
SUPERHIGHWAYS TECHNOLOGY AND BROADBAND VPN

Design and performance evaluation of an improved
TCP congestion avoidance scheme

Y.-C. Chan, C.-T. Chan and Y.-C. Chen

Abstract: TCP Vegas detects network congestion in its early stage and successfully prevents the
periodic packet loss that usually occurs in traditional schemes. It has been demonstrated that TCP
Vegas achieves a much higher throughput than TCP Reno. However, TCP Vegas cannot prevent
unnecessary throughput degradation when congestion occurs on the backward path. A router-
based congestion avoidance scheme for TCP Vegas is proposed. By distinguishing whether or not
congestion occurs in the forward path, it significantly improves the connection throughput when
the backward path is congested.

1 Introduction

The continuing growth of Internet traffic raises the
important issue of how to efficiently utilise network
resources. The transmission control protocol (TCP) is
currently the most popular end-to-end transport protocol
on the Internet, and it is implemented in several versions
(i.e. Tahoe, Reno, Vegasy) all of which aim to improve the
network utilisation. Among these TCP versions. Vegas can
achieve a much higher throughput than that of the other
versions [1].
TCP Vegas attempts to control and avoid congestion by

monitoring the difference between the measured and
expected throughputs. It uses the congestion window size
and measured round-trip time (RTT) to estimate the
amount of data in the network pipe and maintain extra
data between the lower threshold (a) and the upper
threshold (b). By adjusting the source congestion window
size, an appropriate amount of extra data is kept in the
network to avoid congestion whilst maintaining a high
throughput. However, a roughly measured RTT may lead
to an incorrect change in of the congestion window size. If
the network congestion occurs in the direction of ACK
packets (backward path), it may underestimate the actual
rate and cause an unnecessary decrease in the congestion
window size. Ideally, congestion in the backward path
should not affect the network throughput in the forward
path, which is the data transfer direction. Obviously, the
control mechanism must distinguish whether or not
congestion occurs in the forward path and adjust the
congestion window size precisely.
Some current networking technologies with asymmetry

network characteristics, such as asymmetric digital sub-
scriber line (ADSL), cable modem, and satellite-based
networks, greatly increase the possibility of backward path

congestion. These technologies often have vastly different
bandwidths in the two directions of the link. The
connections of both TCP Reno and TCP Vegas can suffer
severe performance degradation when backward path
congestion occurs, especially for TCP Vegas [2]. Therefore,
how to improve this deficiency in TCP Vegas now is an
important issue.
We now propose a router-based congestion avoidance

scheme for TCP Vegas (abbreviated as RoVegas hereafter).
Using the proposed scheme in the routers along the round-
trip path, a RoVegas source may obtain the queueing delay
time on the forward and backward path separately. By
judging the direction along which the congestion occurs,
RoVegas significantly reduces the impact and improves the
throughput when the backward path is congested. Further-
more, the simulation results reveal that RoVegas is
compatible with Vegas as well as amenable to gradual
deployment.

2 Previous work

Various schemes have been proposed to improve the
performance of TCP Reno for asymmetric networks
[3, 4]. However, these mechanisms are not effective for
handling the Vegas’ asymmetry problems [2].
ACK filtering (AF) is a gateway-based technique [3]. A

gateway identifies and maintains the states of individual
TCP connections. Advantage is taken of the fact that ACK
packets are cumulative. It attempts to remove redundant
ACK packets in the backward buffer to lighten the
congestion.
The key idea of ACK congestion control (ACC) is that it

extends congestion control to TCP ACK packets [3]. ACC
uses a gateway on the backward path to aid congestion
control. It tries to detect impending congestion by tracking
the average queue size in the recent past and then informs
the destination to dynamically decrease the frequency of the
ACK packets. Thus, each ACK packet effectively acknowl-
edges several packets.
Essentially, AF and ACC are designed for TCP Reno

which provides a window-based congestion control me-
chanism. TCP Vegas, on the other hand, employs a rate-
based congestion avoidance technique. Obviously, these two
approaches are not effective for handling the asymmetry
problems of TCP Vegas.

