
IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004

Contributed Paper
Manuscript received December 21, 2003 0098 3063/04/$20.00 © 2004 IEEE

342

Optimal Frame Memory and Data Transfer Scheme for
 MPEG-4 Shape Coding

Kun-Bin Lee, Hao-Yun Chin, Nelson Yen-Chung Chang, Hui-Cheng Hsu, and Chein-Wei Jen

Abstract — An optimal frame memory and data transfer
scheme is proposed for MPEG-4 shape coding in embedded
systems. The proposed alpha frame buffer scheme contains
two approaches. First, a distributed tile-based memory
organization is used to efficiently support the time-varying
size of alpha plane. Second, a compression scheme is used to
reduce the number of memory access to and the size of the
alpha frame memory. Under the criteria of MPEG-4 standard,
the size of alpha frame memory can be reduced to 50% by
introducing a small index table (2.73%-5.08% of the original
frame memory size). A coarse assessment shows that the
number of memory reference can be reduced to 56.25%. On
the other hand, the proposed data transfer scheme combines
the run length coding and addressing mode to reduce average
data transfer time to 9.39%. Therefore, the shared system bus
can be kept as free as possible, which in turn leads to
increasing the potentialities of improvement on system
performance. Furthermore, this data transfer scheme also
helps in accelerating the processing of shape coding1.

Index Terms — Data transfer, frame memory, MPEG-4,
shape coding.

I. INTRODUCTION

MPEG-4'S object-based scene description allows the
transmission of arbitrarily shaped video objects [1]-[3]. The
purpose of using shape is to promote better subjective picture
quality, higher coding efficiency as well as more user
interactions. These advantages make this standard best suited
for the needs of mobile applications or browsing multimedia
databases on the Internet. Therefore, shape coding can be
utilized in lots of consumer electronics devices, such as video
telephony, PDA, set-top box, and video surveillance.
However, these flexible and high-efficient coding features are
based on the complex decision process and high computational
tasks. Thus, MPEG-4 shape coding demands the high
computing and high data traffic properties [4]-[7]. For
example, the analysis of MPEG-4 Core Profile at Level 2
performed on an Ultra Sparc RISC [7] indicated that MPEG-4
shape encoding requires giga-operations per second (GOPS)
and hundred-mega-byte scale memory access per second. To
meet the stringent requirements on low cost and low power for
the embedded system market, there is a clear need for
optimized MPEG-4 VLSI architecture.

1 This work was supported by the National Science Council, Taiwan,

R.O.C. under Grant NSC-91-2215-E-009-033.
The authors are with the Department of Electronics Engineering, National

Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
kblee@twins.ee.nctu.edu.tw).

Several previous works [6]-[9] presented results on VLSI
architecture design of MPEG-4 shape coding/decoding, but
few of them did optimization on data transfer and storage.
However, previous researches [10]-[13] have shown that data
transfer and storage can significantly affect the area, power
and performance in SoCs. To communicate and hold the
massive amounts of intermediate data, optimal data transfer
and buffering schemes are needed. On the other hand, efficient
implementations of these schemes require identifying the
properties of the algorithms involved to eliminate or at least
alleviate the impacts of these bottlenecks.

The aforementioned compelling advantages of MPEG-4
shape coding and the awareness of the critical issues in
designing high-performance and low-power video processing
architectures motivate us to explore an efficient solution of the
frame memory design and the data transfer scheme for MPEG-
4 shape coding. The contribution of this paper includes: 1) An
on-chip bus data transfer scheme that not only significantly
reduces data transfer time over the on-chip bus, but also helps
in accelerating the processing of shape coding. 2) A distributed
tile-based memory organization for the alpha frame memory
that can efficiently conquer the data alignment problem and
support variable video object plane (VOP) sizes, while making
the address generator even more flexible and simple for time-
varying VOP sizes. 3) A low-complexity alpha frame
compression scheme that reduces the number of memory
access to and the size of alpha frame memory.

The rest of this paper is organized as follows. Section II
gives a brief overview of MPEG-4 shape coding. Section III
presents the proposed data transfer scheme for MPEG-4 shape
coding. The performance estimation is also given in this
section. In Section IV, the proposed frame memory
architecture is described. Finally, concluding remarks are
made in Section V.

