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Abstract

A k-regular Hamiltonian and Hamiltonian connected graph G is super fault-tolerant

Hamiltonian if G remains Hamiltonian after removing at most k � 2 nodes and/or edges

and remains Hamiltonian connected after removing at most k � 3 nodes and/or edges. A

super fault-tolerant Hamiltonian graph has a certain optimal flavor with respect to the

fault-tolerant Hamiltonicity and Hamiltonian connectivity. In this paper, we investigate a

construction scheme to construct super fault-tolerant Hamiltonian graphs. In particu-

larly, twisted-cubes, crossed-cubes, and M€oobius cubes are all special cases of this con-

struction scheme. Therefore, they are all super fault-tolerant Hamiltonian graphs.
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1. Introduction

For the graph definitions and notations we follow [4]. G ¼ ðV ;EÞ is a graph

if V is a finite set and E is a subset of {ða; bÞjða; bÞ is an unordered pair of V }.
We say that V is the node set and E is the edge set. The degree of a node v,
denoted by degðvÞ, is the number of edges incident to v. A graph G is k-regular
if degðvÞ ¼ k for every node in G. Two nodes a and b are adjacent if ða; bÞ 2 E.
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A path is a sequence of adjacent edges ðv0; v1Þ; ðv1; v2Þ; . . . ; ðvm�1; vmÞ, written as

hv0; v1; v2; . . . ; vmi, in which all the nodes v0; v1; . . . ; vm are distinct. We also write
the path hv0; v1; v2; . . . ; vmi as hv0; P ðv0; viÞ; vi; viþ1; . . . ; vj; P ðvj; vtÞ; vt; . . . ; vmi
where P ðv0; viÞ ¼ hv0; v1; . . . ; vii and P ðvj; vtÞ ¼ hvj; vjþ1; . . . ; vti. For our pur-

pose in this paper, a path may contain only one node. A path is a Hamiltonian

path if its nodes are distinct and they span V . A cycle is a path with at least

three nodes such that the first node is the same as the last one. A cycle is a

Hamiltonian cycle if it traverses every node of G exactly once. A graph G is

Hamiltonian if it has a Hamiltonian cycle, and G is Hamiltonian connected if

there exists a Hamiltonian path joining any two nodes of G.
The architecture of an interconnection network is usually represented by

a graph. There are a lot of mutually conflicting requirements in designing

the topology of interconnection networks. It is almost impossible to design

a network which is optimum for all conditions. One has to design a suitable

network depending on the requirements of their properties. The Hamilto-

nian property is one of the major requirements in designing the topology

of networks. Fault tolerance is also desirable in massive parallel systems that

have relatively high probability of failure. There are many researches on
the ring embedding problems in faulty interconnection networks [2,10,12,

14,15].

Since node faults and edge faults may happen when a network is used, it is

practically meaningful to consider faulty networks. A graph G is called l-fault-
tolerant Hamiltonian (l-fault-tolerant Hamiltonian connected respectively) or

simply l-Hamiltonian (l-Hamiltonian connected respectively) if it remains

Hamiltonian (Hamiltonian connected respectively), after removing at most l
nodes and/or edges. The fault-tolerant Hamiltonicity, HfðGÞ, is defined to be
the maximum integer l such that G� F remains Hamiltonian for every

F 
 V ðGÞ [ EðGÞ with jF j6 l if G is Hamiltonian, and undefined if otherwise.

Obviously, HfðGÞ6 dðGÞ � 2, where dðGÞ ¼ minfdegðvÞjv 2 V ðGÞg. A regular

graph G is optimal fault-tolerant Hamiltonian if HfðGÞ ¼ dðGÞ � 2. Twisted-

cubes, crossed-cubes, andM€oobius cubes are proved to be optimal fault-tolerant

Hamiltonian [7–9]. All these families of graphs have some good properties in

common, including that they can all be recursively constructed. In establishing

their fault-tolerant Hamiltonicity, another parameter called fault-tolerant

Hamiltonian connectivity is used. The fault-tolerant Hamiltonian connectivity,

Hj
f ðGÞ, is defined to be the maximum integer l such that G� F remains

Hamiltonian connected for every F 
 V ðGÞ [ EðGÞ with jF j6 l if G is Ham-

iltonian connected, and undefined if otherwise. Obviously, Hj
f ðGÞ6 dðGÞ � 3.

