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Abstract

We consider the problem of decomposing a complete graph into the Cartesian product of
two complete graphs Kr and Kc. This problem originated from the clone library screening. We
give a general method of constructing such decompositions using various sorts of combinatorial
designs. In particular, for r = 3 and c = 3, we show that such a decomposition exists for all n
satisfying some simple necessary conditions.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

De@ne G(r; c) = Kr × Kc as the grid-block with r rows and c columns where each
grid point is a vertex. Two vertices are collinear if they are on the same grid line (row
or column). The problem is to partition the complete graph Kn into G(r; c)’s, or each
pair of vertices being collinear exactly once. The special case r = c =

√
n is called a

lattice square (see Yates, 1940). Construction of lattice squares for
√
n an odd prime

power was given in Raghavarao (1971). Hwang (1995) cited an application to clone
library screening where (n+ 1)=2 copies of n clones are stored in (n+ 1)=2

√
n×√

n
grid-blocks with every clone appearing exactly once in each grid-block.
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Clones are either positive or negative. The goal of a library screening is to iden-
tify all positive clones. Economy in both time and money requires that the clones be
assayed in groups (each group is called a pool) and the assays are conducted in paral-
lel. A pool array gives a negative outcome if and only if all clones contained in it are
negative.
It is convenient to use the rows and the columns as pools. A positive clone will yield

a positive outcome for both its row and its column. Therefore, the clone situated at the
intersection of a positive row and a positive column is a prime suspect for a positive
clone. But, it does not have to be one if the grid-block contains more than one positive
clone since d positive clones may generate d positive rows and d positive columns
with a total of d2 intersections. Hence, one needs other grid-blocks on the same set of
clones to remove the ambiguities. Clearly, the diHerentiability would be bigger if the
grid-blocks are not similar. The requirement of “unique collinearity” results the need
of dissimilarity (see Barillot et al., 1991 and Berger et al., 2000).
Lattice squares have also been extended to lattice rectangles (see Harshbarger, 1947)

by allowing r �= c. However, the requirement of rc = n is essential for both lattice
squares and lattice rectangles. In most practical uses, the grid-block has size limitation
and n is large. Then we have to consider storing copies of clones on G(r; c)’s, r ¡

√
n

or c¡
√
n, while preserving the unique collinearity condition. This is the subject matter

of the current paper. Thus the novelty of our design is to free r and c from the
requirement rc = n.
Let Dr×c(�) denote a decomposition of a graph � into G(r; c)’s. We @rst give nec-

essary conditions for the existence of Dr×c(Kn).

Lemma 1. Necessary conditions for the existence of a Dr×c(Kn) are

(i) (r + c − 2)|(n− 1), and
(ii) rc(r + c − 2)|n(n− 1).

Proof. Each vertex of Kn has n − 1 neighbors while each vertex of a G(r; c) has
r + c − 2 neighbors in that grid-block, which implies (i).
Also, there are n chooses 2 (symbol) pairs of neighbors in Kn while each G(r; c)

generates rc(r+c−2)=2 pairs of neighbors. The condition (ii) follows immediately.

In this paper we give a general approach to construct a Dr×c(Kn). This general
approach includes employing two-dimensional diHerence families to obtain cyclic con-
structions, and employing all sorts of combinatorial designs, like group divisible de-
signs, Steiner 2-designs, pairwise balanced designs and resolvable designs, to expand a
construction. In particular, these tools are adequate to construct a D2×3(Kn), a D2×4(Kn)
and a D3×3(Kn), etc. The existence of a D2×3(Kn) was shown by Carter (1989) by
decomposing Kn into cubic graphs. Meanwhile, Mutoh et al. (2002) showed the exis-
tence of a D2×4(Kn) by utilizing some direct and recursive constructions including the
above. Here, we show the existence of a D3×3(Kn) for all n satisfying the necessary
conditions of Lemma 1.
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2. Two-dimensional di�erence families

Let the vertices of Kn be labeled by the numbers 0; 1; : : : ; n − 1. Then the n labels
generate n− 1 distinct diHerences. On the other hand, each row in a G(r; c) generates
c(c−1) diHerences and each column r(r−1) diHerences, so a G(r; c) generates a total
of rc(r + c − 2) diHerences.
A cyclic development of a G(r; c) yields n G(r; c)’s G0; G1; : : : ; Gn−1, where the Gi

is obtained from G by adding i (mod n) to every vertex label.

