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Abstract — An optimal frame memory and data transfer 
scheme is proposed for MPEG-4 shape coding in embedded 
systems. The proposed alpha frame buffer scheme contains 
two approaches. First, a distributed tile-based memory 
organization is used to efficiently support the time-varying 
size of alpha plane. Second, a compression scheme is used to 
reduce the number of memory access to and the size of the 
alpha frame memory. Under the criteria of MPEG-4 standard, 
the size of alpha frame memory can be reduced to 50% by 
introducing a small index table (2.73%-5.08% of the original 
frame memory size). A coarse assessment shows that the 
number of memory reference can be reduced to 56.25%. On 
the other hand, the proposed data transfer scheme combines 
the run length coding and addressing mode to reduce average 
data transfer time to 9.39%. Therefore, the shared system bus 
can be kept as free as possible, which in turn leads to 
increasing the potentialities of improvement on system 
performance. Furthermore, this data transfer scheme also 
helps in accelerating the processing of shape coding1. 

Index Terms — Data transfer, frame memory, MPEG-4, 
shape coding.  

I. INTRODUCTION 

MPEG-4'S object-based scene description allows the 
transmission of arbitrarily shaped video objects [1]-[3]. The 
purpose of using shape is to promote better subjective picture 
quality, higher coding efficiency as well as more user 
interactions. These advantages make this standard best suited 
for the needs of mobile applications or browsing multimedia 
databases on the Internet. Therefore, shape coding can be 
utilized in lots of consumer electronics devices, such as video 
telephony, PDA, set-top box, and video surveillance. 
However, these flexible and high-efficient coding features are 
based on the complex decision process and high computational 
tasks. Thus, MPEG-4 shape coding demands the high 
computing and high data traffic properties [4]-[7]. For 
example, the analysis of MPEG-4 Core Profile at Level 2 
performed on an Ultra Sparc RISC [7] indicated that MPEG-4 
shape encoding requires giga-operations per second (GOPS) 
and hundred-mega-byte scale memory access per second. To 
meet the stringent requirements on low cost and low power for 
the embedded system market, there is a clear need for 
optimized MPEG-4 VLSI architecture. 
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Several previous works [6]-[9] presented results on VLSI 
architecture design of MPEG-4 shape coding/decoding, but 
few of them did optimization on data transfer and storage. 
However, previous researches [10]-[13] have shown that data 
transfer and storage can significantly affect the area, power 
and performance in SoCs. To communicate and hold the 
massive amounts of intermediate data, optimal data transfer 
and buffering schemes are needed. On the other hand, efficient 
implementations of these schemes require identifying the 
properties of the algorithms involved to eliminate or at least 
alleviate the impacts of these bottlenecks.  

The aforementioned compelling advantages of MPEG-4 
shape coding and the awareness of the critical issues in 
designing high-performance and low-power video processing 
architectures motivate us to explore an efficient solution of the 
frame memory design and the data transfer scheme for MPEG-
4 shape coding. The contribution of this paper includes: 1) An 
on-chip bus data transfer scheme that not only significantly 
reduces data transfer time over the on-chip bus, but also helps 
in accelerating the processing of shape coding. 2) A distributed 
tile-based memory organization for the alpha frame memory 
that can efficiently conquer the data alignment problem and 
support variable video object plane (VOP) sizes, while making 
the address generator even more flexible and simple for time-
varying VOP sizes. 3) A low-complexity alpha frame 
compression scheme that reduces the number of memory 
access to and the size of alpha frame memory. 

The rest of this paper is organized as follows. Section II 
gives a brief overview of MPEG-4 shape coding. Section III 
presents the proposed data transfer scheme for MPEG-4 shape 
coding. The performance estimation is also given in this 
section. In Section IV, the proposed frame memory 
architecture is described. Finally, concluding remarks are 
made in Section V.  