A regular graph G is optimal fault-tolerant Hamiltonian connected if

Hj
f ðGÞ ¼ dðGÞ � 3. Again, twisted-cubes, crossed-cubes, and M€oobius cubes are

proved to be optimal fault-tolerant Hamiltonian connected [7–9]. We call those

regular graphs super fault-tolerant Hamiltonian if HfðGÞ ¼ dðGÞ � 2 and
Hj

f ðGÞ ¼ dðGÞ � 3.
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All the proofs of super fault-tolerant Hamiltonicity of the aforementioned

families of graphs are done by induction. We observe that there are certain
common phenomena behind the recursive structures so that we may construct

other super fault-tolerant Hamiltonian graphs. In this paper, we try to inves-

tigate these phenomena and establish some construction schemes of super

fault-tolerant Hamiltonian graphs.

The rest of this article is organized as follows. In Section 2, some termi-

nologies and notations are introduced. Section 3 describes four lemmas which

we shall use in our main results. The main results are proved in Section 4.

Finally, the conclusion is given in Section 5.
2. Terminology and notation

Before introducing the terminologies and notations, let us briefly explain

our motivation. The hypercube is a popular network because of its attractive

properties, including regularity, symmetry, small diameter, strong connectivity,
recursive construction, partitionability, and relatively low link complexity

[3,11,13]. There are some variations of the hypercube appearing in literature;

such as twisted-cubes, crossed-cubes, M€oobius cubes, and so on. These varia-

tions preserve most of the good topological properties of the hypercube, and

even better. For example, the diameter of these variation cubes is around half

of that of the hypercube. Recently, twisted-cubes, crossed-cubes, and M€oobius
cubes are proved to be super fault-tolerant Hamiltonian graphs. We note,

however, the hypercube is a bipartite graph,and therefore its fault-tolerant
Hamiltonicity is zero. Basically, all those variations of the hypercube, includ-

ing the hypercube itself, are recursively constructed in a very similar way

as follows: An n-dimension cube Qn ¼ ðV ;EÞ is constructed from two iden-

tical ðn� 1Þ-dimension cubes, Q0
n�1 and Q1

n�1. The node set is V ðQnÞ ¼
V ðQ0

n�1Þ [ V ðQ1
n�1Þ, and the edge set is EðQnÞ ¼ EðQ0

n�1Þ [ EðQ1
n�1Þ [M where

M is a set of edges connecting the nodes of Q0
n�1 and Q1

n�1 in a one to one

fashion.

For different lower dimensional cube Qn�1 and different matching M , we
obtain different higher dimensional cubes Qn, such as twisted-cubes, crossed-

cubes, M€oobius cubes, and hypercubes, with variant fault-tolerant Hamil-

tonicity. This motivates us to study some construction schemes of super

fault-tolerant Hamiltonian graphs, and it leads to the following definition. Let

G1 and G2 be two graphs with the same number of nodes. Let M be an arbi-

trary perfect matching between the nodes of G1 and G2; i.e., M is a set of

edges connecting the nodes of G1 and G2 in a one to one fashion. For con-

venience, G1 and G2 are called components. Formally, we define graph
GðG1;G2;MÞ, which has node set V ðGðG1;G2;MÞÞ ¼ V ðG1Þ [ V ðG2Þ, and edge

set EðGðG1;G2;MÞÞ ¼ EðG1Þ [ EðG2Þ [M . See Fig. 1. What we have in mind



Fig. 1. GðG1;G2;MÞ.
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is the following: Let G1 and G2 be two k-regular super fault-tolerant Hamil-

tonian graphs with the same number of nodes, and letM be an arbitrary perfect

matching. Then GðG1;G2;MÞ is ðk þ 1Þ-regular. The degree of GðG1;G2;MÞ, as
compared with G1 and G2, is increased by 1. We expect that its fault-tolerant

Hamiltonicity HfðGÞ and fault-tolerant Hamiltonian connectivity Hj
f ðGÞ are

also increased by 1. This is indeed the case under the condition that kP 5.

Then GðG1;G2;MÞ is also a super fault-tolerant Hamiltonian graph.

For ease of exposition, we make some convention about our notations.

Consider the graph GðG1;G2;MÞ. For each component Gi, we use small letters

with subscript i to denote the nodes in Gi, e.g., ui; vi, etc. Thus, u1 is a node in

G1, and u2 is a node in G2. A perfect matching M connecting the nodes of G1

and G2 in pairs, such pairs of nodes are called matching nodes, and these edges

are called matching edges. We shall use the same letter with different subscripts
to denote matching nodes of each other; e.g., u1 and u2 are the matching nodes

of each other in components G1 and G2.

