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Abstract

Let I" denote a distance-regular graph with diaméer 3, intersection numbera;, b;, ¢; and
Bose—Mesner algebr¥l. Foré € CU oo we define ane-dimensional subspaceMfwhich we call
M (@). If 6 € C thenM (6) consists of thos& in M such thattA — 01)Y € CAp, whereA (resp.
Ap) is the adjacency matrix (res@th distance matrix) of . If 6 = oo thenM () = CAp. By a
pseudoprimitive idempotentor & we mean a nonzerelemet of M (6). We use thesesfdlows. Let
X denote the vertex set df and fixx € X. LetT denote the subalgebra of MatC) generated by
A, ES, EI, e EE, whereEi* denotes the projection onto thih subconstituent of” with respect
to x. T is called the Terwilliger algebra. L&/ denote an irreducibl&-module. By theendpoint
of W we mean mifi | Ei*W # 0}. W is calledthin whenever dimEi*W) <1lforO<i < D.
LetV = CX denote the standarB-module. Fix 0= v € EJV with v orthogonal to the all ones
vector. We defingM; v) := {P € M | Pv € EjV}. We show be following are equivalent: (i)
dim(M; v) > 2; (ii) v is contained in a thin irreducibl&-module with endpoint 1. Suppose (i), (ii)
hold. We show(M; v) has a basigd, E whereJ has allenties 1 andE is definedas follows. LetW
denote ther-module which satisfies (ii). Obsende] W is aneigenspace foE] AE]; let  denote
the corresponding eigenvalue. Defifie= —1—by(1+n)~1if n # —1 andj = oo if n = —1. Then
E is a pseudo primitie idenpotent for.
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1. Introduction

Let I" denote a distance-regular graph with diamd@er> 3, intersection numbers
a, b, ¢i, Bose—Mesar algebraM and path-length distance function(seeSection 2for
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formal definitions). In order to state our main theorems we make a few comments. Let
X denote the vertex set df. Let V = CX denote the vector space ov@rconsisting
of column vectors whose coordinates are indexedkbgnd whose entries are . We
endowV with the Hermitean inner produgt ) satisfying(u, v) = u'v for all u,v € V.
For eachy € X let §y denote the vector itV with a 1 in they coordinate and 0 in all
other coordinates. We obserig | y € X} is an orthonormal basis fo¥. Fix x € X. For
0 <i < D let E denote the diagonal matrix in MatC) which hasyy entry 1 (resp. 0)
wheneven (x, y) =i (resp.d(X, y) # i). We observeE” acts onV as the projection onto
theith subconstituent of” with respect tax. For 0< i < D defines = >y, where the
sum is over all verticeg € X suchthata(x, y) = i. Weobserves € EV. Letv denote
anonzero vector irE;V which is athogonal tos;. We define

M;v):={PeM|PveEjV}

We observe(M; v) is a sibspace oM. We onsider the dimension aM; v). We first
observgM; v) # 0. To see this, lefl denote the matrix in Mat(C) which has all entries 1.

It is known J is contained inM [2, p. 64]. In factJ € (M; v); the rason isJv = 0
sincev is orthogonal tos;. Apparently(M; v) is nonzero so it has dimension at least 1.
We now monsider when doeéM; v) have dimension at least 2? To answer this question
we recall the Terwilliger algebra. L&t denote the subalgebra of MatC) generated by
A, E§. Ej. ..., Ep, whereA denotes the adjacency matrix bf The agebraT is known

as theTerwilliger algebra (osubconstituendlgebra) ofl” with respect tox [19-21]. By a
T-modulewe mean a subspad® C V suchthatTW C W. Let W denote ar-module.
We sayW is irreducible wheneverW =% 0 andW does not contain &-module other
than 0 andWV. Let W denote an irreducibl@-module. By theendpointof W we mean the
minimal integeri (0 < i < D) suchthatEW # 0. We sayW is thin wheneverE*W has
dimension at most 1 for & i < D. We now sta¢ our maintheorem.

Theorem 1.1. Letv denote a nonzero vector inj& which is orthogonal to s Then the
following (i), (ii) are equivalent.

(i) (M;v) has dimension at lea®
(i) vis contained in a thin irreducibl&-module with endpoirt.