II. OVERVIEW OF MPEG-4 SHAPE CODING
MPEG-4 international standard [1][2] treats moving

pictures as an organized collection of visual objects and
provides several advanced techniques to access and represent
the moving arbitrarily shaped natural and synthetic objects in
video scenes. The MPEG-4 visual specifications support
several types of visual objects, among which is the video
object. The video object may be thought of as a sequence of
two-dimensional images. Each image can be associated with
shape information to define its shape. As shown in Fig. 1, a
video object plane (VOP), which is the instance of a video
object at a given time, is composed of a bitmapped alpha
component to define the object’s shape and three color

K.-B. Lee et al.: Optimal Frame Memory and Data Transfer Scheme for MPEG-4 Shape Coding 343

components (YCbCr) to render the object’s texture. Basically,
the VOP is defined as a minimum rectangle that encloses the
whole object. It is noteworthy that the size of a VOP at a given
time depends on the shape of the video object at that time.
That is, the size of the VOP for a video object is time-variant.
MPEG-4 video encoding is based on the VOP encoder shown
in Fig. 2. The alpha component of a VOP is encoded using a
binary shape encoder while the color components are encoded
using motion estimation and compensation followed by DCT-
based texture coding.

 Coding the shape information of a VOP takes a few major
steps. First, a bounding rectangle is created and extended to
multiples of 16×16 pixels with extended alpha samples set to
transparency. Next, binary alpha data are grouped with what
are called binary alpha blocks (BABs) to have the same
dimensions as a macroblock. Finally, shape coding is initiated
on a BAB-by-BAB basis.

The encoding of a BAB can be further divided into the
following scenarios. First of all, if all the pixels in a BAB are
either opaque or transparent, this BAB is a non-boundary BAB
and only the coding mode is encoded by means of a variable-
length coder (VLC). Second, in interframe, a boundary BAB
can be coded with reference to a suitable prediction BAB from
the previous coded frame to remove temporal redundancy.
This procedure is called binary motion estimation (BME).
Based on the assumption that the movement of an object is
homogeneous, motion vector of neighboring BAB or texture block
is used as the motion vector predictor for shape (MVPs). If the
motion compensation (MC) error between the block indicated by
the MVPs and current BAB is less than or equal to a predefined
threshold, the MVPs is directly employed as motion vector of
shape (MVs), and the procedure of BME terminates. Otherwise,
full-search block matching is performed around the MVPs within a
predefined search range. Each candidate block residing in the
search range indicated by a motion vector is compared to the
current BAB by computing 16×16 sum of absolute differences

(SADs). The motion vector that minimizes the SADs is taken as
MVs. The MVs is further interpreted as motion vector difference
for shape (MVDs), i.e., MVDs = MVs − MVPs. In this case,
coding mode and MVDs are encoded by shape encoder using
VLC. At last, apart from those cases mentioned above, it is
generally necessary to employ context-based arithmetic
encoding (CAE) to the pixels within a BAB.

There are two CAE operation modes, one is intra-mode and
the other is inter-mode. Intra-mode CAE exploits the spatial
redundancy by estimating the probability of the current pixel
from its neighboring pixels. As for inter-mode, temporal
redundancy is exploited by estimating the probability of the
current pixel from its neighboring pixels and motion
compensated neighboring pixels of the previous coded frame.
In intraframe coding, only intra-mode CAE is performed. In
interframe coding, both intra- and inter-mode CAE are
performed. In both modes, CAE operation is performed pixel
by pixel in both horizontal and vertical raster scan order.
Therefore, there are total four different coding processes:
CAE(Intra, H), CAE(Intra, V), CAE(Inter, H), and CAE(Inter, V). At each
pixel, a template is formed to extract a context number used to
access a probability table. The accessed probability and the
pixel value are then used to drive an arithmetic encoder. In
intraframe coding, the encoded bitstream with minimum size
between CAE(Intra, H) and CAE(Intra, V) is chosen as the final
output. Similarly, the encoded bitstream with minimum size
among CAE(Intra, H), CAE(Intra, V), CAE(Inter, H), and CAE(Inter, V) is
chosen in interframe coding. In addition, the shape encoder
may decide to encode subsampled versions (i.e., lossy coding)
of BABs to save encoded bits. If this is the case, the
subsampling factor, also known as conversion ratio (CR), is
also encoded into the bitstream. The BAB (subsampled or not)
then undergoes CAE. Note that CAE itself introduces no
additional loss.

In summary, there are seven coding modes for MPEG-4
shape coding in total, as listed in TABLE I. The syntax of the
coding mode is represented by bab_type field in the bitstream
[1]. The general coding procedure can be as follows.

Step 1: Perform mode decision to determine the current BAB
is a boundary or non-boundary one. For a non-boundary BAB,
go to Step 5 with bab_type = 2 or 3. For a boundary BAB, go
to Step 2 or 3 for interframe or intraframe coding respectively.
Step 2: Perform BME. If a qualified motion vector is found,
go to step 5 with bab_type = 0 or 1. Otherwise go to Step 3.