We need some more terms. We shall consider graphs with some faults. Our

objective is to find a fault free Hamiltonian cycle (Hamiltonian path respec-

tively). In this paper, each fault can be a faulty node or a faulty edge. If a node

v is not faulty, we say v is a healthy node. We call an edge e (respectively a

matching edge e) healthy if both edge e and its two endpoints are not faulty. We

use Fi to denote the set of faults in Gi for i ¼ 1; 2. Let fi ¼ jFij for i ¼ 1; 2.
Given two distinct healthy nodes x and y, we use x; y-Hamiltonian path to call a

fault free Hamiltonian path joining x and y, HPi to denote a fault free Ham-

iltonian path in Gi � Fi for i ¼ 1; 2. A fault free x; y-Hamiltonian path in Gi � Fi
can be written as hx;HPi; yi for i ¼ 1; 2. In addition, path hx;HPi; yi is a cycle if

x ¼ y.
3. Preliminaries

Consider an interconnection network G, and suppose that there are faults in
it. Let FG be the set of faults in G, and fG be the number of faults in G. Suppose
that G is k-Hamiltonian (k-Hamiltonian connected respectively) and fG 6 k. Let
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u be a healthy node in G. It is clear that some of the edges incident to u is on a

Hamiltonian cycle (Hamiltonian path respectively) in G� FG, but not every
edge incident to u is on some Hamiltonian cycle (Hamiltonian path respec-

tively) in G� FG. In the following two lemmas, we prove that at least a fix

number of edges incident to node u are on some Hamiltonian cycles (Hamil-

tonian paths respectively) in G� FG.
Lemma 1. Let G be a k-Hamiltonian graph, FG be a set of faults in G with
jFGj6 k, and u be a healthy node in G. Then there are at least k � fG þ 2 edges
incident to node u, such that each one of them is on some Hamiltonian cycle in
G� FG.
Proof. We know that G is k-Hamiltonian, and there are fG faults in G. Hence,

G� FG is still Hamiltonian even if we add k � fG more faults to G� FG.
Suppose fG < k. Let HC be a Hamiltonian cycle in G� FG, and let e be an edge

on HC and incident to node u. Deleting edge e, G� FG � feg still contains a

Hamiltonian cycle. Repeating this process k � fG times, we find k � fG þ 2

edges incident to node u and each one of them is on some Hamiltonian cycle in

G� FG. �
Lemma 2. Let G be a k-Hamiltonian connected graph, FG be a set of faults in G
with jFGj6 k, and fx; y; ug be three distinct healthy nodes in G. Then there are at
least k � fG þ 2 edges incident to node u, such that each one of them is on some
x; y-Hamiltonian path in G� FG.
Proof. It is known that G is k-Hamiltonian connected, and there are fG faults in

G. Thus, G� FG is still Hamiltonian connected even if we add k � fG more

faults to G� FG. Suppose fG < k. Let HP be an x; y-Hamiltonian path in

G� FG, and let e be an edge on HP and incident to node u. Deleting edge e,
G� FG � feg still contains an x; y-Hamiltonian path. Repeating this process

k � fG times, we find k � fG þ 2 edges incident to node u and each one of them

is on some x; y-Hamiltonian path in G� FG. �
Lemma 3. Let G1 and G2 be two k-regular graphs with the same number of nodes.
If the total number of faults in GðG1;G2;MÞ is no greater than k, there exists at
least one healthy matching edge between G1 and G2.
Lemma 4. Let G1 and G2 be two k-regular graphs with the same number of nodes,
and let x and y be two healthy nodes in GðG1;G2;MÞ. If the total number of faults
in GðG1;G2;MÞ is no greater than k � 2, there exists at least one healthy
matching edge between G1 and G2 whose endpoints are neither x nor y.
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The above two lemmas result immediately from the fact that jV ðG1Þj ¼
jV ðG2ÞjP k þ 1.
4. Super fault-tolerant Hamiltonian graphs

Let G1 and G2 be two k-regular super fault-tolerant Hamiltonian graphs.

The following two theorems state that the fault-tolerant Hamiltonicity HfðGÞ
and fault-tolerant Hamiltonian connectivity Hj

f ðGÞ of the graph GðG1;G2;MÞ,
as compared with G1 and G2, are increased by 1. Hence, GðG1;G2;MÞ is a super
fault-tolerant Hamiltonian graph. We make one simple observation first.