Supposéi), (i) hold above. TheiM; v) has dimension exactB

With reference torheorem 1.1suppose for the moment that (i), (ii) hold. We find a basis
for (M; v). To degribe our basis we need some notation. #get- 61 > --- > 9p denote
the distinct eigenvalues &4, and for 0< i < D let E; denote the primitive idempotent
of M associated witl#;. We recall E; satisfies(A — 6;1)E; = 0. We introduce a type
of element inM which generalizes th&y, Ej, ..., Ep. We call this type of element a
pseudo primitive idempoterfor I'. In order to definetlte pseudo primitive idempotents,
we first define for each € C U oo a subspace oM which we callM (9). Foré € C, M (6)
consists of those elemenYsof M suchthat (A — 61)Y € CAp, whereAp is the Dth
distance matrix of". We defineM (co) = CAp. We showM (9) has dimension 1 for all
0 € C U oo. Given dstinctd, 8’ in C U oo, we showM (9) "M (©@’) = 0. For0<i <D
we showM (6;) = CE;. Letd € CU co. By apseudo primitive idempoteffior 6, we mean
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a nonzero element df1(9). Before proceeding we define an involution &GnJ co. For
n € CU oo we define

00 if n=-1,
-1-g5 ifn#-Lns#oc.

We observe'ﬁ = n forn € C U oco. Let W denote a thirirreducible T-module with
endpoint 1. Observ&lW is a one-dimensional eigenspace t6fAE]; let n denote the
corresponding eigenvalue. We calthelocal eigenvaluef W.

Theorem 1.2. Letv denote a nonzero vector inj& which is orthogonal to & Suppose

v satisfies he equivalent condition§), (ii) in Theoreml.1 Let W cnote theT-module
from part (ii) of that theorem and lef denote the local eigenvalue for W. Let E denote a
pseudo primitive idempotent fof. Then J E form abasisfor (M; v).

We canment on when the scalgrfrom Theorem 1.24s an eigenvalue of . Let W
denote a thirirreducibleT-module with endpoint 1 and local eigenvalyelt is known
61 < n < 6p [18 Theorem 1]. Ify = 61 then? = 61. If n = &p then’ = Op. We show
that if 61 < n < &p then7 is not an eigenvalue af..

The paper is organized as follows.3ection 2wve give some preliminaries on distance-
regular graphs. Isectbns 3and4 we review some basic results on the Terwilliger algebra
and its modules. We provéheorem 1.1in Section 5 In Section 6we disass pseudo
primitive idempotents. IrSection 7we disaiss local eigenvalues. We proVaeorem 1.2
in Section 8

2. Preliminaries

In this section we review some definitions and basic concepts. See the books by Bannai
and Ito P] or Brouwer et al. f] for more background information.

Let X denote a nonempty finite set. Let M&C) denote theC-algebra onsiging of
all matrices whose rows and columns are indexedxXbgnd whose entries are i@.
Let V = CX denote the vector space ovér consisting of column vectors whose
coordinates are indexed by and whose entries are ii. We observe Mag(C) acts
on V by left multiplication. We endow/ with the Hermitean inner product ) which
satisfies{u, v) = u'v for all u, v € V, wheret denotes transpose anddenotes complex
conjugation. For aly € X, lety denote the element &f with a 1 in they coordinate and 0
in all other coordnates. We observg | y € X} is an orthonormal basis fdr.

Let I' = (X, R) denote a finite, undirected, connedtgraph without loops or multiple
edges, withvertex setX, edge setR, path-length distance functiord and diameter
D := maxa(x,y) | X,y € X}. We sayI is distance-regulamwhenever for all integers
h,i, j(O<h,i, j < D) andforallx, y € X with 3(x, y) = h, thenumber

Pl =lze X|a(x.2)=i.3(z.y) = j}| (1)

is indgoendent ofx andy. The irtegerspi*} are called thentersection numbertor I".
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Observep]] = pli(0 < h,i,j < D). We sbrevate¢ := pj;_;(1 < i < D),
g = pu(0 <i <D)b:=py,0=<i<D-1,k:=pl0=<i=<D)and
for convenience we sep := 0 andbp := 0. Notethatb;_1¢; # 0(1 <i < D).

