP in (4) using the method proposed in
[11], [12] to obtain .

Step 2) Compute by (5) for each
and

. Pick the least-value
, such that , then set

to be if , or if
.
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Steps 1 and 2 is how we pick the N samples needed
for ordinal optimization.

Step 3) Compute by (6) and calculate
for all .

Step 4) Rank all N samples based on their values of
obtained in Step 3, such that the sam-

ples with smaller will be ranked higher.
Then pick out the top samples to form SS.
Steps 3 and 4 use a very crude model to form the
selected subset (SS) required by OO theory.

Step 5) Solve (7) for all in SS using the dual pro-
jected pseudo Quasi-Newton (DPPQN) method
described in Appendix D to obtain the approx-
imate solutions . Order
the s based on their approximate objec-
tive values ,
to be , such that if

,
then .

Step 6) Find the exact solutions of the in (3) for
, obtained in Step 5. The one

having the least objective value is the good enough
solution.
Step 5 uses a slightly more accurate but still approx-
imate model to evaluate the few top-ranked sam-
ples obtained in Step 4. OO theory then guarantees
that the best ranked sample in Step 6 is indeed good
enough with high probability.

D. Online Modifications

It is quite possible that before completing the solution
process of solving the quadratic programming problems shown
in (7) for all samples in SS, we may already obtain an
approximate solution whose objective value

is close to . Considering the
limited computation budget for online optimal power flow ap-
plication, we should solve for the exact solution of
for this sample immediately instead of solving it after all
s quadratic approximate solutions are obtained. Consequently,
if the objective value of the resulting solution of this sample
is close to , we have obtained a good enough
solution. Otherwise, we will go on for the next sample. Such a
modification definitely saves computational time. Thus, we can
modify steps 5 and 6 of our algorithm presented in previous
subsection for online applications as follows.

Step 5M: Set and set ; set the values of
and ; set the non-negative

integer .
Step 6M: Solve (7) for . If

,
solve the for this to obtain

and go to Step 7M; otherwise, set
. If , repeat this step; otherwise, go to

Step 8M.
Step 7M: If

,
where is a small positive real number, then

Fig. 2. Flowchart of proposed online algorithm.

is the good enough solution
and stop; otherwise, set as
the temporary good enough solution and check
whether there are enough computation budget
left; if not, stop and output the temporary good
enough solution; otherwise, go to Step 8M.

Step 8M: If , stop and output the temporary good
enough solution; otherwise, set

and return to Step 6M.
With the above modifications, we show the flowchart of our OO
theory-based online algorithm in Fig. 2. In addition, a brief illus-
tration about the parameters and is given in the following
remark.

Remark 1: The positive real number in Step 6M is
used to measure the closeness between
and . Thus, in Step 5M, we can set to be
a not too small value, say 0.03, so as to obtain a temporary
good enough solution in Step 6M fast.
Subsequently in Step 7M, if is close
enough to , then is the good
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enough solution that we are looking for; otherwise, we will
increase m by 1 in Step 8M and return to Step 6M. When m
increases, will decrease, because behaves like a
reduction factor. Thus, we can proceed further to obtain a better
temporary good enough solution or the good enough solution.
We typically set in Step 5M.

IV. TEST RESULTS

A. Test Systems and Test Cases

We have tested our online algorithm on the OPF problems
with discrete control variables of the IEEE 118-bus system and
the IEEE 244-bus system [30]; the former consists of 18 gen-
eration buses and 179 transmission lines, and the latter consists
of 47 generation buses and 445 transmission lines. It should be
noted that the values of conductance of the transmission lines
in the IEEE 244-bus system are much higher than that of the
IEEE 118-bus system on the average. We consider two types
of objective function: the minimum total real power generation
cost and the minimum system losses