Observation 1. To prove that a graph G is l-Hamiltonian (respectively l-Ham-
iltonian connected), it suffices to show that G� FG is Hamiltonian (respectively
Hamiltonian connected) for any faulty set FG 
 V ðGÞ [ EðGÞ with jFGj ¼ l. If the
total number of faults jFGj is strictly less than l, we may arbitrarily designate
l� jFGj healthy edges as faulty to make exactly l faults.

Theorem 1. Assume k P 4. Let G1 and G2 be two k-regular super fault-tolerant
Hamiltonian graphs and jV ðG1Þj ¼ jV ðG2Þj. Then graph GðG1;G2;MÞ is ðk � 1Þ-
Hamiltonian.

Proof. GðG1;G2;MÞ is ðk þ 1Þ-regular. To prove that GðG1;G2;MÞ is ðk � 1Þ-
Hamiltonian, it suffices to show that GðG1;G2;MÞ � Fð1...2Þ is Hamiltonian for

any faulty set Fð1...2Þ 
 V ðGÞ [ EðGÞ with jFð1...2Þj ¼ k � 1.

Case 1. All k � 1 faults are in the same component.

We may assume without loss of generality that all faults are in G1. Since G1

is ðk � 2Þ-Hamiltonian and f1 ¼ k � 1, G1 � F1 has a Hamiltonian path

hu1;HP1; v1i. Let ðu1; u2Þ and ðv1; v2Þ be two matching edges between G1 and G2.

In G2, there exists a u2; v2-Hamiltonian path hu2;HP2; v2i since f2 ¼ 0 and G2 is

ðk � 3Þ-Hamiltonian connected. Therefore, hu1;HP1; v1; v2;HP2; u2; u1i forms a

fault free Hamiltonian cycle in this case. See Fig. 2.

Case 2. Not all k � 1 faults are in the same component.

Without loss of generality, we may assume that f2 6 f1 6 k � 2. In this case,

we claim that G2 � F2 is Hamiltonian connected if kP 4. Suppose not, then
Fig. 2. Case 1: All k � 1 faults are in the same component.
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f2 P k � 2, k � 26 f2 6 f1 6 k � 2, so k � 2 ¼ f2 ¼ f1 ¼ k � 2 and ðk � 2Þþ
ðk � 2Þ6 k � 1. Therefore, k6 3, which is a contradiction.

By Lemma 3, there exists a healthy matching edge between G1 and G2, say

ðu1; u2Þ. Claim that we can find a node v1 incident to u1 such that ðu1; v1Þ is on a

Hamiltonian cycle in G1 � F1, and the matching edge ðv1; v2Þ incident to v1 is

healthy. Then, the case is proved since G2 � F2 is Hamiltonian connected.

Now, in G1 � F1, by Lemma 1, of all the healthy nodes incedent to u1, there
are at least ðk � 2Þ � f1 þ 2 ¼ k � f1 edges which are on some Hamiltonian

cycle in G1 � F1. Of all these k � f1 edges, there is at least one edge, say ðu1; v1Þ,
such that v1, v2, and ðv1; v2Þ are healthy. Were it not true, GðG1;G2;MÞ would
contain at least f1 þ ðk � f1Þ ¼ k faults, contradicting the fact that the total

number of faults is k � 1. Therefore, we have a fault free Hamiltonian cycle

hu1;HP1; v1; v2;HP2; u2; u1i in this case. See Fig. 3. This completes the proof of

this theorem. �

The fault-tolerant Hamiltonian connectivity Hj
f ðGÞ of GðG1;G2;MÞ is also

increased by 1, as stated in the following theorem.
Theorem 2. Assume k P 5. Let G1 and G2 be two k-regular super fault-tolerant
Hamiltonian graphs and jV ðG1Þj ¼ jV ðG2Þj. Then graph GðG1;G2;MÞ is ðk � 2Þ-
Hamiltonian connected.
Proof. Let Fð1...2Þ be a set of faults, Fð1...2Þ 
 V ðGÞ [ EðGÞ and jFð1...2Þj ¼ k � 2.
Let x and y be two healthy nodes in GðG1;G2;MÞ, we shall find a fault free

Hamiltonian path joining x and y. The proof is classified into two cases.

Case 1. x and y are not in the same component.

Without loss of generality, we may assume x is in G1, and y is in G2. This

case can be further divided into two subcases.

Subcase 1.1. All k � 2 faults are in the same component.