For the restof this paper we assumE = (X, R) is distance-regular with diameter
D > 3. By (2.1 andthe triangle inequality,

ph=0 iflh—i|>1(0<h,i<D), 2.2)
pi =0 ifli—jl>10=<ij=D). 2.3)

Observel is regular with valenck = k1 = bg, andthak =c¢; +a +b; forO<i < D.
By [4, p. 127] we have

ki—1ibi_1 =kici (1<i<D). (2.4)

We recall the Bose—Mesner algebra Bf For 0 < i < D let Aj denote the matrix in
Matx (C) which hasyzentry

L |1 ifagy,2 =i
(A')VZ—{O if 3(y.2) £ |

We call A; theith distance matriof I". Fornotational convenience we defikg = 0 for
i < 0andi > D. Observe (ai)Ap = |; (aii) ZiD:O A = J; (aii) Al = A(0<i < D);
(aiv) Ait =A0<i <D);,(av)AlA] = Zr?:o p{} An(0 <i, j < D), wherel denotesthe
identity matrix andJ denotes the all ones matrix. We abbreviate= A; and call this the
adjacency matrirof I'. Let M denote the subalgebra of MatC) generated byA. Using
(ai)—(av) we findAg, Az, ..., Ap form a basis oM. We call M theBose—Mesner algebra
of I'. By [2, p. 59,64], M has a second basi, Ey, ..., Ep such that (ei) Eg = |X|~1J;
(eil) Y20 Ei = I; (eii) E = E(0 <i < D); (eV) El = E(0 <i < D); (ev)
EiEj =6ijE (0 <i,j < D). Wecall Eg, Ey, ..., Ep the primitive idempotentsor I".
SinceEy, E1, ..., Ep form a basis foM there exists complex scaldg 61, . . ., 6p such
that A = Y2, 6Ei. By this and (ev) we findAE = 6E; for 0 < i < D. Using
(aiii) and (eiii) we find each ofig, 61, . .., Op is a real nurber. Observéy, 61, ..., 6p are
mutudly distinct sinceA generated/. By [2, p. 197] we havedp = kand—k < 6; < k
for 0 < i < D. Throughout this paper, we assurke, Ej, ..., Ep are indexed so that
6o > 01 > --- > Op. Wecall 6; theith eigenvaluef I".

We recall some polynomials. To motivathese we make a comment. Setting: 1 in
(av) and usingZ.2),

(y,ze X).

AAj =bj_1Aj_1+ajAj +Cj11Aj 41 O0O<j=<D-12, (2.5)

whereb_; = 0. LetA denote an indeterminate and@&t.] denote th&-algebra onsiging
of all polynomials inA which have coefficients irC. Let fo, f1,..., fp denote the
polynomials inC[A] which satisfyfp = 1 and

AMj=bj_1fj_1+ajfj+cjrafjia O<j=<D-12), (2.6)

wheref_; = 0. For0< j < D the degee of f; is exactlyj. Conparing €.5 and .6
we find A; = fj(A).
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3. TheTerwilliger algebra

For the remender of this paper we fix € X. For0<i < D let E = E(x) denote
the dagonal matrix in Mak (C) which hasyy entry

w1 ifax,y) =i

(E)yy = {0 it 30X, y) % i (y e X). (3.2)
We call E theith dual idempotent ofl” with respect to x For conenience we define
Ef =0fori < 0andi > D.Weobserve 0) 3 Ef =1;(i) Ef = Ef(0<i < D);
(i) E' = EX0 < i < D); (iv) EfEf = 8jE'(0 < i,] = D). The E have the
following interpretation. Using3.1) we find

EV =sparfy |y e X, (X, y) =i} O0<i<D).
By this and sincdy | y € X} is an orthonormal basis for,

V=EV+EV+.---+ERV (orthogonal direct sum)

For 0 < i < D, E acts onV as the projection ontd&"V. We call E"V theith
subconstituent of” with respectto xFor0< i < D we defines = }_ ¢, where tle sum is
over all verticesy € X suchthatd(x, y) =i. Weobserves € EV. LetT = T(x) denote
the subalgeta of Maty (C) generated bW, Ej, EJ, ..., E5. The abebraT is semisimple
but not commutative in general, Lemma 3.4]. We calll the Terwilliger algebra (or
subconstituent algebjaf I" with respect tax. We rekr the reader tol] 3, 5-17, 19-24]

for more information on the Terwilliger algebra. We will use the following facts. Pick any
integersh, i, j(0 < h,i, j < D). By [19, Lemma 3.2] we havéE" A, ET = 0 if andonly

if p{} = 0. By this and @.2), (2.3) we find

E*AnE; =0 iflh—i|>1(©0<h,i<D), (3.2)
EfAEf =0 iffi—j|>1(0=<i,j<D). (3.3)

Lemma 3.1. The following(i), (ii) hold forO <i < D.