, where denotes the real power generation of gen-
eration bus , and are generation cost coefficients, and

denotes the real power loss on transmission line . For
each system and each objective function, we have tested several
cases associated with various number of capacitors and various
number of transformers. We assume each capacitor is equipped
with three capacitor banks, and the capacity of a bank ranges
from 14 to 42 MVAR. We assume each transformer tap has 32
discrete steps such that each step is 5/8% of the nominal trans-
former tap ratio. A summary of all the test cases is described
below. Case 1A to Case 4A in Table I and Case 5A to Case 8A
in Table II represent the test cases on the IEEE 118-bus system.
Case 1A to Case 4A use the total generation cost, while Case
5A to Case 8A use the total system losses as their objective
functions. The number of capacitors and the number of trans-
formers assumed in Case 1A–8A are shown in the second and
third columns of Tables I and II. Case 1B to Case 4B in Table III
and Case 5B to Case 8B in Table IV represent the test cases
on the IEEE 244-bus system. Case 1B to Case 4B use the total
generation cost, while Case 5B to Case 8B use the total system
losses as their objective functions. The corresponding number
of capacitors and transformers assumed in these eight cases are
also shown in the second and third columns of Tables III and IV.
It should be noted that all the tests we have made are carried out
in a Pentium IV personal computer.

B. Comparison With the Conventional Approach

Our tests for demonstrating the performance of our online al-
gorithm in comparison with the conventional approach are car-
ried out in the following. We first solve these 16 cases using the
conventional approach, which solves the CP in (4) for each
case first then round the obtained optimal continuous values
of the discrete control variables, , off to their nearest dis-
crete values. After the values of the discrete control variables
are fixed at the nearest , we then solve the , and
the resulting objective values and the consumed CPU times are
shown in the fourth and the seventh column, respectively, of
each table. We apply our online algorithm presented in Sec-

TABLE I
COMPARISON OF OUR ONLINE ALGORITHM WITH THE CONVENTIONAL

APPROACH ON CASES 1A–4A OF THE IEEE 118-BUS SYSTEM USING THE

TOTAL GENERATION COST AS THE OBJECTIVE FUNCTION

TABLE II
COMPARISON OF OUR ONLINE ALGORITHM WITH THE CONVENTIONAL

APPROACH ON CASES 5A–8A OF THE IEEE 118-BUS SYSTEM USING THE

TOTAL SYSTEM LOSSES AS THE OBJECTIVE FUNCTION

TABLE III
COMPARISON OF OUR ONLINE ALGORITHM WITH THE CONVENTIONAL

APPROACH ON CASES 1B–4B OF THE IEEE 244-BUS SYSTEM USING THE

TOTAL GENERATION COST AS THE OBJECTIVE FUNCTION

TABLE IV
COMPARISON OF OUR ONLINE ALGORITHM WITH THE CONVENTIONAL

APPROACH ON CASES 5B–8B OF THE IEEE 244-BUS SYSTEM USING THE

TOTAL SYSTEM LOSSES AS THE OBJECTIVE FUNCTION

tion III-D with , and to solve for
a good enough solution for each case, and the resulting objec-
tive value and the consumed CPU times are shown in the fifth
and the eighth column, respectively, of each table. The reduction
of the objective values achieved by our online algorithm com-
pared with the conventional approach is given in column 6 of
each table. We found that among all of the discrete control vari-
ables, the objective value (4) is less sensitive to transformer tap
ratio changes than it is to the capacitor bank changes; hence, we
set the transformer tap ratios fixed in Step 2 of our online algo-
rithm. This result is consistent with the observation in [15]. The
values of the discrete control variables obtained by the conven-
tional approach may be infeasible as appeared in Cases 4A, 1B,
and 2B in which infinite objective values are indicated; how-
ever, our online algorithm obtains good enough solution in all
cases we have simulated. This demonstrates the probability of
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not obtaining any feasible solution by our algorithm is extremely
low comparing with the conventional approach. Furthermore,
the CPU times consumed by our online algorithm is slightly
larger than that consumed by the conventional approach in most
of the cases as can be observed from the last two columns of all
tables. Thus, compared with the conventional approach, we ob-
served that: i) our online algorithm is also suitable for real-time
application; ii) the improvements on the objective values for ei-
ther the minimum total generation cost or minimum total system
losses are 28% on the average; and iii) we can always obtain a
good enough solution in contrast to the possible failure of the
conventional approach.