Lemma 2. Suppose rc(r+ c− 2) divides n− 1 (implying n is odd). To decompose Kn

into G(r; c)’s, it su=ces to construct (n−1)=rc(r+ c−2) base G(r; c)’s such that the
di>erences are all distinct.

Proof. By cyclically developing these (n−1)=rc(r+c−2) G(r; c)’s, we obtain n·(n−1)=
rc(r+ c− 2) G(r; c)’s which constitute a decomposition of Kn. The reason is that two
labels i and j will appear in a G(r; c) developed from the base G(r; c) containing the
diHerences i − j and j − i.

Such a diHerence will be represented by a member of its residue class nearest to
zero.

Example 1. n= 19; r = 2 and c= 3. Then (n− 1)=rc(r + c− 2) = 1. The base G(2; 3)

1 − 7 − 11

| | |
9 − 6 − 4

generates diHerences ±6;±9;±4 in the @rst row, diHerences ±3;±5;±2 in the second
row, and diHerences ±8;±1;±7 in the three columns.

If rc(r + c − 2) does not divide n − 1, then at least one base G(r; c) cannot be
developed to complete a full cycle.

Example 2. n= 10; r = 2 and c = 3. Then (n− 1)=rc(r + c − 2) = 1=2.

We use the base G(2; 3) (@rst one) but only for half a cycle.

1 − 2 − 4

| | |
7 − 6 − 9

2 − 3 − 5

| | |
8 − 7 − 0

3 − 4 − 6

| | |
9 − 8 − 1

4 − 5 − 7

| | |
0 − 9 − 2

5 − 6 − 8

| | |
1 − 0 − 3
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Note that the @rst row and the second row generate the same diHerences ±1;±3;±2.
So the two rows in all @ve G(2; 3)’s together constitute a full development of the set
{1; 2; 4}. Similarly, the @rst column and the second column generate the
same diHerences ±4. Finally, the third column generates the diHerences ±5. Since
5 ≡ −5 (mod 10), a half cycle yields all pairs of diHerence 5.

Example 3. n= 37.
The base G(3; 3) is

0 − 3 − 12

| | |
6 − 22 − 23

| | |
10 − 17 − 25

The construction of such base G(r; c)’s is elucidated in the next section.

3. General constructions

Suppose that st vertices are partitioned into s subsets of t vertices each. Let Ks(t) be
the complete multipartite graph such that (i; j) is an edge if i and j are not in the same
subset. It is useful to consider the decomposition of Ks(t). We will omit the subscript
r × c in Dr×c(G) in this section. Similar to Lemma 1, we have

Lemma 3. Necessary conditions for a D(Ks(t)) to exist are

(i) (r + c − 2)|(s− 1)t, and
(ii) rc(r + c − 2)|(s− 1)st2.

The next result shows a connection between decomposing Kn and decomposing Ks(t).

Theorem 4. A D(Kst+1) exists if a D(Kt+1) and a D(Ks(t)) exist.

Proof. Partition {1; : : : ; st} into s subsets S1; : : : ; Ss each having t vertices. Let Di(Kt+1)
denote the design when the t + 1 vertices are from Si ∪ {0}. Then (

⋃s
i=1 Di(Kt+1) ∪

D(Ks(t)) = D(Kst+1).

By naming the elements in Si : i; s+ i; : : : ; (t− 1)s+ i, for i=1; : : : ; s, the diHerences
which are multiples of s are taken care of in Di(Kt+1)s, i = 1; : : : ; s. There are still
(s−1)t out of the st diHerences left in Kst+1. Therefore, we have the following lemma.

Lemma 5. Suppose rc(r+c−2)|(s−1)t. To obtain a D(Ks(t)), it su=ces to construct
(s− 1)t=rc(r + c − 2) G(r; c)’s with distinct di>erences which are not multiples of s.
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Example 4. s= 3; t = 9; r = 2 and c = 3. Then (s− 1)t=rc(r + c − 2) = 1.

