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An Optimal Algorithm for Sampled-Data Robust 
Servomechanism Controller Using Exponential Hold 

Yung-Chun Wu and Nie-Zen Yen 

Abstracf- A new structure of sampled-data robust servomechanism 
controller using exponential hold is developed. An optimal algorithm is 
also proposed for choosing the controller parameters of two important 
special classes. The algorithm is derived by minimizing a square-error 
performance index, and the solution can be solved from a discrete-time 
algebraic Riccati equation. 

I. INTRODUCTION 
The problem of robust servomechanism controller design has been 

widely considered in the literature (see reference). Generally, the 
purpose for one to construct a robust servomechanism controller is to 
attain the capability of asymptotic tracking and disturbance rejection 
with the permission of plant variations. In the literature, a general 
structure of linear time-invariant robust servomechanism controllers 
has been characterized [2]-[4], and the well-known “continuous 
internal model principle” has been given [8], [5] ,  [7]. With this 
principle, it can be seen that if the steady-state value of the reference 
input or the disturbance is not constant, then in general, one cannot 
use sampled data with zero-order hold to construct a ripple-free [7] 
robust servomechanism controller because ripple errors would occur 
even if there is no tracking error at the sampling instants. 

In this note, a new structure of sampled-data robust servomech- 
anism controllers using exponential hold is developed. Such a struc- 
ture is convenient for design because it leads to a simple closed-loop 
form. In particular, controller design for two important special cases 
classified as the “minimal-order class” and the “one-step prediction 
class,” respectively, are derived. For the former class, the controller 
has the simplest structure so that it needs less on-line computations. 
For the later class, on-line control values are calculated by one step 
ahead of the output measurements so that it allows a leisure time 
to implement the control scheme. An optimal algorithm for choosing 
the parameters of the two important special classes is also developed. 
The algorithm is derived by minimizing a square-error performance 
index, and the solution can be solved from a discrete-time algebraic 
Riccati equation. A distinctive feature of the algorithm is that the 
solution does not depend on the weighting matrix of the performance 
index, but only on the correlation of the initial values of system state, 
reference input, and disturbance. Hence, the statistical information of 
the initial conditions becomes very important to this algorithm. 

11. PRELIMINARY 

A. System Description 

of a linear time-invariant system described as follows: 
Consider the command tracking and disturbance rejection problem 

(1.4 z ( t )  = A z ( t )  + Bu(t)  + F d ( t )  
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where z E R” is the state, U E R” is the control, y E R” is 
the measurable output, d E R” is the disturbance, r E R” is the 
command or reference input, and e E R” is the tracking error. The 
reference input and the disturbance satisfy the following models: 

&(t )  = Arzr(t )  kd(t)  = A d Z d ( t )  

r ( t )  = Crzr( t )  d ( t )  = C d z d ( t )  (2) 

where zT E Rmp and Z d  E Rmd.  The system described above is said 
to have no transmission zero [2] at the eigenvalues of A, and Ad, if 

Vs E {eig(Ar) U eig(Ad)} 

(3) 
where I ,  denotes the n-dimensional identity matrix, 0, denotes the 
m - dimensional zero matrix, eig(#) denotes the set of eigenvalues 
of a matrix #, and eig(A,) c Cf, eig(Ad) c C+, where C+ is the 
right-half complex plane including the imaginary axis. 

B. Robust Servomechanism Controller 
A controller U = f ( e ,  r )  (with input e, r and output U) is called a 

robust servomechanism controller of system (l), if it can satisfy the 
following three conditions ([4], [6]): 

Condition 1: The resultant closed-loop system is asymptotically 
stable. Thus, if r ( t )  E 0 and d ( t )  0, then z( t )  + 0 and u( t )  + 0 
as t -+ CO. 

Condition 2: Asymptotic tracking action occurs, i.e., e ( t )  + 0 as 
t + CO for all initial conditions of 2, z,, z d  and the controller state. 