C. Comparison With the Competing Methods

Our method deals with the OPF problems with discrete con-
trol variables in their exact form and takes the feasibility of OPF
into account in contrast to the penalized discretization algo-
rithm [15] and the enhanced genetic algorithm [1]. Thus, we can
avoid any possible ambiguity on the feasibility of our solution.
The recent methods that treat the discrete control variables and
the feasibility of OPF like our algorithm are mean-field theory
based annealing algorithm [5], the evolutionary algorithm [17],
and the tabu search method [9]. However, these methods are
seeking the global optimal solution of the OPF (2) within the
huge sample space , which should be very computationally
time consuming. For examples, the mean field theory-based an-
nealing algorithm took 10 min to solve the OPF of a 270-bus
system as reported in [5], and the tabu search method and evo-
lutionary algorithm took 6 and 27 min, respectively, to solve the
OPF of a 24-bus system as described in [9]. In fact, the com-
putational complexity caused by global searching technique is
what our OO theory-based online algorithm intend to resolve by
seeking a good enough solution with high probability instead.

To demonstrate the merits of our online algorithm, we should
compare with the above mentioned methods by simulations. In
[5], the mean field theory-based annealing algorithm compared
only with the SQP method for a four-bus and 30-bus systems.
However, the tabu search method in [9] had compared with and
beaten the evolutionary algorithm and the SQP method. Thus, it
would be typical to compare our online algorithm with the tabu
search method.

The tabu search is an iterative algorithm; it starts from a
randomly generated feasible solution and moves to a better so-
lution in the randomly selected neighborhood by the following
procedures. Starting from the best solution in the selected
neighborhood, if it does not belong to the Tabu List (TL), or
in case of being in the TL but passes the aspiration level (AL)
test, it will be added to the TL and a move to this solution will
be carried out; otherwise, repeat these procedures for the next
best solution. During the search process, the best solution is
always updated and stored aside until the stopping criterion is
satisfied. Details of this method can be found in [9] and [18].
We apply the tabu search method to all of the cases shown in
Tables I to IV. Due to the page limitation, we cannot present all
of the comparison results. However, we will show some typical
cases to demonstrate the efficiency of our online algorithm.
Figs. 3–6 describe the simulation results of applying our online
algorithm and the tabu search method to Cases 5A, 7A, 5B,

Fig. 3. Comparison of our online algorithm and the tabu search method on
Case 5A.

Fig. 4. Comparison of our online algorithm and the tabu search method on
Case 7A.

Fig. 5. Comparison of our online algorithm and the tabu search method on
Case 5B.

Fig. 6. Comparison of our online algorithm and the tabu search method on
Case 7B.

and 7B. The objective functions of these four cases are the
minimum system losses. In each of the four figures, the point
marked by “x” denotes the pair of the objective value of the
best solution so far and the corresponding consumed CPU
times during the search process of the tabu search method
applying to the corresponding case. However, the point marked
by “o” in each figure denotes the pair of the objective value of
the final solution and the corresponding CPU times obtained
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by our online algorithm. We let denote the coor-
dinate of point “o”, where represents the corresponding
case. From column 8 and column 5 of Tables II and IV, we
see that

, and
. We let denote

the coordinate of the specific point “x”, such that
in the corresponding case . We also mark in each
figure, that is

, and
. From Figs. 3–6, we see

that the improvement of the solution during the search process
of the tabu search method is very sluggish. Even when tabu
search method consumes CPU times, is
still at least 18% more than in each case. These results
demonstrate the efficiency of our online algorithm in getting a
good enough solution.

V. CONCLUDING REMARKS

The OPF problem with discrete control variables is an NP
hard problem and has a long history in power system research.
In this paper, we have developed an OO theory based online al-
gorithm to deal with it. We treat the discrete control variables
in their exact form and take the feasibility of the OPF into ac-
count. Our online algorithm can get a good enough solution of
the considered problem efficiently to resolve the computational
complexity caused by the approach of global searching tech-
niques such as the mean field theory-based annealing algorithm
[5], evolutionary algorithm [16], and the tabu search method [9].
We have demonstrated the computational efficiency of our on-
line algorithm and the quality of the obtained solution by com-
paring with the tabu search method and the conventional ap-
proach through simulations.

Above all, our ordinal optimization theory-based algorithm
has a very important implication in power system control and
management, because most of the power system optimization
problems involve discrete control variables; a popular example
problem in addition to the current one is the optimal capacitor
placement problem.