S1 = {1; 4; 7; 10; 13; 16; 19; 22; 25};
S2 = {2; 5; 8; 11; 14; 17; 20; 23; 26};
S3 = {3; 6; 9; 12; 15; 18; 21; 24; 27}:

The base G(2; 3) is

1 − 15 − 23

| | |
2 − 13 − 6

Again, when rc(r + c − 2) does not divide (s − 1)t, some cycles are not fully
developed.

Example 5. s= 4; t = 9; r = 2 and c = 3. Then (s− 1)t=rc(r + c − 2) = 3=2.

S1 = {1; 5; 9; 13; 17; 21; 25; 29; 33}; S2 = {2; 6; 10; 14; 18; 22; 26; 30; 34};

S3 = {3; 7; 11; 15; 19; 23; 27; 31; 35}; S4 = {4; 8; 12; 16; 20; 24; 28; 32; 36}:
The two base G(2; 3)’s, one goes half cycle, are

1 − 3 − 18

| | |
23 − 30 − 29

5 − 18 − 8

| | |
36 − 23 − 26

Note that in the second G(2; 3), the @rst row and the second row generate the same
diHerences ±13;±3;±10. The @rst column and the second column generate the same
diHerences ±5.

We can also construct a D(Ks(t)) from one with smaller parameters. Let V be a
set of v elements, B be a collection of k-subsets of V and G be a partition of V into
k classes, each of size n. A triple (V;G;B) is called a group divisible design with
classes of size n and block size k, denoted by GD(k; n; v), if each pair of elements
from V is either contained in exactly one group or is contained in exactly one block,
but not both. Especially, in the case of n = 1, a pair (V;B) instead of (V;G;B) is
called a Steiner 2-design with block size k and v elements, denoted by S(2; k; v). Then
the following theorem is obtained.

Theorem 6. A D(Km(nt)) exists if a GD(s; n; v) and a D(Ks(t)) exist, where m= v=n.
Especially, a D(Kv(t)) exists if an S(2; s; v) and a D(Ks(t)) exist.

Proof. Make t copies of each element of a GD(s; n; v). Apply a D(Ks(t)) on the set
which is t copies of all elements in each block of the GD(s; n; v).
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Example 6. s = 3; t = 9; v = 7; r = 2 and c = 3. Then n = tv + 1 = 64. Partition
{1; : : : ; 63} into seven sets S1; : : : ; S7, each with nine elements. The seven blocks of an
S(2; 3; 7) are B1={S1; S2; S4}; B2={S2; S3; S5}; B3={S3; S4; S6}; B4={S4; S5; S7}; B5=
{S5; S6; S1}; B6 = {S6; S7; S2}; B7 = {S7; S1; S3}, which is known as Fano plane, that is,
the projective plane of order 2.

Corollary 7. A D(Kvt+1) exists if an S(2; s; v), a D(Kt+1) and a D(Ks(t)) exist.

Proof. By utilizing to an S(2; s; v) and a D(Ks(t)), there is a D(Kv(t)). To this design
we add a point {0}. Apply a D(Kt+1) on G∪{0}, where G is a group of a D(Kv(t)).

Let S(2; {k1; : : : ; kz}; v) denote a generalization of a Steiner 2-design where the block
size can vary. We can generalize Theorem 6 to

Theorem 8. A D(Kv(t)) exists if an S(2; {s1; : : : ; sz}; v) and a D(Ksi(t)) i = 1; : : : ; z,
exist.

Example 7. v = 12; s = 4; t = 9; r = 2 and c = 3. We can construct an S(2; {3; 4}; 12)
from an S(2; 4; 13) by dropping the element 13. Since a D(K3(9)) and a D(K4(9))
both exist, a D(K12(9)) exists.

The following result gives a diHerent construction.

Theorem 9. A D(K(v−1)t+1) exists if a D(K(s−1)t+1), an S(2; s; v) and a D(Ks(t)) exist.

Proof. Delete the element v from an S(2; s; v). Then some blocks become of size
s − 1. Since v appears with any other element once, these blocks form a partition of
{1; : : : ; v − 1}. Let B1 denote the set of size-s blocks and B2 the set of size-(s − 1)
blocks. Make t copies of each element and apply a D(K(s−1)t+1) on each B′

i ∪ {0} for
B′
i ∈B2, and apply a D(Ks(t)) on each Bi ∈B1.