II. OVERVIEW OF MPEG-4 SHAPE CODING 
MPEG-4 international standard [1][2] treats moving 

pictures as an organized collection of visual objects and 
provides several advanced techniques to access and represent 
the moving arbitrarily shaped natural and synthetic objects in 
video scenes. The MPEG-4 visual specifications support 
several types of visual objects, among which is the video 
object. The video object may be thought of as a sequence of 
two-dimensional images. Each image can be associated with 
shape information to define its shape. As shown in Fig. 1, a 
video object plane (VOP), which is the instance of a video 
object at a given time, is composed of a bitmapped alpha 
component to define the object’s shape and three color 
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components (YCbCr) to render the object’s texture. Basically, 
the VOP is defined as a minimum rectangle that encloses the 
whole object. It is noteworthy that the size of a VOP at a given 
time depends on the shape of the video object at that time. 
That is, the size of the VOP for a video object is time-variant. 
MPEG-4 video encoding is based on the VOP encoder shown 
in Fig. 2. The alpha component of a VOP is encoded using a 
binary shape encoder while the color components are encoded 
using motion estimation and compensation followed by DCT-
based texture coding. 

 Coding the shape information of a VOP takes a few major 
steps. First, a bounding rectangle is created and extended to 
multiples of 16×16 pixels with extended alpha samples set to 
transparency. Next, binary alpha data are grouped with what 
are called binary alpha blocks (BABs) to have the same 
dimensions as a macroblock. Finally, shape coding is initiated 
on a BAB-by-BAB basis. 

The encoding of a BAB can be further divided into the 
following scenarios. First of all, if all the pixels in a BAB are 
either opaque or transparent, this BAB is a non-boundary BAB 
and only the coding mode is encoded by means of a variable-
length coder (VLC). Second, in interframe, a boundary BAB 
can be coded with reference to a suitable prediction BAB from 
the previous coded frame to remove temporal redundancy. 
This procedure is called binary motion estimation (BME). 
Based on the assumption that the movement of an object is 
homogeneous, motion vector of neighboring BAB or texture block 
is used as the motion vector predictor for shape (MVPs). If the 
motion compensation (MC) error between the block indicated by 
the MVPs and current BAB is less than or equal to a predefined 
threshold, the MVPs is directly employed as motion vector of 
shape (MVs), and the procedure of BME terminates. Otherwise, 
full-search block matching is performed around the MVPs within a 
predefined search range. Each candidate block residing in the 
search range indicated by a motion vector is compared to the 
current BAB by computing 16×16 sum of absolute differences 

(SADs). The motion vector that minimizes the SADs is taken as 
MVs. The MVs is further interpreted as motion vector difference 
for shape (MVDs), i.e., MVDs = MVs − MVPs. In this case, 
coding mode and MVDs are encoded by shape encoder using 
VLC. At last, apart from those cases mentioned above, it is 
generally necessary to employ context-based arithmetic 
encoding (CAE) to the pixels within a BAB. 

There are two CAE operation modes, one is intra-mode and 
the other is inter-mode. Intra-mode CAE exploits the spatial 
redundancy by estimating the probability of the current pixel 
from its neighboring pixels. As for inter-mode, temporal 
redundancy is exploited by estimating the probability of the 
current pixel from its neighboring pixels and motion 
compensated neighboring pixels of the previous coded frame. 
In intraframe coding, only intra-mode CAE is performed. In 
interframe coding, both intra- and inter-mode CAE are 
performed. In both modes, CAE operation is performed pixel 
by pixel in both horizontal and vertical raster scan order. 
Therefore, there are total four different coding processes: 
CAE(Intra, H), CAE(Intra, V), CAE(Inter, H), and CAE(Inter, V). At each 
pixel, a template is formed to extract a context number used to 
access a probability table. The accessed probability and the 
pixel value are then used to drive an arithmetic encoder. In 
intraframe coding, the encoded bitstream with minimum size 
between CAE(Intra, H) and CAE(Intra, V) is chosen as the final 
output. Similarly, the encoded bitstream with minimum size 
among CAE(Intra, H), CAE(Intra, V), CAE(Inter, H), and CAE(Inter, V) is 
chosen in interframe coding. In addition, the shape encoder 
may decide to encode subsampled versions (i.e., lossy coding) 
of BABs to save encoded bits. If this is the case, the 
subsampling factor, also known as conversion ratio (CR), is 
also encoded into the bitstream. The BAB (subsampled or not) 
then undergoes CAE. Note that CAE itself introduces no 
additional loss.  

