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Abstract

The plane wave method is normally applied to determine the eigenfrequency of a two-dimensional (2D) photonic crystal. A

slight change to this eigenvalue equation makes the wave number its eigenvalue providing a direct means to determine the

attenuated length of the evanescent modes at the frequency within the photonic band gap. The contour of the length of

attenuation of the evanescent modes in a square lattice can be determined using the proposed wave number eigenvalue equation.

The wave number eigenvalue equation for the two-dimensional (3D) photonic crystal can also be obtained using a derivation

similar to that for the 2D photonic crystal. Possible applications of the proposed calculation-method are presented.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Photonic crystals are generally artificial three-dimen-

sional (3D) periodic dielectric structures in which electro-

magnetic waves with frequencies in a certain range cannot

propagate [1]. They have unique characteristics and several

useful applications, including for example, suppressed

spontaneous emission [2] and thermal emission [3] and

strong confinement of light in defects [4]. Several

waveguides can be constructed from the defects created in

the photonic crystal. The coupling between defects is

dependent on the attenuation length of the electromagnetic

(EM) field. The attenuation length of the EM field has not

been determined in detail for any structure. However, all the

penetration depth in all ~k directions can be obtained for a

given frequency if the contours of the map of the attenuation

length at a constant frequency can be obtained. This study

proposed a method for so doing.

Constant-frequency contours have recently been applied

to tunable photonic band gaps for tuning static electric fields

or static magnetic fields [5]. Also, Luo et al. [6] applied the

constant frequency contour in ~k space to find the condition

under which all-angle negative refraction occurs in a square

lattice that includes cylindrical dielectric rods in a two-

dimensional (2D) photonic crystal. Most researchers begin

with the frequency eigenvalue equation obtained by the

plane wave method, to determine ~k values indirectly at a

given frequency, and thus obtain the constant frequency

contour. This study turns the frequency eigenvalue equation

into the wave number k eigenvalue equation in any arbitrary
~k direction. Section 2 will derive these expressions. Section

3 presents the resulting field attenuated length in the square

lattice that includes the cylindrical rods to illustrate the

method. Finally, the results are discussed and a conclusion is

drawn.

2. Method

The plane wave method has been developed and

extensively applied to calculate the photonic band structure

of the photonic crystals. Consider some key equations. The
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frequency eigenvalue equation for the magnetic field in a

periodic dielectric and magnetic medium is

2
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P

~G
eið~kþ~GÞ·~r ~H~k; ~G

; the dielectric permittivity eð~rÞ ¼P
~G

ei ~G·~reð ~GÞ; the magnetic permeability mð~rÞ ¼
P

~G
ei ~G·~rmð ~GÞ;

e21
~G ~G0 ; e21ð ~G 2 ~G0Þ and m~G ~G0 ; mð ~G 2 ~G0Þ:

For a 2D photonic crystal, the propagated light exhibits

E-polarization (TE) modes and H-polarization (TM) modes.

E or H-polarization is E or H along the axis of the rods and

in the z-direction. Also, set kz ¼ 0: In Eq. (1), ðm; ~HÞ and

ðe ; ~EÞ can be exchanged for each other. The TM modes are

considered here because the TE modes can be derived

similarly. Eq. (1) can be written as
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This equation is the eigen frequency equation for a given

wave vector ~k: Now, multiply both sides of Eq. (2) by e ~G00 ~G
;

and then sum over ~G on both sides:X
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e21
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From Eq. (3),
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Combining Eq. (4) with an identity kH
z;~k; ~G00 ¼ k

P
~G0 �

d ~G00 ~G0Hz;k; ~G0 ; yields a matrix equation,
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where (respectively) B and I ¼ ðd ~G00 ~G0 Þ are the N £ N zero

matrix and the N £ N identity matrix, A and B are N £ N

matrices. In Eq. (5), that two different quantities have the

same subindex implies that they are summed. More

specifically, in Eq. (5), the column vector has 2N elements

and the matrix has 2N £ 2N elements. Here, N is the number

of the reciprocal lattice vectors truncated in the plane wave

expansion of ~H: Eq. (5) is clearly an eigenvalue equation for

the wave number k at a given angular frequency v in the

wave vector direction, k̂: Hence, a constant frequency

contour in k-space can be obtained from Eq. (5). Eq. (4) may

be rewritten in another form and recast into a matrix

equation as follows.
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for a given ky and angular frequency v; where
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are N £ N matrices. The wave number eigenvalue equation

for a 3D photonic crystal can also be derived in a manner

similar to the derivation for a 2D photonic crystal. The wave

number eigenvalue equations involve 6N £ 6N matrix. The

computation time is much greater than that for a 2D

photonic crystal, which is one reason why a 2D photonic

crystal was chosen to illustrate the proposed method. Eq. (6)

can also be used to determine a constant frequency contour

in ~k space. However, the eigenvalue k and kx in Eqs. (5) and

(6), respectively, may be complex [8]. Then we may get

positive value of imaginary part of k: The reciprocal of the

length of attenuation of the evanescent wave hence may be

obtained when its frequency is within the band gap of E-

polarization or H-polarization or both.