Y.-C. Chan and Y.-C. Chen are with the Department of Computer Science and
Information Engineering, National Chiao Tung University, 1001 Ta Hsueh
Road, Hsinchu 30050, Taiwan, Republic of China

C.-T. Chan is with the Telecommunication Laboratories, Chunghwa Telecom
Company Ltd., Taipei 106, Taiwan, Republic of China

r IEE, 2004

IEE Proceedings online no. 20040229

doi:10.1049/ip-com:20040229

Paper first received 13th February and in revised form 9th October 2003.
Online publishing date: 4 February 2004

IEE Proc.-Commun., Vol. 151, No. 1, February 2004 107

Elloumi et al. [5] proposed a modified algorithm for TCP
Vegas. It divides a RTT into a forward trip time and a
backward trip time in order to remove the effects of
backward path congestion. Nevertheless, it seems unlikely
to work without clock synchronisation.
Fu and Liew [6] employ an end-to-end method to

measure the actual flow rate on the forward path at a source
of TCP Vegas. The source adjusts the congestion window
size depending on the differences between the expected rate
and the actual flow rate on the forward path. However, the
TCP traffic has a bursty nature that makes it difficult to
decide when to measure the actual flow rate. Moreover, the
actual flow rate measured by the source is often greater than
the expected rate. This leads to the congestion window size
being over-increased, and therefore causing congestion in
the forward path.

3 TCP RoVegas

Different from Tahoe and Reno, which detect network
congestion based on packet losses, TCP Vegas estimates a
suitable amount of extra data to be kept in the network pipe
and controls the congestion window size accordingly. It
records the RTT and sets baseRTT to the minimum of
every is measured RTT. The amount of extra data is
between two thresholds a and b as shown in the following:

a � ðexpected � actualÞ � baseRTT � b ð1Þ
where expected, the expected throughput, is the current
congestion window size divided by baseRTT, and, actual is
the throughput which can be represented by the current
congestion window size divided by the newly measured
value of RTT.
When backward congestion occurs, the increased back-

ward queueing time will affect, the actual throughput and
enlarge the difference between the expected throughput and
the actual throughput. This results in a decrease in the
congestion window size. Since the network resources in the
backward path should not affect the traffic in the forward
path, it is not necessary to reduce the congestion window
size when only backward congestion occurs.
A measured RTT can be divided into four parts: (i) the

forward fixed delay (i.e. propagation delay and packet
processing time); (ii) forward queueing time; (iii) the
backward fixed delay; and (iv) the backward queueing
time. To utilise the network bandwidth efficiently, we
redefine the actual throughput as:

actual0 ¼ CWND
RTT � QTb

ð2Þ

where RTT is the newly measured round-trip time. QTb
is the backward queueing time and CWND is the
current congestion window size. Consequent, actual 0 is
the throughput that can be achieved if there is no backward
queueing delay along the path.
To realise our scheme, we define a new IP option named

AQT (accumulated queueing time) to collect the queueing
time along the path. According to the general format of IP
options described in [7], the fields of an AQT option are
created as in Fig. 1. The option type and option length fields
indicate the type and length of this IP option. The AQT
field expresses the accumulated queueing time that a packet
experienced along the route path. The AQT-echo field
echoes the accumulated queueing time value of an AQT
option that was sent by the remote TCP.
A probing packet is a normal TCP packet (data or ACK)

with an AQT option in its IP header. When a RoVegas
source sends out a probing packet, it sets the AQT field to

zero. An AQT-enabled router (i.e. a router that is capable
of AQT option processing) adds the queueing delay of a
received probing packet to the AQT field. The queueing
time is computed based on the queueing disciplines. The
details regarding how to compute the queueing time of each
received probing packet in various queueing disciplines is
beyond the scope of this work.
Whenever a RoVegas destination acknowledges a prob-

ing packet, it inserts an AQT option into the ACK. The
AQT field is set to zero, and the AQT-echo field is set to the
value of the AQT field of the received packet. Using the
AQT-enabled routers along the round-trip path, a RoVegas
source is able to obtain both the forward queueing time (the
value of the AQT-echo field) and backward queueing time
(the value of the AQT field) from the received probing
packet. For each ACK packet received by a RoVegas
source, the baseRTT can be measured based on the
following pseudo-code:

if (the ACK is a probing packet)

baseRTTtemp¼RTT�(AQT+AQT-echo)