In summary, there are seven coding modes for MPEG-4 
shape coding in total, as listed in TABLE I. The syntax of the 
coding mode is represented by bab_type field in the bitstream 
[1]. The general coding procedure can be as follows. 
 
Step 1: Perform mode decision to determine the current BAB 
is a boundary or non-boundary one. For a non-boundary BAB, 
go to Step 5 with bab_type = 2 or 3. For a boundary BAB, go 
to Step 2 or 3 for interframe or intraframe coding respectively. 
Step 2: Perform BME. If a qualified motion vector is found, 
go to step 5 with bab_type = 0 or 1. Otherwise go to Step 3. 

TABLE I 
BAB CODING MODES 

Coding Mode 
(bab_type) Semantic Used in 

0 No update && MVDs == 0 P-, B-VOPs 
1 No update &&  MVDs != 0 P-, B-VOPS 
2 Transparent I-, P-, B-VOPS 
3 Opaque I-, P-, B-VOPS 
4 Intra CAE I-, P-, B-VOPS 
5 Inter CAE && MVDs == 0 P-, B-VOPS 
6 Inter CAE && MVDs != 0 P-, B-VOPS 

 

(a)                                   (b)                                  (c) 
Fig. 1. Video object plane: (a) Texture component of the VOP. (b) 
Binary alpha component of the VOP. (c) 16××××16 BABs: O for opaque 
BAB, T for transparent BAB, and B for boundary BAB. 
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Fig. 2. General structure of MPEG-4 VOP encoder. 
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Step 3: Perform size conversion to obtain a subsampled 
version of current BAB. The quality of the subsampled BAB 
must satisfy the predefined threshold. Go to Step 4. 
Step 4: Perform intra-mode CAE for intraframe coding. 
Perform intra- and inter-mode CAE for interframe coding. Go 
to Step 5 with bab_type = 4, 5, or 6. 
Step 5: Perform VLC for BAB coding mode and other related 
information. 

Fig. 3 shows the block diagram of MPEG-4 binary shape 
coding system. To improve the performance of the shape 
encoder, parallel processing of partial or all operations in each 
step can be implemented. 

III. DATA TRANSFER SCHEME 
With the ongoing advancements in VLSI technology, the 

performance of an embedded system is no longer determined 
primarily by the number and speed of functional units, but by 
the communication of data among these functional units. Lots 
of schemes have been used to improve the performance of on-
chip communication, including wider data buses, more 
dedicated channels (buses), more buffers, more advanced bus 
protocols, more intelligent arbitration schemes, more 
ingenious schedulings, higher clock rate, etc. The choice of 
applying single or mixed schemes to improve the performance 
of on-chip communication are tradeoffs among performance, 
area, power consumption, hardware utilization, etc. There are 
several examples of design consideration for these schemes. 
First, the reasons of using shared-bus architecture instead of 
multiple dedicated buses are the physical problems and the low 
utilization of these multiple dedicated buses [14][15]. Second, 
to keep the internal bus as free as possible, large data buffers, 
ranging from 384 bytes to 512 bytes, are included in each 
peripheral attached to this bus [16]. This internal bus is the 
backbone of an embedded RISC processor-based, real-time 
multimedia processing system with full motion video 
processing capabilities, such as MPEG-2 MP@ML decoding. 
The internal bus is shared by high-performance peripherals, 
e.g., a Rambus control unit, a DMA control unit, a video 
control unit, etc. Finally, in order to meet the different 
bandwidth and latency requirements of the different 
peripherals attached to the on-chip shared bus of a 
programmable single chip HDTV processor, the shared bus is 
controlled via a round-robin arbitration algorithm with 
programmable bandwidth [17].  

In this paper, we present an alternative scheme to improve 
data transfer performance for shared-bus communication, 
where the shared bus can be the only bus or one of multiple 
buses in the target system. The proposed data transfer scheme 
can keep the shared bus as free as possible by shrinking data 
transfer amount. In addition, the scheme accelerates the 
processing of MPEG-4 shape coding by doing the mode 
decision in Step 1 of shape encoding mentioned in Section II. 
Moreover, the scheme also speeds up alpha frame memory 
access, which will be discussed in next section. 