Without loss of generality, we may assume that all k � 2 faults are in G1. So

there is a fault free Hamiltonian cycle in G1 � F1. On this fault free cycle, there
are two nodes incident to x. One of these two nodes is not matched with y, say
u1. Now, we delete edge ðx; u1Þ and add matching edge ðu1; u2Þ. In G2, there is a

u2; y-Hamiltonian path hu2;HP2; yi because G2 is Hamiltonian connected.
Fig. 3. Case 2: Not all k � 1 faults are in the same component.



Fig. 4. Case 1.1: All k � 2 faults are in the same component.
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Thus, hx;HP1; u1; u2;HP2; yi forms a fault free x; y-Hamiltonian path in this

subcase. See Fig. 4.

Subcase 1.2. Not all k � 2 faults are in the same component.
Since the total number of faults fð1...2Þ is k � 2 and not all faults are in the

same component, we may assume that f2 6 f1 6 k � 3. By Lemma 4, we can

find a healthy matching edge ðu1; u2Þ between G1 and G2, where u1 6¼ x and

u2 6¼ y. Since f2 6 f1 6 k � 3, G1 � F1 and G2 � F2 are Hamiltonian connected,

there is one x; u1-Hamiltonian path hx;HP1; u1i in G1 � F1 and one u2; y-
Hamiltonian path hu2;HP2; yi in G2 � F2. So hx;HP1; u1; u2;HP2; yi is a fault

free x; y-Hamiltonian path in this subcase. See Fig. 5.

Case 2. x and y are in the same component.
Without loss of generality, we may assume x and y are in G1. We shall divide

this case into three subcases.

Subcase 2.1. All k � 2 faults are in G1.

G1 is ðk � 3Þ-Hamiltonian connected and f1 ¼ k � 2. Let g be a faulty edge

or a faulty node. In G1 � ðF1 � fggÞ, there is a Hamiltonian path hx; P ðx; yÞ; yi
joining x and y. Removing the fault g, this Hamiltonian path is separated into

two subpaths, say hx; Pðx; u1Þ; u1i and hv1; Pðv1; yÞ; yi, which cover all the nodes

of G1 � F1. Then we add two matching edges ðu1; u2Þ and ðv1; v2Þ. In G2, there
exists a u2; v2-Hamiltonian path hu2;HP2; v2i since f2 ¼ 0. Thus, we have a fault

free x; y-Hamiltonian path hx; P ðx; u1Þ; u1; u2;HP2; v2; v1; P ðv1; yÞ; yi in this sub-

case. See Fig. 6.

Subcase 2.2. All k � 2 faults are in G2.

Let x2 be the matching node of x in G2, and y2 be the matching node of y in

G2. This subcase can be further divided into two subcases:

Subcase 2.2.1. At least one of x2 and y2 is healthy.
Without loss of generality, we may assume y2 is healthy. We add the

matching edge ðy; y2Þ. In G2 � F2, there exists a Hamiltonian cycle since
Fig. 5. Case 1.2: Not all k � 2 faults are in the same component.
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Fig. 7. Subcase 2.2.1: At least one of x2 and y2 is healthy.
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f2 ¼ k � 2. On this fault free cycle, there are two nodes incident to node y2. At

least one of these two nodes is not adjacent to x, say u2. We then add the

matching edge ðu1; u2Þ, and delete edge ðu2; y2Þ. In G1 � fyg, we claim that there

exists a fault free x; u1-Hamiltonian path hx; P ðx; u1Þ; u1i. Suppose not, then

k � 3 < 1, so k < 4. It is a contradiction. Therefore, we have a fault free x; y-
Hamiltonian path hx; P ðx; u1Þ; u1; u2;HP2; y2; yi in this subcase. See Fig. 7.

Subcase 2.2.2. Both x2 and y2 are faulty.
In G1, the number of healthy edges incident to y is k and f2 ¼ k � 2. We can

find a healthy node u1 incident to y such that u1 6¼ x and u2 is healthy, where u2
is the matching node of u1 in G2. In G2 � F2, there exists a Hamiltonian cycle

since f2 ¼ k � 2. Let v2 be a node on this cycle incident to u2. Node v2 is not

matched with x and y since x2 and y2 are faulty in this subcase. Then we add the

matching edge ðv1; v2Þ and delete edge ðu2; v2Þ. In this subcase, we claim that

G1 � fu1; yg has a fault free x; v1-Hamiltonian path hx; P ðx; v1Þ; v1i for kP 5.

Suppose not, k � 3 < 2, and k < 5. It is a contradiction. Thus,
hx; Pðx; v1Þ; v1; v2;HP2; u2; u1; yi forms a fault free x; y-Hamiltonian path in this

subcase. See Fig. 8.