TABLE I
BAB CODING MODES

Coding Mode
(bab_type) Semantic Used in

0 No update && MVDs == 0 P-, B-VOPs
1 No update && MVDs != 0 P-, B-VOPS
2 Transparent I-, P-, B-VOPS
3 Opaque I-, P-, B-VOPS
4 Intra CAE I-, P-, B-VOPS
5 Inter CAE && MVDs == 0 P-, B-VOPS
6 Inter CAE && MVDs != 0 P-, B-VOPS

(a) (b) (c)
Fig. 1. Video object plane: (a) Texture component of the VOP. (b)
Binary alpha component of the VOP. (c) 16××××16 BABs: O for opaque
BAB, T for transparent BAB, and B for boundary BAB.

Shape
Coding

Motion
Estimation

Motion
Compensation

Texture
Coding

Previous
Reconstructed VOP +

Motion
Coding

Bitstream

VOP
Data

enable shape coding

MUX

+
+

Fig. 2. General structure of MPEG-4 VOP encoder.

IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004 344

Step 3: Perform size conversion to obtain a subsampled
version of current BAB. The quality of the subsampled BAB
must satisfy the predefined threshold. Go to Step 4.
Step 4: Perform intra-mode CAE for intraframe coding.
Perform intra- and inter-mode CAE for interframe coding. Go
to Step 5 with bab_type = 4, 5, or 6.
Step 5: Perform VLC for BAB coding mode and other related
information.

Fig. 3 shows the block diagram of MPEG-4 binary shape
coding system. To improve the performance of the shape
encoder, parallel processing of partial or all operations in each
step can be implemented.

III. DATA TRANSFER SCHEME
With the ongoing advancements in VLSI technology, the

performance of an embedded system is no longer determined
primarily by the number and speed of functional units, but by
the communication of data among these functional units. Lots
of schemes have been used to improve the performance of on-
chip communication, including wider data buses, more
dedicated channels (buses), more buffers, more advanced bus
protocols, more intelligent arbitration schemes, more
ingenious schedulings, higher clock rate, etc. The choice of
applying single or mixed schemes to improve the performance
of on-chip communication are tradeoffs among performance,
area, power consumption, hardware utilization, etc. There are
several examples of design consideration for these schemes.
First, the reasons of using shared-bus architecture instead of
multiple dedicated buses are the physical problems and the low
utilization of these multiple dedicated buses [14][15]. Second,
to keep the internal bus as free as possible, large data buffers,
ranging from 384 bytes to 512 bytes, are included in each
peripheral attached to this bus [16]. This internal bus is the
backbone of an embedded RISC processor-based, real-time
multimedia processing system with full motion video
processing capabilities, such as MPEG-2 MP@ML decoding.
The internal bus is shared by high-performance peripherals,
e.g., a Rambus control unit, a DMA control unit, a video
control unit, etc. Finally, in order to meet the different
bandwidth and latency requirements of the different
peripherals attached to the on-chip shared bus of a
programmable single chip HDTV processor, the shared bus is
controlled via a round-robin arbitration algorithm with
programmable bandwidth [17].

In this paper, we present an alternative scheme to improve
data transfer performance for shared-bus communication,
where the shared bus can be the only bus or one of multiple
buses in the target system. The proposed data transfer scheme
can keep the shared bus as free as possible by shrinking data
transfer amount. In addition, the scheme accelerates the
processing of MPEG-4 shape coding by doing the mode
decision in Step 1 of shape encoding mentioned in Section II.
Moreover, the scheme also speeds up alpha frame memory
access, which will be discussed in next section.

The proposed transfer scheme is based on the following
three principles. First, simple data transfer scheme is preferred.
Too complex scheme may result in not only higher hardware
cost but also much latency. Second, the scheme should be
independent of any particular bus protocol. Hence, the scheme
can be ported easily to different systems. Finally, the worst
case performance of the bus sub-system must be at least the
same as that without using the proposed scheme. Under these
three principles, the proposed data transfer scheme consists of
a simple coding, the run-length coding (RLC), and a particular
addressing mode.

The run-length coding is chosen under the following
considerations. First, video data have one important feature
that neighboring pixels have similar values. Although many
coding schemes have good performance on dealing with such
interpixel redundancy, RLC is considered due to its low
complexity. Second, the ability to identify consecutive
identical values helps in deciding whether the transferred BAB
is a boundary or non-boundary BAB. In our implementation,
the value of pixels in a row of a BAB is packed and coded as
run, while the length denotes the number of consecutive rows
having the same value. If a RLC encoded (run, length) tuple of
either (0, 16) or (255, 16) is transferred, the BAB is a non-
boundary one since there are 16 consecutive transparent or
opaque rows. Otherwise, the transferred BAB is a boundary
one. With the helping information from RLC, the coding for a
non-boundary BAB only takes three cycles (for Step 5) in our
design, while the design in [7] required 23 cycles.