The proposed transfer scheme is based on the following 
three principles. First, simple data transfer scheme is preferred. 
Too complex scheme may result in not only higher hardware 
cost but also much latency. Second, the scheme should be 
independent of any particular bus protocol. Hence, the scheme 
can be ported easily to different systems. Finally, the worst 
case performance of the bus sub-system must be at least the 
same as that without using the proposed scheme. Under these 
three principles, the proposed data transfer scheme consists of 
a simple coding, the run-length coding (RLC), and a particular 
addressing mode. 

The run-length coding is chosen under the following 
considerations. First, video data have one important feature 
that neighboring pixels have similar values. Although many 
coding schemes have good performance on dealing with such 
interpixel redundancy, RLC is considered due to its low 
complexity. Second, the ability to identify consecutive 
identical values helps in deciding whether the transferred BAB 
is a boundary or non-boundary BAB. In our implementation, 
the value of pixels in a row of a BAB is packed and coded as 
run, while the length denotes the number of consecutive rows 
having the same value. If a RLC encoded (run, length) tuple of 
either (0, 16) or (255, 16) is transferred, the BAB is a non-
boundary one since there are 16 consecutive transparent or 
opaque rows.  Otherwise, the transferred BAB is a boundary 
one. With the helping information from RLC, the coding for a 
non-boundary BAB only takes three cycles (for Step 5) in our 
design, while the design in [7] required 23 cycles. 

An addressing mode together with RLC compensates the 
overhead of RLC. In RLC, both the run and the length of run, 
denoted as length, are needed to be handled. To avoid 
increasing the width of the data bus for transferring the length, 
or increasing the total time to transfer both the run and the 
length, RLC is combined with an addressing mode to make use 
of available bit information on the address bus. In general, the 
specification of an on-chip bus would define the minimum 
memory-mapped space allocated to one slave device to 
simplify the central address decoder and therefore minimizes 
the delay of address decoding. For instance, the de facto on-
chip bus standard, AMBA, defines that the minimum memory-
mapped space for a device is 1K bytes [18]. Although 
specifications of on-chip buses define the minimum memory-
mapped space, most functional units do not need all the 
assigned memory space. Based on this observation, the length 
is transferred through some bits of the address bus. As 
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Fig. 3. Block diagram of shape coding system. 
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illustrated in Fig. 4, we encode each BAB with run length 
coding and then transfer the run through the 16-bit data bus 
and the length through the address bus. Thus, the value of run 
is written to different addresses, where the offset of the address 
depends on the value of length. The length is extracted from 
the address bus by using memory-mapped address decoding. 
It’s noteworthy that transferring each opaque or transparent 
BAB takes only one datum transfer time instead of 16, while in 
general more than 50% of total BABs are non-boundary. 

Performance estimation is made by simulation of hardware 
model written in C/C++ language over the nine test sequences 
listed in TABLE II. Except for Dancer and Singer, these test 
sequences are derived from MPEG-4 Video Verification 
Model [3]. All test sequences are generated for Core Profile at 
Level 2 with size conversion disabled and shape refresh rate of 
1:3. In MPEG-4 Video Verification Model, 8-bit data is used 
to represent the alpha component of each pixel to indicate 
either transparent or opaque. For our hardware design, the bi-
level alpha data, transparent or opaque, is represented using a 
single bit. Under the same aforementioned conditions, we 
define the transfer time ratio (RT) as: 

%100
scheme proposed without imetransfer t

scheme proposed with imetransfer t
×=TR  

The average transfer time ratio over the nine test sequences 
listed in TABLE II is reduced to 9.39%. The proposed data 
transfer scheme is also validated in an AMBA AHB subsystem. 