/* where RTT is the newly measured round-trip time*/

if (baseRTTtempobaseRTT)

baseRTT¼ baseRTTtemp

else /* the ACK is not a probing packet) */

if (RTTobaseRTT)

baseRTT¼RTT

The following router-based congestion avoidance mechan-
ism is described to avoid any unnecessary reduction of the
congestion window size:

� Derive expected (the expected throughput) defined as the
current congestion window size divided by baseRTT.

� Calculate actual 0 as the current congestion window size
divided by the difference between the newly measured RTT
and backward queueing time.

� Let diff¼ (expected�actual 0)� baseRTT.

� Let wcur and wnext be the congestion window sizes for the
current RTT and the next RTT, respectively. The rule for
congestion window adjustment is as follows:

wnext ¼
wcur þ 1 if diffoa
wcur � 1 if diff4b
wcur if a � diff � b

8<
: ð3Þ

We now demonstrate that the proposed scheme can
improve the throughput of TCP Vegas using the perfor-
mance evaluation results presented in the following Section.

4 Performance evaluation

We perform the simulations using the network simulator
ns-2.1b9a [8] to compare the throughput between Vegas and

AQT

option length

AQT-echo

option type

Fig. 1 Fields of an AQT option

108 IEE Proc.-Commun., Vol. 151, No. 1, February 2004

proposed RoVegas. Two network topologies have been
created as shown in Figs. 2 and 3 for our performance
evaluations. The bandwidth and propagation delay of each
full duplex link are depicted in the Figures. For an access
link (i.e. a link between the host and a router), the
bandwidth and propagation delay are 2Mbit/s and 10ms.
For a connection link (i.e. a link between two routers), those
are 1Mbit/s and 20ms. Sources, destinations and routers
are expressed as Si, Di and Ri respectively. A source and a
destination with the same suffix value represent a traffic
pair. For example, S1 sends packets to D1, S2 sends packets
to D2, and so on. The FIFO (first-in–first-out) service
discipline is assumed and the size of each FIFO queue used
in routers is 50 packets.

Several variable-bit-rate (VBR) sources are used to
generate the backward traffic. These VBR sources are
exponentially distributed ON–OFF sources. The average
ON period is 10ms. During ON periods, the VBR sources
send data at 2Mbit/s. All parameters of both Vegas and
RoVegas are the same. Here a¼ 1, b¼ 3, and without loss
of generality, the data packet size is set at 1kbyte. To ease
the comparison, we assume that the sources always have
data to send.

4.1 Throughput improvement
We use a VBR source with a 900kbit/s averaged sending
rate to examine the throughput of Vegas and RoVegas
separately in the single bottleneck network as shown in
Fig. 2. The Vegas, RoVegas and VBR sources are attached
to S1, S2 and S3 respectively. A source, either Vegas or
RoVegas, starts sending data at 0 s, while the VBR source
starts at 50 s.
The results in Fig. 4 show that when the traffic source is

Vegas only, it achieves a high throughput that stabilises at
1000kbit/s until the VBR source starts sending data.
However, the performance of Vegas degrades dramatically
when the VBR traffic starts. On the other hand, RoVegas
maintains a much higher throughput than that of Vegas.
During the active period of the VBR source, the average
throughput of Vegas is 348kbit/s whereas that of RoVegas
is 776kbit/s. Note that the traffic pattern of the VBR source
is kept constant when work the throughput of Vegas or
RoVegas is examined. Thus, there appears to be some

synchronised fluctuations of throughput between Vegas and
RoVegas.
To evaluate the average throughput of Vegas and

RoVegas with different backward traffic loads, we set the
VBR traffic loads to vary from zero to one. The traffic
sources are the same as the above descriptions but the
sources of either Vegas or RoVegas and VBR start at 0 s.
The simulation period is 200 s for each sample point. From
the simulation results shown in Fig. 5, we can find that the
RoVegas obtains a much higher average throughput than
TCP Vegas, especially when the backward traffic load is
heavy. For example, when the backward traffic load is one.
RoVegas achieves a 6.75 times higher average throughput
than that of Vegas.