An addressing mode together with RLC compensates the
overhead of RLC. In RLC, both the run and the length of run,
denoted as length, are needed to be handled. To avoid
increasing the width of the data bus for transferring the length,
or increasing the total time to transfer both the run and the
length, RLC is combined with an addressing mode to make use
of available bit information on the address bus. In general, the
specification of an on-chip bus would define the minimum
memory-mapped space allocated to one slave device to
simplify the central address decoder and therefore minimizes
the delay of address decoding. For instance, the de facto on-
chip bus standard, AMBA, defines that the minimum memory-
mapped space for a device is 1K bytes [18]. Although
specifications of on-chip buses define the minimum memory-
mapped space, most functional units do not need all the
assigned memory space. Based on this observation, the length
is transferred through some bits of the address bus. As

Mode
Decision

MVDs

Size
Conversion

Coding Mode

Variable
Length
Coding

Context-
based

Arithmetic
Encoding

BAB/MCBAB
CR

Current
BAB

Binary
Motion

Estimation

Compressed
Bitstream

Frame
Memory

Reconstructed
BAB

Referenced
BAB

Fig. 3. Block diagram of shape coding system.

K.-B. Lee et al.: Optimal Frame Memory and Data Transfer Scheme for MPEG-4 Shape Coding 345

illustrated in Fig. 4, we encode each BAB with run length
coding and then transfer the run through the 16-bit data bus
and the length through the address bus. Thus, the value of run
is written to different addresses, where the offset of the address
depends on the value of length. The length is extracted from
the address bus by using memory-mapped address decoding.
It’s noteworthy that transferring each opaque or transparent
BAB takes only one datum transfer time instead of 16, while in
general more than 50% of total BABs are non-boundary.

Performance estimation is made by simulation of hardware
model written in C/C++ language over the nine test sequences
listed in TABLE II. Except for Dancer and Singer, these test
sequences are derived from MPEG-4 Video Verification
Model [3]. All test sequences are generated for Core Profile at
Level 2 with size conversion disabled and shape refresh rate of
1:3. In MPEG-4 Video Verification Model, 8-bit data is used
to represent the alpha component of each pixel to indicate
either transparent or opaque. For our hardware design, the bi-
level alpha data, transparent or opaque, is represented using a
single bit. Under the same aforementioned conditions, we
define the transfer time ratio (RT) as:

%100
scheme proposed without imetransfer t

scheme proposed with imetransfer t
×=TR

The average transfer time ratio over the nine test sequences
listed in TABLE II is reduced to 9.39%. The proposed data
transfer scheme is also validated in an AMBA AHB subsystem.

IV. FRAME MEMORY DESIGN FOR ALPHA PLANE

An efficient frame memory design for alpha plane is
essential. As mentioned before, MPEG-4 shape encoder

requires hundred-mega-byte scale memory access per second.
In addition, VOP size is changing from time to time while
maximum VOP size can be as large as 1920×1088 for Main
Profile at Level 4. Hence, we propose a distributed tile-based
memory organization for the alpha frame memory that can
efficiently conquer the data alignment problem and support
variable VOP sizes, while making the address generator more
flexible and simple for time-variant VOP sizes. We also
propose a low-complexity compression scheme for alpha
frame memory to effectively reduce the requirements for
memory size and bandwidth.

A. Distributed Tile-Based Memory Organization
For alpha memory, instead of using traditional linear

mapping [7][19], we propose a distributed tile-based mapping
which maps each BAB in logic space to a tile in alpha memory
in distributed manner. The proposed distributed tile-based
mapping out performs linear mapping in the following way.
First, tile-based mapping can reduce address bus activity,
which in turn leads to low-power memory access [10]. Second,
tile-based mapping makes the architecture of the address
generator simpler and more flexible for time-varying VOP
sizes. Finally, the distributed property helps in accessing data
crossing BABs, which is one of the key operations of BME
that can significantly affect BME performance. Fig. 5 (a)
shows a case of accessing cross-BAB data in the search range
of BME.

For MPEG-4’s predecessors, i.e., MPEG-1/2, the frame
width is fixed through out the video sequence. Therefore, the
memory system can be tuned to pack the right bytes into a
word. On the opposite, in MPEG-4 shape encoding, the width
of a VOP is changing from time to time, and can be any
arbitrary multiples of the width of a BAB. This variation
makes the design of memory system for shape encoding more
complex.