IV. FRAME MEMORY DESIGN FOR ALPHA PLANE 

An efficient frame memory design for alpha plane is 
essential. As mentioned before, MPEG-4 shape encoder 

requires hundred-mega-byte scale memory access per second. 
In addition, VOP size is changing from time to time while 
maximum VOP size can be as large as 1920×1088 for Main 
Profile at Level 4. Hence, we propose a distributed tile-based 
memory organization for the alpha frame memory that can 
efficiently conquer the data alignment problem and support 
variable VOP sizes, while making the address generator more 
flexible and simple for time-variant VOP sizes. We also 
propose a low-complexity compression scheme for alpha 
frame memory to effectively reduce the requirements for 
memory size and bandwidth. 

A. Distributed Tile-Based Memory Organization 
For alpha memory, instead of using traditional linear 

mapping [7][19], we propose a distributed tile-based mapping 
which maps each BAB in logic space to a tile in alpha memory 
in distributed manner. The proposed distributed tile-based 
mapping out performs linear mapping in the following way. 
First, tile-based mapping can reduce address bus activity, 
which in turn leads to low-power memory access [10]. Second, 
tile-based mapping makes the architecture of the address 
generator simpler and more flexible for time-varying VOP 
sizes. Finally, the distributed property helps in accessing data 
crossing BABs, which is one of the key operations of BME 
that can significantly affect BME performance. Fig. 5 (a) 
shows a case of accessing cross-BAB data in the search range 
of BME. 

For MPEG-4’s predecessors, i.e., MPEG-1/2, the frame 
width is fixed through out the video sequence. Therefore, the 
memory system can be tuned to pack the right bytes into a 
word. On the opposite, in MPEG-4 shape encoding, the width 
of a VOP is changing from time to time, and can be any 
arbitrary multiples of the width of a BAB. This variation 
makes the design of memory system for shape encoding more 
complex. 

Tile-based mapping solves parts of the above issue. In our 
implementation, the tile size is equal to the size of a BAB. 
Since the bi-level alpha data is represented as 1-bit 0 or 1, one 
row of data within a BAB, i.e., 16-bit data, is packed as the 
basic access unit in the alpha plane memory. In addition, the 
consecutive 16 rows within one BAB are allocated to 
consecutive memory space. For each write access, only data 
within a BAB is updated. Therefore, data can be stored to 

TABLE II 
DATA TRANSFER TIME RATIO 

Sequence 
Name 

Frame 
Size 

Frame 
Quantity 

Total BAB 
Amount 

Boundary BAB 
Amount 

Transfer Time 
Ratio Description 

Bream CIF 10 2036 569 11.06 % A swimming fish 
Coastguard 0 CIF 300 77462 28150 6.96 % River 
Coastguard 1 CIF 300 42786 14544 9.60 % Boat of coastguard 
Coastguard 2 CIF 300 15633 11781 10.08 % Skiff 
Coastguard 3 CIF 300 51128 8752 3.96 % Coast line 
Dancer 1 CIF 250 32885 14048 17.06 % A performance of two dancers 
Foreman CIF 300 65958 11304 5.69 % A man who’s talking with body language 
Singer 1 CIF 250 24841 10349 15.58 % A singer who’s singing with body language 
Singer 2 CIF 250 36094 10734 17.14 % Subtitles that are moving around the singer 
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Fig. 4. Proposed data transfer scheme: (a) Run length coding of a BAB. 
(b) Value of run is written to the corresponding address according to the 
length information. 
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consecutive memory addresses without considering the width 
of the VOP. For read access, it is also likely to read 
consecutive rows in a BAB. Tile-based mapping also benefits 
from this locality. In contrast, the address offset of two 
consecutive rows depends on the VOP width in linear mapping 
scheme, as displayed in Fig. 5(b). Even worse, the non-
consecutive addresses lead to more transitions on the address 
bus. 

To efficiently read data crossing BABs from the alpha frame 
memory, the alpha frame memory is further distributed into 
several banks with some constrains: 

 For parallel processing of BME using N processing 
elements (PEs), (16+N-1) bits of reference data are 
required at each clock cycle. Because these bits might 
cross several BABs, at least M memory banks are 
required. 


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 M horizontal consecutive BABs in logic space must be 
stored in the different banks. 