() EfJE] = EFA_1Ef + EFAE] + EFAIL1E].
(i) AE; =E",AE]+EAE]+E",AE].
Proof. (i) Recalld = ZhD=0 AnSOEJE] = ZhD=0 E; AnE]. Evaluding this wsing 3.2
we obtain the result.
(i) Recall | = ZhD=0 Ef SOAE] = ZhD=0 Ef A Ej. Evaluding this wsing 3.2 we
obtain the result. O

Lemma3.2. ForO<i < D — 1wehave

i i
Ef AE; — EfALE; =) AvEf — > ERJE]. (3.4)
h=0 h=0
Proof. Evaluate each term in the right-hand side ®#j usingLemma 3.1and simplify
the result. O
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Corollary 3.3. Letv denote a vector in EV which is orthogonalto s Then for0 <i <
D — 1wehave

|
EfyaAlv — Ef Ao =) Apv. (3.5)
h=0

Moreover B Av = 0.

Proof. To obtain @.5 apply all terms of 8.4) to v and evaluate the result usifgv = v
andJv = 0. Settingi = 0in (3.5 we findv — EjAv = v SOEJAv =0. [

Lemma 3.4. The following(i), (ii) holdforl <i < D — 1.

() B AE'A_1E] =G E" AE]

(i) E* ;AE'A1Ef =biE" ;AE].

Proof. (i) For all y, z € X, on ether side theyz entry is equal ta; if 9(X,y) =i + 1,

9(x,2) =1,d(y,z) =i, andzero otherwise.
(ii) For all y,z € X, on éther side theyz entry is equal tdy; if a(x,y) =i — 1,
d9(x,2) =1,d(y,z) =i, andzero otherwise. O

Corollary 3.5. Letv denote a vector in EV. Then thedllowing (i), (i) hold forl <i <
D-1

(i) Suppose EAi_jv = 0. Then E+1Aiv =0.
(i) Suppose EAjy1v =0.Then E_;Ajv =0.

Proof. In Lemma 3.44), (ii) apply both sices tov and useEjv = v. [

4. Themodules of the Terwilliger algebra

Let T denote the Terwilliger algebra ofI" with respect tox. By a T-modulewe mean
a dbspaceW < V suchthatBW < W for all B € T. Let W denote aT-module.
ThenW is said to berreducible wheneveMV is nonzero andV contains nol -modules
other than 0 andV. Let W denote an irreducibl&@-module. ThenW is the athogonal
direct sum of the nonzero spaces ama&yv, E;W, ..., E5W [19, Lemma 3.4]. By the
endpointof W we mean mifi | 0 <i < D, E*W # 0}. By thediameterof W we mean
Ifi | 0 <i < D, E'W # 0}] — 1. We sayW is thin wheneverEW has dimension at
most 1 for 0< i < D. There exits aunique irreduciblér -module which has endpoint 0
[10, Proposition 8.4]. This module is calléd. For 0<i < D the vectors is a basis for
E*Vo [19, Lemma 3.6]. Therefor¥y is thin with diameteiD. The modulévy is orthogonal
to each irreducibld -module other thaivp [6, Lemma 3.3]. For more information ovy
see B, 10]. We will use thefollowing facts.

Lemma4.1 ([19 Lemma 3.9]). Let W daote an irreducibleT-module with endpoint r
and diameter d. Then

EX*W£0  (r<i=<r+d). (4.1)
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Moreover
EfAE{W #0 ifli—jl=1, (r <i,j<r+d). 4.2)

Lemma4.2 ([6, Lemma 3.4]).Let W daote aT-module. Suppose there exists an integer
i(0<i < D) suchthatdim(E/W) = 1and W= TEW. Then W is ireducible.

Theorem 4.3 ([12 Lemma 10.1], P2, Theorem 11.1]).Let W denote a thin irreducible
T-module with endpoint one, and letdenote a nonzero vector inf&/. Then W= M.
Moreover the diameter of W is B 2or D — 1.