Tile-based mapping solves parts of the above issue. In our
implementation, the tile size is equal to the size of a BAB.
Since the bi-level alpha data is represented as 1-bit 0 or 1, one
row of data within a BAB, i.e., 16-bit data, is packed as the
basic access unit in the alpha plane memory. In addition, the
consecutive 16 rows within one BAB are allocated to
consecutive memory space. For each write access, only data
within a BAB is updated. Therefore, data can be stored to

TABLE II
DATA TRANSFER TIME RATIO

Sequence
Name

Frame
Size

Frame
Quantity

Total BAB
Amount

Boundary BAB
Amount

Transfer Time
Ratio Description

Bream CIF 10 2036 569 11.06 % A swimming fish
Coastguard 0 CIF 300 77462 28150 6.96 % River
Coastguard 1 CIF 300 42786 14544 9.60 % Boat of coastguard
Coastguard 2 CIF 300 15633 11781 10.08 % Skiff
Coastguard 3 CIF 300 51128 8752 3.96 % Coast line
Dancer 1 CIF 250 32885 14048 17.06 % A performance of two dancers
Foreman CIF 300 65958 11304 5.69 % A man who’s talking with body language
Singer 1 CIF 250 24841 10349 15.58 % A singer who’s singing with body language
Singer 2 CIF 250 36094 10734 17.14 % Subtitles that are moving around the singer

Base address for
shape enoder

Base address
for length of run 0x01

0x10

address
offset

(0x3FFF, 0x02)
(0x1FFF, 0x01)

(0x003F, 0x04)

(run, length)

(a) (b)

Fig. 4. Proposed data transfer scheme: (a) Run length coding of a BAB.
(b) Value of run is written to the corresponding address according to the
length information.

IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004 346

consecutive memory addresses without considering the width
of the VOP. For read access, it is also likely to read
consecutive rows in a BAB. Tile-based mapping also benefits
from this locality. In contrast, the address offset of two
consecutive rows depends on the VOP width in linear mapping
scheme, as displayed in Fig. 5(b). Even worse, the non-
consecutive addresses lead to more transitions on the address
bus.

To efficiently read data crossing BABs from the alpha frame
memory, the alpha frame memory is further distributed into
several banks with some constrains:

 For parallel processing of BME using N processing
elements (PEs), (16+N-1) bits of reference data are
required at each clock cycle. Because these bits might
cross several BABs, at least M memory banks are
required.






















+
+

=++
+

=

otherwise 2
16

1)-(16

1or 0 16 mod 1)-(16 if 1
16

1)-(16

N

N
N

M

 M horizontal consecutive BABs in logic space must be
stored in the different banks.

In our design, the frame memory includes four banks of 16-
bit wide memory and each bank has its dedicated data bus.
Although our design has 16 PEs and requires a minimum of
three banks, four banks are used for simpler modulo circuits of
the address generation. The exact size of each memory bank
depends on the maximum size of a VOP to be supported.
Pixels in each row of a BAB are packed and stored in one
memory entry.

The distributed property leads to some advantages. Most
importantly, reading data crossing several BABs may be
accessed within a single cycle, as shown in Fig. 5 (c). This
advantage removes the requirement of the search range buffer

in [19]. Search range buffer is no longer essential and
becomes a tradeoff between the memory access time and
silicon area. Besides, when it comes to off-chip memory, the
distributed property also applies well. In fact, to store alpha
frames into off-chip SDRAM that contains several internal
banks, the distributed tile-based memory organization reduces
page misses. Consequently, the efficiency of the off-chip
memory access and the overall system performance are
improved.

B. Compression Scheme for Alpha Frame Memory
Based on the observation that the proportion of boundary BAB

is quite low in all the test sequences listed in TABLE II, it is
neither efficient nor cost-effective to store these blocks in the alpha
frame memory in the raw format. Therefore a low complexity
compression scheme for alpha frame memory is proposed by
introducing a small index table to keep track of the minimum
information of all BABs, while only boundary BABs are stored in
the alpha frame memory.

In our compression scheme, the alpha frame buffer contains one
alpha frame memory, one index table, and one address generator
(AG), as shown in Fig. 6 (a). The alpha frame memory is
organized as the one presented in the previous section, except that
the relation of one-to-one mapping of BAB from logic VOP space
to physical memory space is not maintained. Instead, only
boundary BABs are stored in the alpha frame memory. Each BAB
in the logic space is assigned a BAB index, while each consecutive
16 words × 16 bits memory space within one memory bank is
assigned a tile index. To keep track of all BABs, BAB class
(transparent, opaque or boundary) and tile index are stored in the
index table, as shown in Fig. 6 (b). An example of how the first
two BAB rows at the top of a VOP are stored in the index table
and the alpha frame memory is illustrated by Fig. 6 (c).