Condition 3: Condition 2 remains true for any parameter vari- 
ations in A, B ,  C, F, and G as long as Condition 1 remains 
true. 

C. Deviation Model 
It is known [4] that for every linear time-invariant robust ser- 

vomechanism controller of system (l), there exist matrices T11 E 

that as t -+ CO, then z(t)  + zss(t )  and u ( t )  + uss( t )  for all z (0 ) ,  
z,(O) and zd(0) ,  where 

zss( t )  = T11zr(t) + T w d ( t )  and uss( t )  = T21z,(t) + Tzzzd(t) 
(4 .4 

denote the ultimate steady-state trajectories of z and U, respectively. 
Thus, by defining the “deviation variables” as [ lo]  

Rnxmr,  Ti2 E R n X m d ,  Tzl E RmXmp,  and T22 E RnLxmd,  such 

&(t) = Z ( t )  - z s s ( t )  and &(t)  = u( t )  - u,g(t) (4.b) 

and using the fact that eig(A,) C C+ and eig(Ad) C C+, it can 
be easily checked that the deviation variables satisfy the following 
model: 

(5 .4  

e ( t )  = CSz(t) (5.c) 

&(t)  = A6z(t)  + Bbu(t) .  

D. An Augmented Model 
Let 

P-1 

X(S) = sp - c a t s z  
S=O 
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be the lowest order polynomial satisfying Theorem I :  If the matrix 

P - '  is stable (i.e., all eigenvalues lie inside the unit complex circle), then 
the following is a robust servomechanism controller of system ( I ) :  A(A,,) = -4; - cat;'; = 0. (7) 

and 

(14.b) 

(8,b) 
where k = 0, I ,  2:.., and 0 E [a. T ) .  

condition for .As to be stable is that the triple 

(IOIm a l l n L  n21m ."  c l p - l I ? , L  

P = [ I ,  I 0 7 , , x ( p - , ) , , l l  Proof: By (11)  and (12.a)-(12.c), i t  is clear that a necessary 

L? on x ,??I' 

,ni>x r> 1,np  
(8.c) 

is stabilizable and detectable. This in turn implies that (c, -1, B )  
is stabilizable and detectable, and the transmission zero assumption 
(3) holds (a simple rank test easily checks this fact). Thus, a linear 
time-invariant robust servomechanism controller of system ( I )  can 
be found ([2]-[4]), and the deviation model ( 5 )  and the augmented 

(16) 

1s a selected nonsingular matrix, Then by (2), where T.I. E R m p X r " p  . 
(4,.-4, (7), and (8), it is clear that satisfies the following: 

i ( t )  = oE(t) (9.a) model ( I O )  exist. Therefore, by defining 

i ( t )  = i ( t )  - E ( t )  u S m  = rut) (9.b) 

where 9 = U*C2It7-' and r = pTI7-'.  Thus, by combining ( 5 )  and 
(9), and using (4.b), one obtains the following augmented model: 

( 1 O h )  

Notice that the deviation model ( 5 )  and the augmented model 
(10) exist as long as a linear-time invariant robust-servomechanism 
controller of system ( I )  can be found. 

111. SAMPLED-DATA ROBUST SERVOMECHANISM CONTROLLER 

A. General Class 
Let T > 0, and define 

and subtracting (9) from (14), one obtains 

(17.b) 

By combining (17) and the devlatlon model ( 5 ) ,  one obtalns the 
following closed-loop system: 

h ( ( k +  1)T) 

It is easily checked that 

i . e . ,x  = exp( .4T) ,o  = e x p ( o T )  a n d 3 1  = si exp(dH)Drexp[o  
( T  - 6')IdO. Also, let L2 E Rrnpxrn and H L  E RmpXn'  be two 
constant matrices, $1(8) E RniX"' and $ l ( H )  E R"'X7r' be two 
piecewise continuous functions to be chosen on [O. T ) ,  and define 

L? = C, [E:] E R1'lX"' 

and 

H:, = c', 

so that by giving 

Since A ,  is stable, all the closed-loop poles lie inside the unit complex 
circle. Thus, it is true that h ( k T )  -t 0, E ( k T )  4 0 and h ( k T )  -+ 0 
as k 4 x. By (lO.b) and (17.b), it is also true that e ( k T )  -+ 0 and 

( 1 2 , ~ )  
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I Y (kT) / T  

Fig. 1. The sampled-data robust servomechanism controller of (14.a) and 
(23). 