Example 8. v= 7; s= 3; t = 9; r = 2 and c = 3. Then (v− 1)t + 1 = 55.

Let B1; : : : ; B7 be the seven blocks of an S(2; 3; 7) as given in Example 6. After
element 7 is deleted, B1 = {(S1; S2; S4); (S2; S3; S5); (S3; S4; S6); (S5; S6; S1)} and B2 =
{(S4; S5); (S6; S2); (S1; S3)}. Use D(K3(9)) on each block of B, and use a D(K19) on
S4 ∪ S5 ∪ {0}; S6 ∪ S2 ∪ {0} and S1 ∪ S3 ∪ {0}.
While Theorem 9 deals with deleting an element from an S(2; s; v), it is also possible

to add an element. A Steiner 2-design (V;B) is said to be resolvable if B is partitioned
into subcollections R1;R2; : : : ;Ru, called a parallel class or a resolution class such that
each points in V is contained in Ri exactly once for any i.

Theorem 10. A D(K(v+1)t+1) exists if a resolvable S(2; s; v) system, a D(Kt+1), a
D(Ks(t)) and a D(Ks+1(t)) exist.
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Proof. Add a new element v + 1 to every block in a parallel class of the resolv-
able S(2; s; v). Then some blocks become of size s + 1, which are handled by a
D(Ks+1(t)).

Example 9.
(1 2 3) (4 5 6) (7 8 9)

(1 4 7) (2 5 8) (3 6 9)

(1 5 9) (2 6 7) (3 4 8)

(1 6 8) (2 4 9) (3 5 7)

is a resolvable S(2; 3; 9) (see Hall, 1986). Add element 10 to the three blocks of the
@rst parallel class to obtain blocks (1 2 3 10); (4 5 6 10); (7 8 9 10) of size 4. Apply a
D(K4(9)) on the size-4 blocks and a D(K3(9)) on the size-3 blocks to obtain a D(K91).

Corollary 11. A D(K(v+i)t+1) exists if a resolvable S(2; s; v) system with at least i
parallel classes, a D(Kt+1), a D(Ks(t)), a D(Ks+1(t)) and a D(Kit+1) exist.

Proof. Let (V;B) be a resolvable S(2; s; v) with u¿ i parallel classes {R1;R2; : : : ;Ru}.
Add i new elements to V and let NV = V ∪ {v + 1; v + 2; : : : ; v + i}. To each block
B in Rj add an element v + j and let NB = B ∪ {v + j} for j = 1; 2; : : : ; i. Make t
copies of each element of NV and let Sj be the set of t copies of each element j for
j=1; 2; : : : ; v+ i. Moreover, add an element {0}. Apply a D(Ks+1(t)) on each

⋃
j∈ NB Sj

for all B∈Rj and j = 1; 2; : : : ; i, and a D(Ks(t)) on the elements
⋃

j∈B Sj for blocks

B in B \⋃i
j=1 Rj. In addition, apply a D(Kt+1) on Sj ∪ {0} for j = 1; 2; : : : ; v and a

D(Kit+1) on (
⋃i

j=1 Sv+j) ∪ {0}.

In case of r = c, we may use ‘aPne geometry’ to obtain the decomposition.

Theorem 12. For an even integer n and an odd prime power q, a Dq×q(Kqn) exists.

Proof. Let � be a primitive element of GF(qn). Then each point of GF(qn) is repre-
sented by �i. For convenience, let �∞=0. Here, for a prime power q, let AGi(n; q) be
the set of i-dimensional subspaces and their cosets of GF(q). We de@ne a base G(q; q)
G0 as follows:

�∞ �0 �2u · · · �(2q−4)u

�u �0 + �u �2u + �u · · · �(2q−4)u + �u

�3u �0 + �3u �2u + �3u · · · �(2q−4)u + �3u

...
...

...
. . .

...