In our design, the frame memory includes four banks of 16-
bit wide memory and each bank has its dedicated data bus. 
Although our design has 16 PEs and requires a minimum of 
three banks, four banks are used for simpler modulo circuits of 
the address generation. The exact size of each memory bank 
depends on the maximum size of a VOP to be supported. 
Pixels in each row of a BAB are packed and stored in one 
memory entry. 

The distributed property leads to some advantages. Most 
importantly, reading data crossing several BABs may be 
accessed within a single cycle, as shown in Fig. 5 (c). This 
advantage removes the requirement of the search range buffer 

in [19].  Search range buffer is no longer essential and 
becomes a tradeoff between the memory access time and 
silicon area. Besides, when it comes to off-chip memory, the 
distributed property also applies well. In fact, to store alpha 
frames into off-chip SDRAM that contains several internal 
banks, the distributed tile-based memory organization reduces 
page misses. Consequently, the efficiency of the off-chip 
memory access and the overall system performance are 
improved. 

B. Compression Scheme for Alpha Frame Memory 
Based on the observation that the proportion of boundary BAB 

is quite low in all the test sequences listed in TABLE II, it is 
neither efficient nor cost-effective to store these blocks in the alpha 
frame memory in the raw format. Therefore a low complexity 
compression scheme for alpha frame memory is proposed by 
introducing a small index table to keep track of the minimum 
information of all BABs, while only boundary BABs are stored in 
the alpha frame memory. 

In our compression scheme, the alpha frame buffer contains one 
alpha frame memory, one index table, and one address generator 
(AG), as shown in Fig. 6 (a). The alpha frame memory is 
organized as the one presented in the previous section, except that 
the relation of one-to-one mapping of BAB from logic VOP space 
to physical memory space is not maintained. Instead, only 
boundary BABs are stored in the alpha frame memory. Each BAB 
in the logic space is assigned a BAB index, while each consecutive 
16 words × 16 bits memory space within one memory bank is 
assigned a tile index. To keep track of all BABs, BAB class 
(transparent, opaque or boundary) and tile index are stored in the 
index table, as shown in Fig. 6 (b). An example of how the first 
two BAB rows at the top of a VOP are stored in the index table 
and the alpha frame memory is illustrated by Fig. 6 (c). 

Before reading the content of a BAB, the index table is read 
first to decide the BAB class of this BAB by using BAB index as 
the address of the index table. If a BAB is non-boundary, either 
opaque or transparent, only the index table is accessed. In contrast, 

BAB#0 BAB#1 BAB#2 BAB#3

BAB#4 BAB#5 BAB#6 BAB#7

:::: :::: :::: ::::

bank 0 bank 1 bank 2 bank 3

31 bits

16 bits

16 bits

addr 0

addr 16

(a) (b)

read twice and then pack
data

16 bits

Offset
depends

on VOP width

(c)

addr 0

16 bits

read all data at
once

addr 1

16 bits

16 bits
16 bits 16 bits

Search Range

 
Fig. 5.  Memory organization for alpha plane memory. (a) Accessing cross-BAB data in the search range. (b) Linear mapping, single-bank memory 
organization; Offset between two consecutive rows depends on the width of a VOP. (c) Distributed tile-based memory organization; Capable of 
accessing data crossing BABs in a single cycle. 
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if a BAB is a boundary BAB, its affiliated tile index is used to 
indicate the bank number and the base address of the actual 16×16 
BAB data to be read in the alpha frame memory. That is, the LSB 
two bits of tile index indicate the bank number and the other MSB 
bits of tile index represent the base address of a boundary BAB in 
the selected bank by [(tile index >>2) ×16]. As for write accesses, 
the BAB to be written is classified its BAB class first. For non-
boundary BABs, only index table is updated. As for boundary 
BABs, both index table and alpha frame memory must be updated.  

The size of the index table can be estimated as follows. If the 
maximum VOP size is 16P×16Q pixels, where P and Q are 
integers, then the index table has P×Q entries for one alpha plane 
and each entry has a word length of (1+ log2(P×Q/2) ), where the 
ceiling function x gives the smallest integer ≥ x. In addition, P×Q 
also indicates the maximum BAB number (i.e., the number of BAB 
index) supported by this index table. For example, the word length 
of the index table for a 176×144 sized QCIF sequence is (1+ 
log2(11×9/2) ) = 7 bits, and the memory size of this index table is 
7/256 = 2.73% of an alpha frame memory without compression 
scheme.  