& ( t )  + 0 as t + 03. Since the deviation model (5) is an ordinary 
continuous model, one has &(t)  + 0 and e ( t )  + 0, as t + ma. 
Hence, the asymptotic tracking action occurs as long as A, is stable. 
Moreover, from (21), it is clear that the resultant closed-loop system 
is asymptotically stable if and only if A, is stable (if r =- 0 and 
d = 0, then one can treat z as 6% and as 0, so that for any 
matrices A, B ,  and C, the asymptotic tracking action occurs as long 
as the resultant closed-loop system is asymptotically stable. Thus, the 

Remark I :  If (A,  B) is controllable, then for any matrices L1 
and H I ,  there exist infinitely many choices of PI(@) and y z ( 0 )  to 
satisfy (12.b) and (12.c), respectively. In particular, if n 5 mp and 
rank [B+] = R [no loss of generality by increasing the number of 
modes of A(.)], then a simple possible choice may be the use of an 
exponential hold as follows: 

theorem is proved. 0 

where 

Remark 2: From (21) and (20), one has %(U) = 0 F d  h(kT)  = 
Cu[6&(kT)iT(kT)]' for all k 2 1. Since h(kT)  and [(kT) can be 
calculated from (27.a) as long as e ( ( k  - 1)T) is measured, therefore, 
from (27.b), the values of u(kT + 0) in-between the sampling 
instances kT and (k + l)T can be calculated. The class name of 
(27) reflects this prediction property. 

IV. AN OPTIMAL APPROACH 
In the rest of this note, one assumes that (C, A, B) is controllable 

and observable, and both the minimal order class (25) and the one- 
step prediction class (27) are not empty (i.e., there exist L1, Lzd and 
H I ,  H Z  such that both the matrices (24) and (26) are stable). Besides, 
we select a quadratic performance index as follows: 

where Q E R ( n + m p ) x ( " + m p )  is positive-definite, and i (kT)  = 
[(]ET) - €(kT). Notice that the index serves as a measure of the 
deviation errors from the ultimate steady-state trajectories. Now, it is 
desired to find the optimal gains L I ,  L z ,  HI, and H z .  such that the 
index J subject to either class of (25) or (27) is minimized. 

A. Minimal-Order Class 
Since the minimal-order class (25) is a special case of the general 

class (14) with yz(8) = 0 (i.e., HI = O), H Z  = 0, and H3 = 0, thus 
the closed-loop system (21) can be simplified as 

B. Two Special Cases 
By letting pz(0) = 0 (i.e., HI = 0) and H Z  = 0 or VI(@) = 0 

(i.e., L I  = 0) and LZ = 0, respectively, then Theorem 1 leads to the 
following two corollaries. 

Corollary I :  (Minimal-order class) If the matrix 

is stable, then the following is a robust servomechanism controller 
of system (1): 

i((k + 1 ) ~ )  = ? i i ( k ~ )  + Lze(kT)  (25.a) 

Since the closed-loop system is asymptotically stable (a necessary 
condition of the robust servomechanism controller), the index J 
subject to (29) equals [13]: 

J = Tr(V@) (30) 

where @ is a correlation matrix given by 

and V E R ( n + m p ) x ( " + m p )  is a positive-definite matrix solved from 
the following Lyapunov equation: 

- -  _ -  
A "-'I + [::]IC o m x m p ~ ) ~ v (  [o A 41 u(kT + 0) = r exp(40)€ (kT)  + p ~ ( B ) e ( k T ) .  (25.b) 