�(2q−3)u �0 + �(2q−3)u �2u + �(2q−3)u · · · �(2q−4)u + �(2q−3)u

;
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where

u=
qn − 1
2(q− 1)

:

Then G0 is a 2-Qat (called plane) in AG2(n; q) and rows and columns are 1-Qats
(called lines) in AG1 (n; q). Thus, G0 generates a Dq×q(Kqn) together with its cyclic
shifts �iG0 for i = 0; 1; : : : ; u− 1 and with parallel 2-Qats of them.
In fact, let �i and �j be two points in AG (n; q). To count the number of rows

and columns of G(q; q)s containing �i and �j simultaneously, we have only to count
the number of rows/columns such that 0 (=�∞) and �i − �j occur together. We can
represent �i − �j = �l for some integer l. There is one line passing through the origin
0 and �l, which proves the theorem.

A Steiner 2-design (V;B) is said to be cyclic if there exists an automorphism � of
order v = |V | which acts cyclically on V . For a cyclic Steiner 2-design (V;B), the
collection B of blocks is partitioned into orbits by �. We choose block arbitrary from
each orbit and call it a base block. Next, by combining base blocks of a cyclic Steiner
2-design, we obtain the following theorem:

Theorem 13. Let p be an odd prime and v ≡ p (mod 2p(p − 1)). If there exists a
cyclic S(2; p; v), then there exists a Dp×p(Kpv).

Proof. Let t= (v−p)=2p(p− 1) and u= v=p. Firstly, we consider a cyclic S(2; p; v).
This design has 2t base blocks with cycle length v and a single base block with
cycle length u. It is known that we can construct an S(2; p; pv) from an S(2; p; v)
for a prime p (see, Jimbo and Kuriki, 1983; Colbourn and Colbourn, 1984; Grannel
and Griggs, 1986). Let ax = (0; ax1; : : : ; ax(p−1)) be base blocks with cycle length v
in S(2; p; v) for x = 0; 1; : : : ; 2t − 1. According to the construction in Colbourn and
Colbourn (1984), Grannel and Griggs (1986) and Jimbo and Kuriki (1983), we can
obtain some base blocks of an S(2; p; pv) as follows for any j = 0; 1; : : : ; p − 1 and
x = 0; 1; : : : ; 2t − 1.

(0; ax1 + jv; ax2 + 2jv; : : : ; ax(p−1) + (p− 1)jv) (modpv): (1)

Making t pairs of base blocks (ax; ay) in the S(2; p; v) by utilizing two base blocks
ax and ay, we obtain the following base G(p;p)’s:

0 ax1 · · · ax(p−1)

ay1 · · ·
... axi + ayj + (i · j)v ...

ay(p−1) · · ·

(modpv) (2)
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The rows and columns of the G(p;p) contain each base block of (1) exactly once
for j = 0; 1; : : : ; p− 1. By checking the base G(p;p)’s, we @nd all diHerences except
for ±u;±2u; : : : ;±(p2 − 1)u=2 (modpv).
By Theorem 12, it is known that a Dp×p(Kp2 ) exists. Multiplying each element of

a Dp×p(Kp2 ) by u, and by making its cyclic shift of length u, we obtain a Dp×p(Kpv)
together with the base G(p;p)s (2).

4. The existence of a D3×3 (Kn)

In this section, we give the existence theorem of decomposition of complete graphs
into G(3; 3)’s by utilizing direct constructions. The necessary condition for the existence
of a D3×3(Kn) is n ≡ 1; 9 (mod 36). To prove suPciency, we need the following
proposition (see, Peltesohn, 1938).

Proposition 14. If v ≡ 1; 3 (mod 6) and v �= 9, then there exists a cyclic S(2; 3; v).

By virtue of Theorem 13 and Proposition 14, we obtain the following:

Lemma 15. If n ≡ 9 (mod 36), then a D3×3(Kn) exists.

Note that the existence of a D3×3(K9) is shown by Theorem 12. And by utilizing
a D3×3(K9) and a Steiner 2-design S(2; 9; n), we can obtain a D3×3(Kn). That is, for
n ≡ 1; 9 (mod 72) if an S(2; 9; n) exists, then a D3×3(Kn) exists. Unfortunately the
existence problem for an S(2; 9; n) is not completely solved yet. Thus, in this paper,
we construct a D3×3(Kn) for v ≡ 1 (mod 36) directly.

Lemma 16. If n ≡ 1 (mod 36), then a D3×3(Kn) exists.