3. Results and discussion

A well-known result concerning the photonic band

structure of a square lattice with a cylindrical rods is

considered to illustrate the method. The chosen dielectric

material is GaAs with dielectric constant ea ¼ 11:43: The

background is air (with a dielectric constant eb ¼ 1). Here,

the number of plane waves is N ¼ 19 £ 19 and the radius of

each cylindrical rod r ¼ 0:15a; where a is the side of the

unit cell of the square lattice. Fig. 1 depicts the resulting

band structure. The lowest band gap is in bands 1 and 2 in E-

polarization mode. Between bands 1 and 2 is one H-

polarized band. Hence, at a frequency v of 0:4ð2pc=aÞ; the

frequency is in the first band gap of E-polarized band and a

wave propagates in the H-polarized mode. Therefore, the

constant-frequency map of H-polarization for pure real k

values exists, as plotted in Fig. 2. For E-polarization at that

frequency, no pure real k value is allowed for any waves. In

such a case, the allowed k values are complex. Thus, the

length of the attenuation lp must be defined to enable an

evanescent wave to be exp½2IminðkÞlp� ¼ expð22pÞ; where

IminðkÞ is the minimum positive value of the imaginary part

of complex k: Fig. 3 shows the results of the contour map of

a=lpðuÞ in the main figure. The inset in the figure shows the

numerical values (dots and thick curve) of the real part of k:

The thick curve represents the real part of k of which the

imaginary part is the smallest at each direction. The
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numerical values of real part of k calculated from Eq. (5)

seem to be spread randomly as shown in dots. In fact, there

exists some regular behavior. Let us think a simple situation,

if the medium is air, ~k obeys l~k þ ~Gl2 ¼ ðv=cÞ2: This is

equivalent to k ¼ k̂· ~G ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lk̂· ~Gl2 þ ðv=cÞ2 2 G2

q
and most of

the real part of k equals to k̂· ~G: Hence, the values of real part

of k for u ¼ 08 and 458 are concentrated on origin, origin and

corner, respectively. For other angles, the behavior is more

complicated, we don’t want to discuss them deeply. Now, let

us come back the main figure, it indicates that the attenuated

length is lp ¼ 6:8540a along u ¼ 08 and lp ¼ 3:3272a

along u ¼ 458 (diagonal direction of square lattice). For

instance, when two parallel line defects that point along the

edge of square lattice are separated by a distance of 7a or

more, no coupling or cross talk occurs. Similarly, when two

parallel line defects in the diagonal direction are separated

by a distance of 4a or more from each other, then again no

coupling or cross talk occurs. Hence, the map of the

attenuated length in ~k-space presents data that are valuable

in designing several waveguides. The data also support the

designing of waveguides without leakage from the photonic

crystal.

4. Conclusion

That more than a decade after Ho et al. [7] proposed the

plane wave method to calculate the photonic band structure,

no method has been proposed for directly calculating the

wave number eigenvalue equation in that method is

surprising. This study introduced a simple transformation

of the frequency eigenvalue equation into a wave number

eigenvalue equation. Such a transformation can be extended

to a 3D photonic crystal. The proposed method for obtaining

a constant frequency contour and a map of the length of

attenuation in k-space for a 2D photonic crystal, have also

been illustrated. The constant frequency contour provides

valuable information for understanding some newly

observed phenomena exhibited by photonic crystals. The

Fig. 1. Photonic band structure for a square lattice with GaAs

cylindrical rods in a background of air. The length of side of the unit

cell of the square lattice (shown in the inset) is a: The dielectric

constant of GaAs is ea ¼ 11:43: The radius of the rod is 0:15a: The

solid lines and the dashed lines denote bands of the TE and TM

modes, respectively.

Fig. 2. Constant frequency v ¼ 0:4ð2pc=aÞ map of H-polarization is

for real k values. The square marks the first Brillouin Zone.

Fig. 3. The contour map of a=lpðuÞ for E-polarization for v ¼

0:4ð2pc=aÞ in polar coordinates, where u is measured from a

horizontal line anti-clockwise and the square marks the first

Brillouin Zone. The desired result is the deepest penetration at

each angle, which is proportional to the imaginary part of k; so this

part of k is plotted as a thick curve in the inset, in which polar

coordinates are used and the length scale is 2p=a: Both the dots and

the thick curve denote the real part of eigenvalue k:
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map of attenuated length is useful in designing the

waveguides made from photonic crystal.
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