Before reading the content of a BAB, the index table is read
first to decide the BAB class of this BAB by using BAB index as
the address of the index table. If a BAB is non-boundary, either
opaque or transparent, only the index table is accessed. In contrast,

BAB#0 BAB#1 BAB#2 BAB#3

BAB#4 BAB#5 BAB#6 BAB#7

:::: :::: :::: ::::

bank 0 bank 1 bank 2 bank 3

31 bits

16 bits

16 bits

addr 0

addr 16

(a) (b)

read twice and then pack
data

16 bits

Offset
depends

on VOP width

(c)

addr 0

16 bits

read all data at
once

addr 1

16 bits

16 bits
16 bits 16 bits

Search Range

Fig. 5. Memory organization for alpha plane memory. (a) Accessing cross-BAB data in the search range. (b) Linear mapping, single-bank memory
organization; Offset between two consecutive rows depends on the width of a VOP. (c) Distributed tile-based memory organization; Capable of
accessing data crossing BABs in a single cycle.

K.-B. Lee et al.: Optimal Frame Memory and Data Transfer Scheme for MPEG-4 Shape Coding 347

if a BAB is a boundary BAB, its affiliated tile index is used to
indicate the bank number and the base address of the actual 16×16
BAB data to be read in the alpha frame memory. That is, the LSB
two bits of tile index indicate the bank number and the other MSB
bits of tile index represent the base address of a boundary BAB in
the selected bank by [(tile index >>2) ×16]. As for write accesses,
the BAB to be written is classified its BAB class first. For non-
boundary BABs, only index table is updated. As for boundary
BABs, both index table and alpha frame memory must be updated.

The size of the index table can be estimated as follows. If the
maximum VOP size is 16P×16Q pixels, where P and Q are
integers, then the index table has P×Q entries for one alpha plane
and each entry has a word length of (1+ log2(P×Q/2)), where the
ceiling function x gives the smallest integer ≥ x. In addition, P×Q
also indicates the maximum BAB number (i.e., the number of BAB
index) supported by this index table. For example, the word length
of the index table for a 176×144 sized QCIF sequence is (1+
log2(11×9/2)) = 7 bits, and the memory size of this index table is
7/256 = 2.73% of an alpha frame memory without compression
scheme.

The index table does not generally come in a compact size. To
support QCIF format, the index table has a size of 693 bits. This
small size makes it feasible to implement the index table by using
on-chip memory. On the contrary, to support the maximum VOP
size of MPEG-4 standard, i.e., 1920×1088 pixels, the index table
for an alpha plane is 120×68×(1+ log2(120×68/2)) = 8160×13
bits. Although this size is 5.08% of the original alpha frame
memory size, it still occupies considerable area. One approach to
further reduce the size of index table is to use multiple segmented
index tables such that index tables for small BAB index can have
small word length. This approach works because that for a
boundary BAB, its tile index stored in the index table is always
ascending numbered when its BAB index is ascending numbered,
and its tile index is always no greater than its BAB index. For
example, index tables for BAB index 0–127, 128–511, 512–2047,
and 2048–8160 may have a word length of 7, 9, 11 and 13 bits
respectively.

For write access of a boundary BAB, the index table and the

alpha frame memory can be updated at the same time. As for read
access, two or three extra clock cycles of latency may be required
before random access of the alpha frame memory. However, this
latency can be hidden with carefully scheduling of the regular
processing flow. The number of memory reference can be roughly
estimated as follows. For a non-boundary BAB, no alpha frame
memory access is required; only the index table is accessed once.
For a boundary BAB, 16 alpha frame memory accesses and one
index table access are required. Assume the proportion of non-
boundary BAB is PNB, then the proportion of memory access to
both the alpha frame memory and index table is [PNB ×1 + (1-PNB)
×17] / [PNB ×16 + (1-PNB) ×16] = 17/16 – PNB. As indicated in
MPEG-4 standard [1], boundary BABs should not exceed 50% of
total BABs in a VOP. That is, PNB is no smaller than 0.5.
Consequently, the total memory access for the alpha frame buffer
with the index table is about 56.25% of that without using the
index table when PNB is 0.5. Furthermore, the restriction that
boundary BABs should not exceed 50% of total BABs in a VOP
also guarantees that the alpha frame memory with half size of the
maximum VOP works. That is, based on this criterion and the use
of the proposed alpha frame buffer architecture, the size of alpha
frame memory can be reduced to 50%.