Theorem 4.4 ([12 Corollary 8.6, Theorem 9.8])Let v denote a nonzero vector inj&
which is arthogonal to . Then he dimension dv is D— 1 or D. Suppose the dimension
of Mv is D — 1. ThenMu is a thin irreducibleT-module with endpoint and diameter
D-2

5. Theproof of Theorem 1.1

We now give a poof of Theorem 1.1

Proof ((i) = (ii)). We showMu is a thin irreducibleT-module with endpoint 1. By
Theorem 4.4the dimension oMv is eitherD — 1 or D. First assume the dimension
of Mv is equal to D — 1. Then byTheorem 4.4Mv is a thin irreducibleT-module
with endpoint 1. Next assume the dimensionMb is equal to D. The space (M; v)
containsJ and has dimension at least 2, so there extste (M; v) suchthat J, P are
linearly indepadent. From the constructidPv € EjjV. ObservePv # 0; otherwise the
dimension ofMv is not D. The eementsAg, A1, ..., Ap form a basis foM. Therdore
the element®o + A1+ --- + Ai(0 <i < D) form a basis foM. Apparently there exist
complex scalarg; (0 < i < D) suchthatP = ZiD=0 pi(Ag+ A1+ --- + Aj). Recall
J = Zﬁ’zo An. Subtracting a scalar multiple od from P if necessary, we may assume
pp = 0. We considePv from two points of view. On one hand we hatty € EjV.
ThereforeEjPv = Pv andE'Pv = Ofor0 < i < D — 1. On the other hand
using 3.5,
D-1

Pv= > pi(Ef,; Av — Ef Aip1v).
Combining these twgoints of view we findPv = pp_1E5Ap-1v, poEgAv = 0, and

pi-1EfA_1v=piEfAiziv 1<i<D-1. (5.1)

We mernioned Pv # O; thereforepp_1 # 0 and EjAp_1v # 0. Applying
Corollary 3.5(i) we find EfAi_1v # 0 for 1 <i < D. We daim E*Ai;1v andEAj_1v
are linearly dependentfor4 i < D —1. Suppose there exists anintep@r<i < D—1)
suchthatE Ai1v andE;" Aj_1v are linearly independent. Thegf A .1v # 0. Applying
Corollary 3.(ii) we find EfAj 1v # O fori < j < D — 1. Using these facts an8.()
we routirely find pj = 0 fori < j < D — 1. In particularop_1 = 0 for a ontradiction.
We havenow shownEAj1v andE* Aj_1v are linearly dependentfor¥ i < D — 1.



294 P. Terwilliger, Chih-wen Weng / European Journal of Combinatorics 25 (2004) 287—298

ObserveMv is spained by the vectors
Ao+ AL+ + A)v O<i<D-1.

By Corollary 3.3and our above comments we fibt is contained in the span of
EfiAv  (0<i<D-1. (5.2)

SinceMv has dimensiorD we find Mv is equal to the span ofS(2). ApparentlyMuv
is a T-module. MoreoveMu is irreducible byLemma 4.2 ApparentlyMv is thin with
endpoint 1.

((if) = (i)). We show(M; v) has dimension at least 2. Sindes (M; v) it suffices to
exhibit an element € (M; v) suchthat J, P are linearly independent. L&V denote a
thin irreducibleT-module which has endpoint 1 and contain®y Theorem 4.3ve have
W = Mu; also byTheorem 4.3he diameter ofV is D — 2 or D — 1. First suppos&V/ has
diameterD — 2. ThenW has dimensio® — 1. Consider the map : M — V which nds
each elemenP to Pv. The image oM undero is Mv and the kernel of is contained
in (M; v). The imag has dimasionD — 1 andM has dimensiorD + 1 so the kernel
has dimension 2. It followé&M ; v) has dimension at least 2. Next assuvidnas dianeter
D — 1. In this caseEjW # 0 by 4.1). SinceW = Mv there exist® € M suchthat Pv
is a nonzero element iEFW. Now P € (M; v). ObserveP, J are linearly independent
sincePv # 0 andJv = 0. Apparently the dimension ¢M; v) is at least 2.