The index table does not generally come in a compact size. To 
support QCIF format, the index table has a size of 693 bits. This 
small size makes it feasible to implement the index table by using 
on-chip memory. On the contrary, to support the maximum VOP 
size of MPEG-4 standard, i.e., 1920×1088 pixels, the index table 
for an alpha plane is 120×68×(1+ log2(120×68/2)) = 8160×13 
bits. Although this size is 5.08% of the original alpha frame 
memory size, it still occupies considerable area. One approach to 
further reduce the size of index table is to use multiple segmented 
index tables such that index tables for small BAB index can have 
small word length. This approach works because that for a 
boundary BAB, its tile index stored in the index table is always 
ascending numbered when its BAB index is ascending numbered, 
and its tile index is always no greater than its BAB index. For 
example, index tables for BAB index 0–127, 128–511, 512–2047, 
and 2048–8160 may have a word length of 7, 9, 11 and 13 bits 
respectively. 

For write access of a boundary BAB, the index table and the 

alpha frame memory can be updated at the same time. As for read 
access, two or three extra clock cycles of latency may be required 
before random access of the alpha frame memory. However, this 
latency can be hidden with carefully scheduling of the regular 
processing flow. The number of memory reference can be roughly 
estimated as follows. For a non-boundary BAB, no alpha frame 
memory access is required; only the index table is accessed once. 
For a boundary BAB, 16 alpha frame memory accesses and one 
index table access are required. Assume the proportion of non-
boundary BAB is PNB, then the proportion of memory access to 
both the alpha frame memory and index table is [PNB ×1 + (1-PNB) 
×17] / [PNB ×16 + (1-PNB) ×16] = 17/16 – PNB. As indicated in 
MPEG-4 standard [1], boundary BABs should not exceed 50% of 
total BABs in a VOP.  That is, PNB is no smaller than 0.5. 
Consequently, the total memory access for the alpha frame buffer 
with the index table is about 56.25% of that without using the 
index table when PNB is 0.5. Furthermore, the restriction that 
boundary BABs should not exceed 50% of total BABs in a VOP 
also guarantees that the alpha frame memory with half size of the 
maximum VOP works. That is, based on this criterion and the use 
of the proposed alpha frame buffer architecture, the size of alpha 
frame memory can be reduced to 50%.  

V. CONCLUSIONS 
In this paper, an efficient data transfer scheme that significantly 

reduces the data transfer time to 9.39% has been proposed. The 
reduced data transfer time can keep the shared system bus as free as 
possible, which in turn leads to increasing the potentialities of 
improvement on system performance. Additionally, this data transfer 
scheme also helps in the processing of mode decision for shape 
mode coding and BAB class decision for index table access. 
Therefore, the area cost of this data transfer scheme is alleviated. 

We have also presented a distributed tile-based memory 
organization for the alpha frame memory to efficiently access the 
required data and support the time-varying VOP sizes. This memory 
organization makes both the memory access more efficient and the 
corresponding address generator more simple and flexible. 
Moreover, we also demonstrated that a small, local index table can 
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Fig. 6.  Compression scheme: (a) Block diagram of the alpha frame buffer. (b) Two formats for each entry of the index table. (c) Relations among a 
VOP, the index table, and the alpha frame memory. 
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be used to reduce the number of memory access to the alpha frame 
memory. In addition, the size of the alpha frame memory, which is 
much larger and possibly located in an off-chip memory, is 
decreased to 50% of the original by introducing the index table. 

A prototype design of the whole shape encoder with AMBA 
AHB bus interface is implemented by Verilog RTL design and 
synthesized with UMC 0.18µm 1P6M CMOS technology [20]. The 
simulation results show that the system can run at 78.47 MHz to 
support Main Profile at Level 4. In summary, the proposed data 
transfer scheme and alpha frame memory design efficiently reduce 
the system bus bandwidth and the memory requirement of MPEG-4 
shape coding. 
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