V. CONCLUSIONS
In this paper, an efficient data transfer scheme that significantly

reduces the data transfer time to 9.39% has been proposed. The
reduced data transfer time can keep the shared system bus as free as
possible, which in turn leads to increasing the potentialities of
improvement on system performance. Additionally, this data transfer
scheme also helps in the processing of mode decision for shape
mode coding and BAB class decision for index table access.
Therefore, the area cost of this data transfer scheme is alleviated.

We have also presented a distributed tile-based memory
organization for the alpha frame memory to efficiently access the
required data and support the time-varying VOP sizes. This memory
organization makes both the memory access more efficient and the
corresponding address generator more simple and flexible.
Moreover, we also demonstrated that a small, local index table can

O O O B B T T T T
0 1 2 3 4 5 6 7 8

0 0
0 0 do not care
0 0 do not care
1
1
0 1 do not care
0 1 do not care
0 1 do not care
0 1 do not care

0
1

Address Index Table

Alpha Frame Memory
VOP width

O B B B B B T T T
9 10 11 12 13 14 15 16 17

0 1 do not care
1 2

BAB
index

BAB#0 BAB#1 BAB#2 BAB#3

BAB#4 BAB#5 BAB#6 BAB#7

bank 0 bank 1 bank 2 bank 3

0

Tile index

4

1

5

2

6

3

7

...

Alpha Frame
Memory

Index
Table

BAB data

BAB
data

BAB
class

BAB
class

BAB
index

0 O/T

1 Tile index

 log2(PxQ/2) bits

do not care

Non-boundary BAB (Opaque/Transparent)

Boundary BAB

AG

(a)

(b)
1 bit

1 bit 1 bit

(c)

Tile index

1
0

3
2

5
4

7
6

8
9

10

do not care

Fig. 6. Compression scheme: (a) Block diagram of the alpha frame buffer. (b) Two formats for each entry of the index table. (c) Relations among a
VOP, the index table, and the alpha frame memory.

IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, FEBRUARY 2004 348

be used to reduce the number of memory access to the alpha frame
memory. In addition, the size of the alpha frame memory, which is
much larger and possibly located in an off-chip memory, is
decreased to 50% of the original by introducing the index table.

A prototype design of the whole shape encoder with AMBA
AHB bus interface is implemented by Verilog RTL design and
synthesized with UMC 0.18µm 1P6M CMOS technology [20]. The
simulation results show that the system can run at 78.47 MHz to
support Main Profile at Level 4. In summary, the proposed data
transfer scheme and alpha frame memory design efficiently reduce
the system bus bandwidth and the memory requirement of MPEG-4
shape coding.

REFERENCES
[1] ISO/IEC 14496-2, “Information technology — Coding of audio-visual

objects,” 2nd edition, Switzerland, Dec. 2001.
[2] N. Brady, “MPEG-4 standardized methods for the compression of

arbitrarily shaped video objects,” IEEE Trans. Circuits Syst. Video
Technol., Vol. 9, pp. 1170–1189, Dec. 1999.

[3] ISO/IEC JTC1/SC29/WG11 N3908, MPEG-4 Video Verification Model
version 18.0, Jan. 2001.

[4] J. Kneip, S. Bauer, J. Vollmer, B. Schmale, P. Kuhn, and M. Reibmann,
“The MPEG-4 video coding standard — A VLSI point of view,” in
Proc. IEEE Workshop Signal Processing Systems Design and
Implementation (SiPS’98), pp 43–52, Oct. 1998.

[5] P. M. Kuhn and W. Stechele, “Complexity analysis of the emerging
MPEG-4 standard as a basis for VLSI implementation,” Proc. SPIE
Visual Communications and Image Processing (VCIP’98), pp 498–509,
Jan. 1998.

[6] D. Gong and Y. He, “Computation complexity analysis and VLSI
architectures of shape coding for MPEG-4,” in Proc. SPIE VCIP’2000,
vol. 4067, pp. 1459–1470, Jun. 2000.

[7] H.-C. Chang, Y.-C. Wang, M.-Y. Hsu, and L.-G. Chen, “Efficient
algorithms and architectures for MPEG-4 object-based video coding,”
in Proc. IEEE Workshop on Signal Processing Systems Design and
Implementation (SiPS 2000), Lafayette, Louisiana, pp 13–22, Oct.
2000.

[8] M. Berekovic, K. Jacob, and P. Pirsch, “Architecture of a hardware
module for MPEG-4 shape decoding,” in Proc. Int. Symp. Circuits and
Systems (ISCAS’99), pp. 157–160, May 1999.