Now assume (i), (i) holdWe show the dnensbn of (M; v) is 2. To do this, we
show the dimension ofM; v) is at most 2. LetH denote the subspace bf spained
by Ao, A1, ..., Ap—2. We showH has 0 iersection with(M; v). By Theorem 4.4
the dimension ofMv is at leastD — 1. RecallM is generated byA so the \ectors
Alv(0 <i < D-2)arelinearly independent. Apparently the vectdrs(0 <i < D —2)
are linearly independent. For9i < D — 2 the vectorAjv is contained ian,’:_Ol EfV by
Lemma 3.1ii); thereforeAjv is orthogonal toEf, V. We now seefte vectorsAjv(0 <i <
D — 2) are linearly independent and orthogonaEgV . It follows H has 0 ittersection
with (M; v). ObserveH is codimension 2 iM so the dimension ofM; v) is at most 2.
We mnclude the dimension @M ; v) is 2. O

6. Pseudo primitiveidempotents

In this section we introduce the notion of a pseudo primitive idempotent.

Definition 6.1. For eachd € C U oo we define agbspace oM which we callM (6). For
6 € C, M(0) consists of those elemenitsof M suchthat(A —61)Y € CAp. We define
M (c0) = CAp.

With reference toDefinition 6.1, we will show eachM () has dimension 1. To establish
this we display a basis favl (6). We will use the following result.

Lemma6.2. Let Y d@ote an element dfl and write Y = ZiDZO pi Ai. Letd denote a
complex number. Then the followi(ijy, (i) are equivalent.

(i) (A—61)Y € CAp.
(i) pi = pofi(@)k *for0<i <D.
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Proof. Evaluating(A—61)Y usingY = ZiD:O oi Ai and simplifying the result usin@ (5
we obtain
D

(A—01)Y =Y AiCipi-1+api +bipit1—0p),
i=0

wherep_1 = 0andpp+1 = 0. Observe byZ.4), (2.6) thatp; = po fi (9)k for0<i < D
if andonly if ¢ pi_1 + @i pi + bipi+1 = 6pi for0 <i < D — 1. The result follows. O

Corollary 6.3. For 6 e C the following is a basis foM ().
D
> Ok AL (6.1)
i=0
Proof. Immediate fromL,emma 6.2 [
Corollary 6.4. The paceM (9) has dimensiod for all 6 € C U ooc.

Proof. Suppose& = co. ThenM (6) has basif\p and therefore has dimension 1. Suppose
6 € C. ThenM (9) has dimension 1 bgorollay 6.3 [

Lemma 6.5. Letd andéd’ denote distinct elements GfU co. ThenM (9) "M (6’) = 0.

Proof. This is a routine consequence @forollary 6.3 and the fact thatM (co0) =
CAp. O

Corollary 6.6. For0 <i < D wehaveM (6;) = CE;.

Proof. Observe(A — 6;1)E; = 0 soE; € M(6;). ThespaceM (6;) has dimension 1 by
Corollay 6.4andE; is nonzero sc&; is a basis foM (6;). O
Remark 6.7 ([2, p. 63]). For0< j < D we have

D
Ej =m; |X|7lz fi (Gj)ki_lAi,
i=0
wherem; denotes the rank d;.

Definition 6.8. Let 6 € C U oco. By a pseudo primitive idempoterfor & we mean a
nonzero element d¥l (9), whereM (9) is from Definition 6.1

7. Thelocal eigenvalues

Definition 7.1. Define a function™: C U co — C U oo by

00 if n=-1,
— _Fln if n £ —1,n# oc.

Observé; = n forall € C U co.
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Letv denote a nonzero vector iV which is athogonal tes;. Assumev is an eigenvector
for Ef AE] and lety denote the correspondieggenvalue. We recall a few facts concerning
1 andn We haveds < n < 6p [18 Theorem 1]. Ifn = 91 then?y = = 01. If = 6p then

7 = 0p. We havef)p < —1 < 03 by [18 Lemma 3] s < —1 < Op. If 91 <n<-1
theno, < 7. If -1 < < b then? < 6p. We will show that ifo; < n < b then? is

not an eigenvalue of'. Given the above inequalities, to prove this it suffices to prove the
following result.

Proposition 7.2. Letv denote a nonzero vector inj& . Assumev is an eigenvector for
E; AE] and letn denote the corresponding eigenvalue. Thea k.

Proof. Supposej = k. Theny = k so byDefinition 7.1,
by
k+1
By this and sinceéb; < k we seep is a rationd number such that-2 < n < —1.
In particularn is not an integer. Observgis an eigenvalue of the subgraph Bfinduced

on the set of vertices adjacenttothereforey is an algebraic integer. A rational algebraic
integer is an integeso we have contradiction. We concludg # k. O

n=-1-

Corollary 7.3. Letv denote a nonzero vector inj& which is orthogonal to 8 Assume
v is an eigenvector for EAE} and letn denote the corresponding eigenvalue. Suppose
01 < n < Op. Thenyj is not an eigenvalue af'.