In the parking lot network as shown in Fig. 3, we use
three VBR sources each with a 800kbit/s averaged sending
rate to separately examine the throughput of Vegas and
RoVegas. The Vegas, RoVegas and the three VBR sources
send packets from S1, S2, and S3–S5 respectively. The TCP
source, from either Vegas or RoVegas starts sending data at
0 whereas the three VBR sources start at 50 s. From the
simulation results presented in Fig. 6, we can see that
RoVegas maintains a much higher throughput than that of
Vegas when backward congestion occurs.
The average throughput of Vegas and RoVegas with

different backward traffic loads in the parking lot network
are also examined. The traffic sources of either Vegas or
RoVegas and the three VBR sources start at 0 s. The VBR
traffic loads vary from zero to one accordingly. From the
simulation results shown in Fig. 7, RoVegas acquires a
much higher average throughput than TCP Vegas,
especially when the backward traffic load is heavy.

S1

R1

1 Mbit/s,
20 ms

D1

2 Mbit/s,
10 ms

S2

S4

S5

D3

D2

D4

D5

S3

R2

Fig. 2 Single bottleneck network topology

R1

S1

S2

D3

1 Mbit/s,
20 ms

2 Mbit/s,
10 ms

D1

D2

R2 R3 R4

D4 D5

S5S3 S4

Fig. 3 Parking lot network topology

0

200

400

600

800

1000

1200

0 25 50 75 100 125 150 175 200

time, s

 th
ro

ug
hp

ut
, b

it/
s

(×
10

3)

Vegas
RoVegas

Fig. 4 Throughput comparison between Vegas and RoVegas when
the backward traffic load is 0.9 in the single bottleneck network
topology

0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
traffic load of VBR source

av
er

ag
e

th
ro

ug
hp

ut
, b

it/
s

(×
10

3) Vegas
RoVegas

Fig. 5 Average throughput as a function of backward traffic load
for Vegas and RoVegas in the single bottleneck network topology

IEE Proc.-Commun., Vol. 151, No. 1, February 2004 109

Obviously, we have demonstrated that RoVegas sig-
nificantly improves the connection throughput when the
backward path is congested.

4.2 Compatibility
In this Section, we investigate the RoVegas’ compatibility to
decide whether or not RoVegas is compatible with Vegas.
By using the single bottleneck network, two Vegas sources
are attached to S1 and S4, two RoVegas sources
are attached to S2 and S5, and one VBR source with
a 900kbit/s averaged sending rate is attached to S3. All
the Vegas and RoVegas sources start sending data at 0 s,
whereas the VBR source starts at 50 s.
By observing the result in Fig. 8, all the Vegas and

RoVegas sources share the bandwidth of the bottleneck link
fairly until the VBR source starts sending data. From the
time point at 50 s, the throughput of the sources splits into
two groups. The one with RoVegas sources achieves a
much higher throughput than the one with Vegas sources.
In the meantime, there is still some bandwidth left on the
bottleneck link. During the active period of the VBR
source, the average throughput of S1, S4 and S2, S5 are
140.5, 140.3 and 296.5, 289.6kbit/s respectively. Through
this simulation, we can claim that the Vegas and RoVegas
sources are compatible with each other. However, RoVegas
achieves a much higher throughput than that of Vegas
when the backward path is congested.

4.3 Gradual deployment
It cannot be expected that all routers on the Internet are
AQT-enabled while the AQT option is a newly defined IP
option. In this simulation, we try to explore whether a single
AQT-enabled router on the end-to-end path can achieve
benefits from the RoVegas mechanism.