( [ O m p x n  4 m p X n  

+ [ E : ]  [C O m x m p ] )  - V + Q = 0. (32) Corollary 2: (One-step prediction class) If the matrix 
- _  

(26) By approximating @ by * + ~ l ~ + ~ ~ ,  where E is a small positive 
A, = [o A F t ]  + [::ICu m p x n  cb _. - -  

is stable, then the following is a robust servomechanism controller 
of system (1): 

number, and, without loss Of generality, by assuming @ to be Positive- 
definite, one obtains the following result 

Theorem 2: Assume @ is positive-definite, then the optimal gains 
LI  and LZ of the sampled-data robust servomechanism controller 
(25) to minimize the performance index (28) is given by 

i ( ( k  + 1)T) 

- 1  
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where P E R(n+nLp)  X ( r ' + n ' ~ ' )  is a positive-definite matrix solved 
from the following algebraic Riccati equation: 

-P+.=O. (33.b) 

Proof: To minimize (30) subject to (32), we introduce the 
following augmented cost [ 121: 

where P is the associated Lagrange multiplier. Letting d t J r / d 1 7  = 0. 
one obtains 

On the other hand, by letting L = [ L ;  
one obtains 

L;]' and d.J,./dL = 0, 

Since Q is positive-definite, the solution 1. of the Lyapunov equation 
(32) is positive-definite, hence (35.b) can be reduced to (33.a). 
Furthermore, by substituting ( 3 3 4  into (35.a), one obtains (33.b). 
Hence, the necessity of the theorem is proved. Besides, by (30), (32) 
and (35.a), one has 

= TrjPL)). (36 )  

It is known [l], [9] that the algebraic Riccati equation (33.b) and 
(33.a) has a unique stable solution which minimizes the index (36), 

U so that the theorem is proved. 

B. One-Step Prediction Class 
Since the one-step prediction class (27) is a special case of the 

general class (14) with $1(0) = 0 (i.e., L 1  = 0), L2 = 0 and 
L? = 0, the closed-loop system (21) can be simplified as 

_ _  
O,((k + 1)T) 
E ( ( k  + 1)T) 

(37) 

for all k 2 1. Assume h ( 0 )  = 0, then from (I@, one has 

Notice that *, is independent of H 1  and H2, so that the minimization 
of the index J is equivalent to the minimization of the following index 

Theorem 3: Assume ., is positive-definite, then the optimal gains 
H1 and H P  of the sampled-data robust servomechanism controller 
(27) to minimize the performance index (28) with initial condition 
h ( 0 )  = 0 is given by 

where P, E R(n+mp)X(nfmp)  is a positive-definite matrix solved 
from the following algebraic Riccati equation: 

_ -  _ -  _ -  [,, '-I Et ]P , [  A ! t IT - [ --I Et]" 
r n p x n  0 o m p x n  _ -  Q O m p x n  0 

. (C,  P, e,' ) - I  e, P, [,, A ! T I T  - P, + ., = 0. (41.b) 
m p x n  0 

Proof: Replacing [C 0, x m p ]  by C, and 9 by 9, in Theo- 
0 rem 2, the result follows directly. 

C. Computation of the Correlation Matrix 
A convenient method to calculate the correlation matrix P (or 

.,) can be done by way of the augmented model (10). To do so, 
subtracting (10) from (1) and using (4.b), one obtains 

(42.a) 

Now, define 

and differentiating (43) continuously, one obtains 
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1 Onxm, FCdA:-f-l 

-'O 2 4 6 8 10 
for q = 0, 1, 2 , . . . , g  - 1 (except N30 = O m X ( m p + m d ) ) .  Since 
(C, A) is observable, the augmented model (10) is observable, hence 

integer g, so that one obtains 
rank NZ = n + p m  can be guaranteed by a sufficiently large positive kT kT 

Fig. 2. The ramp tracking response of example 1 using sampled-data con- 

where 
the reference input satisfies 

N = (N,"z)-'N,'(N1 - N 3 )  E R(n+mp)X(md+mF). (46.b) 