8. Theproof of Theorem 1.2
We now giwe a poof of Theorem 1.2

Proof. We first show E is contained in(M; v). To do ths we showEv € E}{V. First
suppose; # —1. Theny € C by Definition 7.1 By Definition 6.1there existg € C such
that(A — 7j1)E = € Ap. By this andLemma 3.1ii),

AEv =7Ev +e€Apv € CEv + Ej_;W + EpW. (8.1)

In order to showEv € EjV we showEEv =0for0<i < D — 1. ObserveEjEv =0
sinceEgEv € EfW andW has endpoint 1. We shoi; Ev = 0. By Corollary 6.3there
exigs anonzeram € C suchthat

D
E= mz fh(ﬁ)kElAh.

h=0
Let us abbreviate

ph=mh(kt (O <h=<D), (82)

so thatE = YF_,pnAn. By this and 8.2 we find EXEE} = Y 2_,pnEfAnEL.
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Applying this tov we find
2
EfEv =) pnEjAnv. (8.3)
h=0

Settingi = 1 in Lemma 3.1i), applying each term to, andusingJv = 0 we find

2
0=> EjAnv. (8.4)
h=0

By (8.9, (8.4), and sinceEjAv = nv we find EJEv = yv wherey = po — p2 +
n(p1 — p2). Evaluatingy using @.6), (8.2, andDefinition 7.1we routirely findy = 0.
ApparentlyE} Ev = 0. We now showE;"Ev = O for 2 <i < D — 1. Suppose there exists
anintegerjf2<j<D-1 suchthatE]*Ev # 0. We choosg minimal so that

EfEv=0 O<i<j-1. (8.5)
Combining this with 8.1) we find
EfAEv=0 O=<i<j-2. (8.6)

Since W is thin and sinceEfEv # 0 we find E{Ev is a basis forE;W. Apparently
Ej_1AE[EvspansE]_; AEfW. ThespaceETﬁlA EfW is nonzero by 4.2) and shce the
diameter ofW is at leastD — 2. ThereforeE}"_lAE}"Ev # 0. We may now argue

D
Ef JAEv =) E! JAE'Ev
i=0

= E/_JAE[Ev  by(3.3, (8.9

£0

which contradicts 8.6). We concludeE"Ev = 0for2<i < D — 1. We have now shown
EfEv=0forO<i <D —1s0Ev € E}V inthe case # —1. Next supposg = —1,
so thatij = co. By Definition 6.1there exist anonzerd € C suchthatE =t Ap. In order
to showEv € EfV we showApv € E;V. SinceApv is contained inEjy_,V + EjV
by Lemma 3.1ii), it suffices to showEf, _; Apv = 0. To do thisit is convenient to prove
a bit more, thatE*Aj ;v = 0 for 1 < i < D — 1. We prove this by induction on
First assumé = 1. Settingi = 1 in Lemma 3.1i), applying each term t@ and using
Jv = 0, EfAv = —v, we obtain EfAv = 0. Next suppose < i < D — 1 and
assume by induction thd* ; Ajv = 0. We showE;"Aj ;v = 0. To do this we assume
E*Aiy1v # 0 andget a contradiction. Note thd* Aj ;v spansE*W sinceW is thin.
ThenE" ; AE*Ai11v # 0 by 4.2. ButE* ; AE"Ai11v = b E_ ; Aiv by Lemma 3.44i).
Of courseb; # 0 soE* ;Ajv # 0, a contradiction. Thereforg*Ajy1v = 0. We have
now shownE*Ai;jv = 0 forl < i < D — 1 and inparticularE_;Apv = 0. It
follows Ev € ERV for the case) = —1. We have now showkv € E{V for all cases
SO E € (M; v). We nowprove E, J form a basis foM; v). By Theorem 1.1M; v) has
dimension 2. We mentioned earlidre (M; v). We showE, J are linearly independent.
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Recall E, J are pseudo primitive idempotents fgrk respectively. We havg # k by
Proposition 7.0 E, J are linearly independent in view eeEmma 6.5 O
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