The parking lot network is used to examine the
throughput of Vegas and RoVegas separately, and here
only R2 is AQT-enabled. Three VBR sources each with a
800kbit/s averaged sending rate are used to generate
backward traffic. The Vegas, RoVegas and three VBR
source are attached to S1, S2 and S3�S5 respectively. A
source, either Vegas or RoVegas starts sending data at 0 s,
while the three VBR sources start at 1 s.
From the simulation results depicted in Fig. 9, we can

find that despite only one AQT-enabled router R2 is being
located on the routing path, RoVegas still maintains a
higher throughput than that of Vegas. The simulation
results imply that the proposed mechanism is amenable to
gradual deployment to reduce the impact of backward
congestion. This feature may encourage the gradual
adoption of RoVegas on the Internet.

5 Conclusions

A router-based congestion avoidance scheme for TCP
Vegas has been proposed. In comparison to other schemes
[3–6] RoVegas provides a more realistic and effective way to
improve the connection throughput of TCP Vegas when the
backward path is congested. Nevertheless, there is still some
bandwidth left on the forward path when the backward
congestion occurs. The question of how to advance the
utilisation of the forward path in such a situation will be the
subject of our further work.

6 References

1 Brakmo, L., and Peterson, L.: ‘TCP Vegas: End-to-end congestion
avoidance on a global Internet’, IEEE J. Sel. Areas Commun., 1995, 13,
(8), pp. 1465–1480

0

100

200

300

400

0 25 50 75 100 125 150 175 200
time, s

th
ro

ug
hp

ut
, b

it/
s

(×
10

3)
Vegas
RoVegas

Fig. 9 Gradual deployment test when only R2 is AQT-enabled in
the parking lot network topology

0

200

400

600

800

1000

1200

0 25 50 75 100 125 150 175 200
time, s

th
ro

ug
hp

ut
, b

it/
s

(×
10

3)

Vegas
RoVegas

Fig. 6 Throughput comparison between Vegas and RoVegas when
the backward traffic load is 0.8 in the parking lot network topology

0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
traffic load of VBR source

av
er

ag
e

th
ro

ug
hp

ut
, b

it/
s

(×
10

3) Vegas
RoVegas

Fig. 7 Average throughput as a function of backward traffic load
for Vegas and RoVegas in the parking lot network topology

0

200

400

600

800

1000

1200

0 25 50 75 100 125 150 175 200
time, s

th
ro

ug
hp

ut
, b

it/
s

(×
10

3)

Vegas 1
RoVegas 1
Vegas 2
RoVegas 2
bottleneck

Fig. 8 Compatibility test for two Vegas and two RoVegas
connections when the backward traffic load is 0.9 in the single
bottleneck network topology

110 IEE Proc.-Commun., Vol. 151, No. 1, February 2004

2 Fu, C., Chung, L., and Liew, S.: ‘Performance degradation of
TCP Vegas in asymmetric networks and its remedies’. Proc. IEEE
Int. Conf. on Communications ICC’01, Helsinki, Finland, June 2001,
pp. 3229–3236

3 Balakrishnan, H., Padmanabhan, V., and Katz, R.: ‘The effects of
asymmetry on TCP performance’. Proc. ACM MobiCom’97, Buda-
pest, Hungary, Sept. 1997, pp. 77–89

4 Balakrishnan, H., and Padmanabhan, V.: ‘How network asymmetry
affects TCP’, IEEE Commun. Mag., 2001, 39, (4), pp. 60–67

5 Elloumi, O., Afifi, H., and Hamdi, M.: ‘Improving congestion
avoidance algorithms for asymmetric networks’. Proc. IEEE Int.
Conf. on Communications ICC’97, Montreal, Canada, June 1997,
pp. 1417–1421

6 Fu, C., and Liew, S.: ‘A remedy for performance degradation of TCP
Vegas in asymmetric networks’, IEEE Commun. Lett., 2003, 7, (1),
pp. 42–44

7 Postel, J.: ‘Internet Protocol’ RFC791, Sept. 1981
8 http://www.isi.edu/nsnam/ns/

IEE Proc.-Commun., Vol. 151, No. 1, February 2004 111

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