0 1  
Now, from (4.b), (16) and (46.a), one has ; r ( t )  = [o o ] z r ( t )  

Hence, the correlation matrix Q equals where zd(0)  = d and y is a positive number. By replacing u(t - 1) 
by ii(t) to remove the time-delay, selecting T = 1, choosing 

9 = [ 7;;; ] [ 7;;; ] ' + [ 7;;; ] E ( [:::)I z d  (0) ') S' o=[: 4, r = [ i  01 (54) 

+SE ( [zv(2)]) [:;;;IT + S E  ( [:(::)I [,,$)))I ') S'. and approximating 9, [calculated from (50) and (39)] by 9, + 
lO-'yl3, then from theorem (3),  a one-step prediction optimal 
sampled-data robust servomechanism controller is 

Zd(0) Z d ( 0 )  

(49) 
z d  (0) 

In particular, if i ( 0 )  = 0, then Q is simplified to [E] 
(55.a) 

V. EXAMPLES 
Example 1: Consider a linear time-delay process described as 

follows (e.g., a tank temperature control [7], or a paper machine [ 111): ii(kT + e )  = u((k - 1)T + e )  

e ( t )  = Y ( t )  - r ( t )  where h(0)  = 0 and i ( 0 )  = 0 are assumed. Notice that (55) is an 
admissible controller. The responses of the time-delay process with 
this controller is shown in Fig. 2. where U(@) = 0 for 8 E ( - l , O ) ,  d is a constant disturbance, and 
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Example 2: Consider the following system (Rosenbrock problem 
~41): 

1 0 0 -11 1 0 1 /21  
z ( 0 )  = 0 

3 -311 -112 

This system is to track a sinusoidal signal described as: 

r ( t )  = [ 1 0 ]z.lti 
1 0 

where z,(0) is a random vector with correlation 

E(z,.(O)z:(O) ) = 

(56. a) 

(56. b) 

(57.a) 

(57.b) 

( 5 8 )  

where is a positive real number. Selecting 7 = 0.5, choosing 

r o T  0 0 1  

and approximating \k (calculated from (50)) by * + 10p’;,I~, 
then from Theorem 2, a minimal-order optimal sampled-data robust 
servomechanism controller is 

0 0 

i ( ( k + l ) T ) =  r, :: ;; ; ] € ( ( k + l ) T )  

0 0 -1 0 
r 2.9014 -12.31721 1 e(  X.T) (60.a) 

1.6216 -1.6230 + I  -1.27.56 7.3528 
1-1.56-12 3.56571 

/ [-6.5989 6.60121 ) 

(60.b) 

where i ( 0 )  = 0 is assumed. The responses of the system with this 
controller is shown in Fig. 3. 

VI. CONCLUSION 
In this note, a new structure of sampled-data robust servomech- 

anism controller using exponential hold is presented. The proposed 
structure is simple for design and can be easily implemented by 
digital computers. An optimal algorithm is also derived for choosing 
the parameters of the two important special classes. The solution of 
the algorithm can be solved from a discrete-time algebraic Riccati 
equation. 

-0.5 j -051 

yO- 30 4o 1; - -~~ 
10 20 30 40 

kT kT 

Fig 3 The sinusoidal tracking responw of Example 2 using sampled-data 

controller (60) with initial state [z‘(O)f 
y = [yl y2]‘ and e = [el e2Ir are plotted. 

2;(0)] = [ O O O !  011, where 

It is of interest that the solution of the derived algorithm does not 
depend on the weighting matrix of the performance index, but only 
on the correlations of the initial values of the system state, reference 
input and the disturbance. In a general robust servomechanism 
controller problem, the uncertain signals to be tracked or the unknown 
disturbance can be treated as the random vector of the initial values, 
so that from a statistical viewpoint, the derived algorithm can reflect 
the capability of treating such uncertainty. 
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