APPENDIX A

I. OO Theory [7], [8]

In order to make the computation of the NP hard problem
tractable, where is a nonstructured huge

sample space, the OO theory soften the goal from the best for
sure to good enough with high probability such that a great
reduction of the search space can be achieved. To proceed with
the search reductions, the OO theory starts from defining a rep-
resentative set of , denoted by , which can be obtained
by either a uniform selection or a heuristic method. Usually,
the size of , denoted by N, is sufficiently large, say 1000. A
Good Enough Subset of , denoted by , is formed by
the top ranked %, say , samples of . As shown in
[13], with a very high probability 0.991, where

denotes the Good Enough Subset of formed by the
top %, say , samples of . Thus, to seek a good

enough solution of , it is sufficient to seek a good enough
solution of . However, a is easy to specify but diffi-
cult to obtain; for example, in our problem, one needs to solve

, that is N nonlinear constrained op-
timization problems, to determine the which is, of course,
computationally intractable for large power systems. Thus, to
reduce the search samples while obtaining members in ,
the OO theory advocates the use of a very crude model in eval-
uating the “goodness” of any proposed solution sample. Using
such a crude model one can with manageable effort estimate
what are the top % of the samples. Call this estimated top %
the Selected Subset (SS). In other words, the SS is determined
by first ranking the samples in based on an easily computed
crude model of noted by , where denotes
the modeling noise or error, then choose the top samples to
form SS. The OO theory then provides a universal alignment
probability between the intersection of the and the SS
[10]. Furthermore, OO theory provides in [10] a formula for
obtaining the value as the value of a six-parameter function

, the meaning of these parameters is de-
scribed below. and denote the desired number of alignments
between SS and and the size of , respectively. de-
notes a class of ordered performance curve (OPC), a summary
of which is presented later in remark 2. The OPC class chosen
for the N samples strongly depends on the designer’s familiarity
of the system, for example, if one is familiar with the structure
of the system, he or she may employ a better heuristic method
than uniform selection to determine the set from
represents the noise characteristics of the modeling error ; a
uniform noise density is assumed, and the magni-
tude W strongly depends on the crude model chosen
for determining SS. is the alignment probability and is taken
to be 0.95 in most of the applications. Simple expressions for
the function , based on a Monte Carlo
study over numerous OPCs distributed uniformly among the
five broadly generic classes are given in [9]. The formula al-
lows us to determine the value by a simple and direct calcula-
tion. Once the value is determined, we need only to solve the

for those samples of SS, and the resulting k top
samples ordered by the objective values of the
in SS will be members of with probability . In
our problem, we need only one good enough solution, thus the
top ranked sample is what we are looking for.

1) Remark 2: Illustration of the Ordered Performance
Curve (OPC) [10]: Consider a standard optimization problem

, where is the sample space, and is
a performance measure defined on the sample space. The OPC
of a collection of ordered samples selected
from is determined by the spread of the order performance

, where denotes . Without loss
of generality, s can be normalized into the range [0, 1],
that is, for .
Meanwhile, the ordered samples, spaced equally, are
also mapped into the range [0, 1] such that for all

. There
are five broad categories of OPC models: i) lots of good
samples, ii) lots of intermediate but few good and bad samples,
iii) equally distributed good, bad, and intermediate samples, iv)



284 IEEE TRANSACTIONS ON POWER SYSTEMS VOL. 19, NO. 1, FEBRUARY 2004

Fig. 7. Graphical expression for the five OPC models.

lots of good and lots of bad samples but few intermediate ones,
and v) lots of bad samples. A graphical expression for these five
OPC models or types is shown in Fig. 7. To accommodate the
above five OPC types and differentiate the curves within one
type by using the smallest number of parameters, the inverse
mapping of the incomplete Beta function, parameterized by
a pair of numbers and , is employed. More precisely, the
standardized OPC is determined by a two-parameter smooth
curve ,
where is the Incomplete Beta function of the two
parameters . In general, corresponds to
the OPC of type (i); corresponds to the OPC
of type (ii); corresponds to the OPC of type
(iii); corresponds to the OPC of type (iv);

corresponds to the OPC of type (v).