[9] J. Thinakaran, D.-J. Ho, and N. Ling, “An architecture for MPEG-4
binary shape decoder,” in Proc. Int. Symp. Circuits and Systems (ISCAS
2000), pp. 457–460, May 2000.

[10] P. R Panda and N. D. Dutt, “Low-power memory mapping through
reducing address bus activity,” IEEE Trans. VLSI Syst, Vol. 7, pp. 309–
320, Sept. 1999.

[11] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. D. Man,
“Global communication and memory optimizing transformations for
low power signal processing systems,” In VLSI Signal Processing VII,
pp. 178–187, 1994.

[12] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and
A. Vandecapelle, Custom Memory Management Methodology —
Exploration of Memory Organization for Embedded Multimedia System
Design, Kluwer, Boston, 1998.

[13] K. Lahiri, A. Raghunathan, and S. Dey, “Fast performance analysis of
bus-based system-on-chip communication architectures,” in Proc. Intl.
Conf. on Computer Aided Design, pp.566-572, San Jose, Nov. 1999.

[14] SOCCreator Guide Design Flow, available on http://www.
socworks.com/socworks/support/documentation/html/SOCCreator-
Guide-Design-Flow.html

[15] Sonics, Efficient Shared DRAM Subsystems for SOCs, 2001, available
on http://www.sonicsinc.com/sonics/products/memmax/productinfo/docs/
DRAM_Scheduler.pdf

[16] K. Suzuki, T. Arai, K. Nadehara, and I. Kuroda, “V830R/AV:
Embedded multimedia superscalar RISC processor,” IEEE Micro, pp.
36-47, Mar. 1998.

[17] S. Dutta, “Architecture and design of NX-2700: a programmable single-
chip HDTV all-format-decode-and-fisplay processor,” IEEE Trans.
VLSI Syst., pp 313-328, Apr. 2000.

[18] ARM Ltd., “AMBA 2.0 Specification,” 1999.
[19] Y.-C. Wang, H.-C. Chang, W.-M. Chao, and L.-G. Chen, “Efficient

architecture of binary motion estimation for MPEG-4 shape coding,” in
Proc. SPIE International Conference on Visual Communications and
Image Processing (VCIP 2001), San Jose, California, Jan. 2001.

[20] K.-B. Lee, Nelson Y.-C. Chang, H.-Y. Chin, H.-C. Hsu, and C.-W. Jen
“A bandwidth and memory efficient MPEG-4 shape encoder,” to be
appeared in ASP-DAC 2004.

Kun-Bin Lee received the B.S. degree in electrical
engineering from National Sun Yat-Sen University in
1996, Kaohsiung, Taiwan, and the M.S. degree in
electronics engineering from National Chiao Tung
University in 1998, Hsinchu, Taiwan. He is currently
working on the Ph.D. degree in electronics engineering
at National Chiao Tung University. His current
research interests include processor architecture,
digital signal processing, and system-level exploration
with focus on data transfer optimization and memory

management for image and video applications. Kun-Bin Lee is a member of
Phi Tau Phi.

Hao-Yun Chin received the B.S. degree in electronics
engineering from National Chiao Tung University,
Hsinchu, Taiwan, R.O.C., in 2002. He is currently
working on the M.S. degree in electronics engineering
at National Chiao Tung University. His research
interests include VLSI design, digital signal
processing, and embedded system.

Nelson Yen-Chung Chang received the B.S. degree
in electrical engineering from National Tsing-Hua
University in 2000, Hsinchu, Taiwan, and the M.S.
degree in electronics engineering from National Chiao-
Tung University in 2002, Hsinchu, Taiwan. He is
currently working on the Ph.D. degree in electronics
engineering at National Chiao-Tung University. His
current research focus on MPEG-4 related application.

Hui-Cheng Hsu was born in Hsinchu, Taiwan, R.O.C.
in 1980. She received the B.S. degrees in electronics
engineering from National Chiao Tung University in
2002, Hsinchu, Taiwan. She is currently working on
the M.S. degree in electronics engineering at National
Chiao Tung University. Her current research interests
include VLSI design, digital signal processing, and
computer architecture.

Chein-Wei Jen (S'78-M'84) received the BS degree
from National Chiao Tung University in 1970, the MS
degree from Stanford University, Stanford, California,
in 1977, and the Ph.D. degree from National Chiao
Tung University in 1983. He is currently with the
Department of Electronics Engineering and Institute
of Electronics, National Chiao Tung University,
Hsinchu, Taiwan, as a professor. During 1985-1986,
he was with the University of Southern California,
Los Angeles, as a visiting researcher. His current

research interests include VLSI design, digital signal processing, processor
architecture, and design automation. Dr. Jen is a member of the IEEE and of
Phi Tau Phi.

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