Proof. Firstly, in case of n = 72t + 1, Peltesohn (1938) showed that there exists a
cyclic S(2; 3; n) (see also Beth et al. (1986, pp. 318–319)). According to his result,

(0; 1 + 2x; 33t + 1 + x); x = 0; 1; : : : 3t − 1; (3)

(0; 2 + 2x; 24t + 2 + x); x = 0; 1; : : : 3t − 2; (4)

(0; 9t + 1 + 2x; 27t + 1 + x); x = 0; 1; : : : 3t − 1; (5)

(0; 9t + 2 + 2x; 18t + 2 + x); x = 0; 1; : : : 3t − 1; (6)

(0; 6t; 24t + 1); (7)

are base blocks of a cyclic S(2; 3; n).
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Table 1
The correspondence of the base G(3; 3)’s and base blocks

Base block ] x Adding constants

Rows in Gx (3) (3) (4) 1 0 0 0 9t + 3 + 2x 27t + 2 + x
Columns in Gx (5) (5) (6) 1 0 0 0 3 + 2x 33t + 2 + x
Rows in Hx (4) (4) (3) 2 1 2 2 9t + 6 + 2x 18t + 4 + x
Columns in Hx (6) (6) (5) 2 1 2 0 6 + 2x 24t + 4 + x
Rows in R1 (3) (3) (4) 3t − 2 3t − 3 3t − 3 0 15t − 3 30t − 1
Columns in R1 (5) (5) (6) 3t − 2 3t − 3 3t − 3 0 6t − 3 36t − 1
Rows in R2 (6) (7) (6) 3t − 1 — 3t − 2 66t 15t − 1 30t
Columns in R2 (5) (3) (4) 3t − 1 3t − 1 3t − 2 0 15t 39t

By adding some constants for these base blocks and arranging them in G(3; 3)’s as
follows, we obtain base G(3; 3)’s for a D3×3(K72t+1)

Gx =

0 3 + 2x 33t + 2 + x

9t + 3 + 2x 9t + 4 + 4x 42t + 4 + 3x

27t + 2 + x 27t + 4 + 3x 51t + 4 + 2x

;

Hx =

0 6 + 2x 24t + 4 + x

9t + 6 + 2x 9t + 10 + 4x 33t + 9 + 3x

18t + 4 + x 18t + 9 + 3x 51t + 7 + 2x

for x = 0; 3; : : : ; 3t − 6, and

R1 =

0 6t − 3 36t − 1

15t − 3 21t − 8 51t − 5

30t − 1 36t − 5 57t − 2

; R2 =

0 15t 66t

15t − 1 21t − 1 39t

30t 51t 45t − 2

:

In fact the rows in Gx are obtained by adding 0, 9t + 3 + 2x and 27t + 2 + x to
(3) for x= 1, (3) for x= 0 and (4) for x= 0 in Table 1. And, the columns in Gx are
obtained by adding 0, 3 + 2x and 33t + 2 + x to (3) for x = 1, (3) for x = 0 and (4)
for x = 0.
Similarly, for Hx, R1 and R2, the rows and columns are constructed by (3)–(7).

Moreover, note that x ≡ 0; 1 and 2 (mod 3) occurs exactly once for each of (3) to (6)
in Gx and Hx of Table 1. Thus by considering Gx, Hx for x=0; 3; 6; : : : ; 3t− 6 and R1

and R2, the base blocks in (3)–(7) occur exactly once.
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Similarly, in case of n= 72t + 37, the following G(3; 3)’s generate a D3×3(Kn) for
x = 0; 3; : : : ; 3t − 3:

Gx =

0 33t + 16− x 33t + 17 + x

9t + 7 + 2x 42t + 22 + x 42t + 25 + 3x

27t + 15 + x 51t + 26 51t + 28 + 2x

;

Hx =

0 5 + 2x 33t + 19 + x

18t + 7− x 18t + 11 + x 42t + 21

27t + 16 + x 27t + 22 + 3x 51t + 31 + 2x

;

R=

0 18t + 9 24t + 12

15t + 7 45t + 23 9t + 6

30t + 15 9t + 4 3t + 2

:

Thus we proved the lemma.
By Lemmas 15 and 16, the following theorem is obtained.

Theorem 17. The necessary condition n ≡ 1; 9 (mod 36) for the existence of a
D3×3(Kn) is su=cient.
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