II. Determination of the Size of Selected Subset (SS) for Our
Problem [10]

In our problem, the desired number of alignments between
SS and , is 1. The corresponding smallest number of
alignments between SS and , to achieve the above de-
sired alignment is also 1 [13] as indicated in Section I.A. Thus,
we can determine the value by the
formula given in [10], in which we take

is of worst case that is type (v) OPC, and a
uniform large noise distribution for the noise char-
acteristics . The value of for our problem we obtained
from the above formula is 50. It should be noted that the value s
we obtained based on the above setup is conservative due to the
selection of and .

APPENDIX B

To estimate the value of indicated in Section III.C, we em-
ploy the technique of alignment probability [10] as summarized
in Appendix A. In the current problem, we apply the following
similarities of the terminologies described in Appendix A. We
first denote the SS obtained in ii) of the three-stage approach
presented in Section III.B as , then treating this as the
set in OO theory, that is, we set . Thus, the top
ranked sample in ordered based
on the objective values of will be considered
as . In the first phase of our two-phase strategy presented
in Section III.C, we use a good approximate model to deter-
mine the estimated good enough subset, that is the SS. Now we
should determine the size of the SS to ensure that
with very high probability based on the technique of alignment

probability [10]. Since the size of here is only around 50,
which is far too small to apply the formula provided in [10] as
summarized in Appendix A, we have to perform a Monte Carlo
study followed from the guidelines given in [10] to estimate the
value (i.e., the size of SS, as described below).

We first place the samples in by
equally spacing them in the normalized ordered interval
[0, 1]. We studied a total of 49 OPCs distributed uniformly
among the five broadly generic types formed from the fol-
lowing parameters and

, the meaning of the two
parameters and are described in Remark 2 of Appendix A.
We employ a moderate noise with uniform noise density

, because our quadratic approximation for the
given in (7) is in fact a good approximate model

from the viewpoint of an OPF problem researcher. As a matter
of fact, the range of the noise considered above equals the
range of OPC, which can result in (with nonzero probability)
swapping the rank of some good enough samples with the
worst samples. In all of our Monte-Carlo calculations, we
simulate 10 000 realizations of noisy OPCs. For the alignment
probability equals 0.99, we found that . In other words,

. This implies that after
solving the quadratic approximate problems shown in
(7), we need only solve exact .

APPENDIX C

We call a sample feasible if the in (3) for
the given has a feasible solution; otherwise, we call this

infeasible. In addition, we consider the optimal objective
value of an infeasible sample as [3]. Obviously, to obtain
the top ranked sample of SS ordered by the objective value of

, we need to solve the for all
samples in SS. However, the samples in SS chosen based on
the model (6) do not guarantee to be feasible. Subsequently, we
have to answer the question that what if all s samples in SS are
infeasible and does one need to search for a feasible solution
from ? As a matter of fact, if all s samples of SS are infeasible,
then we can be resonably sure (i.e., with probability more than
0.95) the probability that there are feasible samples among the
is very low as concluded by the method of point estimation of the
opinion poll in statistics ([20], Chap. 3 and [22]). This is briefly
illustrated below. Suppose the target population of interest
consists of N persons and M of them favor a certain proposition.
What we should like to know is the proportion .
We consider the opinion poll as a binomial experiment and treat
the sample that favors the proposition as a “success.” Then the
true success probability p can be estimated by , where

denotes the limited number of trials, and denotes the
observed number of successes. Now a question is how good is
the estimate? Let us determine the probability that the estimate

does not deviate from the true success probability p by more
than some small quantity d. In other words, we want to know
the probability- -that . Substituting

denotes the probability that k lies in the following range
. This probability can be evaluated with

the help of normal approximation, and if .
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Now our feasibility test can be viewed as the above opinion
poll experiment such that the feasible sample is considered as
a success. Using the following similarities, and ,
if there are t feasible samples among the , then we can
be resonably sure that the probability of picking up a feasible
one from the samples is with deviation not
more than , which equals 0.1414. Thus, if all
samples of SS are infeasible, then we can be reasonably sure
the probability that there are feasible samples in the N is 0 with
deviation not more than 0.1414. This addresses the question
raised in (iii) of Section III.B. In the above argument, we inher-
ently assume that the samples in SS were uniformly selected;
however, this is not our case. As a matter of fact, the samples
which are more likely to satisfy the constraints
are more probably selected into SS. This is illustrated below.
The criteria that we rank the samples to be selected into SS is
according to (6). That is the sample with lower value of

will be ranked higher. Since (6) can be rewritten in
the following form , where

. Thus,
if is more likely to be feasible then it will cause lower
value of and will induce lower value of

. Consequently, it will be more probably selected
into SS.

APPENDIX D

For the sake of simplicity in explaining the dual-type method
for solving the quadratic approximate problem (7), we consider
the total generation cost as the objective function, and the in-
equality constraints consist of the generation limits and voltage
security constraints only. The same method can be applied to
the cases with the total system losses as the objective function.
Cases including the coupling thermal limit in the inequality con-
straints can be similarly treated by taking the modification in
[12] into account.

Based on the above assumption, is a convex func-
tion of only, thus in the sequel, we use the notation as
the objective function. Since the cost of an individual generator
is a quadratic function of the generation, thus is
a constant diagonal matrix. Furthermore, since the generation
limit and voltage security are decoupled bus-wise, the inequality
constraints can be decom-
posed into

(8)

where B denotes the number of buses in the system; and
denote the increment of continuous variables and the in-

equality constraint functions associated with bus . Thus, (7) can
be written in the following form:

(9)

where the constant matrices
, and , the con-

stant vectors and ,

and the dependent vector
, . Clearly, the matrix is

positive definite, and we can assume that is of full rank,
because otherwise we can always delete the redundant equality
constraints.

I. DPPQN Method

We will employ the DPPQN method proposed in [11], [12],
[14] to solve (9). The DPPQN method solves the following dual
problem of (9) instead of solving (9) directly:

(10)

where the dual function

(11)

and , where

(12)

and if .
The DPPQN method is an iterative method using the fol-

lowing iterations:

(13)

where is the iteration index, is a positive step-size deter-
mined by an Armijo-type rule [11], [12], [14], and the increment

is computed by

(14)

where the matrix

(15)

is a negative definite matrix, which represents the Hessian of
, however, not considering the constraints as will

be shown later in (17). The gradient of at can be com-
puted by

(16)

where is the optimal solution of the optimization problem
on the right-hand side (RHS) of (11), [14].

As shown in [11] and [12], the optimal solution for the op-
timization problem on the RHS of (11), , can be obtained
using a two-phase approach. The first phase is to solve the fol-
lowing unconstrained optimization problem analytically:

(17)

which is the optimization problem on the RHS of (11) without
considering the constraints . Let be the optimal
solution of (17), then

(18)

The second phase is to project the onto , that is projecting
onto , for , and the resulting projection is

the optimal solution of the optimization problem on the RHS of
(11), .

1) Summary of the DPPQN Method: Starting from a ,
we can use the two-phase method mentioned above to solve for
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, the optimal solution of the optimization problem on the
RHS of (11). Once is obtained, we can compute
by (16). Associated with the matrix expressed in (15), we can
solve for from (14). We then update by (13)
using an Armijo-type step-size and proceed with the next
iteration.

II. Computational Efficiency

We see that the matrix in (15) is sparse, because is di-
agonal, and the nonzero entries of represent the structure of
the connectivity of the power system, which is sparse. Thus, we
can obtain at each iteration by solving the sparse linear
(14) using sparse matrix technique. However, the most distin-
guished point for applying the DPPQN method here is that the
matrix is a constant sparse matrix for all samples
in SS. This implies that the LU factorization and the associated
memory management for the nonzero entries for the sparse ma-
trix is done once and for all. This, of course, will save tremen-
dous computational-time in solving all the dual problems (10).

III. Convergence and Solution

The in (15) is a negative definite matrix, because is pos-
itive definite and is of full rank. Thus, obtained from
(14) will be an ascent direction of the dual function (11). With
theArmijo-typestep-size [11], [12], [14],convergenceof the
DPPQNmethodhadbeenshownin[11], [12], and[14].Let de-
note the optimal solution of the dual problem (10), and
denotes the optimal solution of the optimization problem on the
RHS of (11) when . Since our primal problem (9) is a
quadratic programming problem with a strictly convex objective
function,bystrongduality theorem[3], the is thesolution
of (9). Furthermore, if the dual function tends to approach

during the solution process, we can conclude that is in-
feasible for (7) with the objective value .
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