Subcase 2.3. Neither all k � 2 faults are in G1 nor all k � 2 faults are in G2.

Since fð1...2Þ ¼ k � 2 and not all faults are in one component, we have f1 6
k � 3 and f2 6 k � 3. Consequently, both G1 � F1 and G2 � F2 are Hamiltonian
Fig. 8. Subcase 2.2.2: Both x2 and y2 are faulty.



Fig. 9. Subcase 2.3: Neither all k � 2 faults are in G1 nor all k � 2 faults are in G2.
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connected. By Lemma 4, there is at least one healthy matching edge between G1

and G2, say ðu1; u2Þ, such that u1 62 fx; yg. In G1 � F1, by Lemma 2, there are at

least ðk � 3Þ � f1 þ 2 ¼ k � 1� f1 edges incident to node u1, such that each one

of them is on some x; y-Hamiltonian path in G1 � F1. Among these k � 1� f1
edges, we claim that there is at least one, say ðu1; v1Þ, such that v1, v2, and
ðv1; v2Þ are healthy. If this is not true, fð1...2Þ ¼ f1 þ ðfð1...2Þ � f1ÞP f1 þ
ðk � 1� f1Þ ¼ k � 1, which contradicts the fact that fð1...2Þ ¼ k � 2. We then

delete edge ðu1; v1Þ and add both edges ðu1; u2Þ and ðv1; v2Þ. In G2 � F2, there is a
u2; v2-Hamiltonian path hu2;HP2; v2i as a result of f2 6 k � 3. Therefore,
hx; Pðx; u1Þ; u1; u2;HP2; v2; v1; P ðv1; yÞ; yi forms a fault free x; y-Hamiltonian

path in this subcase, where hx; P ðx; u1Þ; u1; v1; P ðv1; yÞ; yi is a Hamiltonian path

in G1 � F1. See Fig. 9. Thus, this theorem is proved. �
Corollary 1. Assume that G1 and G2 are k-regular super fault-tolerant Hamil-
tonian where kP 5 and jV ðG1Þj ¼ jV ðG2Þj. Then GðG1;G2;MÞ is ðk þ 1Þ-regular
super fault-tolerant Hamiltonian.

In the following, we briefly introduce the definitions of the twisted-cubes,

the crossed-cubes, and the M€oobius cubes. It is straightforward to see that these

cubes are all special cases of the construction scheme proposed in the previous

section.

In [1], the twisted n-cube TQn is defined for odd values of n. The vertex set of
the twisted n-cube TQn is the set of all binary strings of length n. Let

u ¼ un�1un�2 . . . u1u0 be any vertex in TQn. For 06 i6 n� 1, let the ith parity
function be PiðuÞ ¼ ui � ui�1 � � � � � u0, where � is the exclusive or operation.

We can recursively define TQn as follows: A twisted 1-cube, TQ1, is a complete

graph with two vertices 0 and 1. Suppose that nP 3. We can decompose the

vertices of TQn into four sets, TQ0;0
n�2;TQ

0;1
n�2;TQ

1;0
n�2, and TQ1;1

n�2 where TQi;j
n�2

consists of those vertices u with un�1 ¼ i and un�2 ¼ j. For each ði; jÞ 2 fð0; 0Þ;
ð0; 1Þ; ð1; 0Þ; ð1; 1Þg, the induced subgraph of TQ

i;j
n�2 in TQn is isomorphic to

TQn�2. The edges that connect these four subtwisted cubes can be described as

follows: Any vertex un�1un�2 . . .u1u0 with Pn�3ðuÞ ¼ 0 is connected to �uun�1�uun�2 . . .
u1u0 and �uun�1un�2 . . . u1u0; and to un�1�uun�2 . . . u1u0 and �uun�1un�2 . . . u1u0 if

Pn�3ðuÞ ¼ 1.
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From the definition, both the subgraph induced by TQ0;0
n�2 [ TQ1;0

n�2 and the

subgraph induced by TQ0;1
n�2 [ TQ1;1

n�2 are isomorphic to TQn�2 � K2, where K2 is
the complete graph with two vertices. Moreover, the edges joining

TQ0;0
n�2 [ TQ1;0

n�2 and TQ0;1
n�2 [ TQ1;1

n�2 form a perfect matching of TQn. Recur-

sively applying Theorems 1 and 2, we can easily prove that TQn is super fault-

tolerant Hamiltonian for n > 5. As for n6 5, it can be checked by a computer

program that it is super fault-tolerant Hamiltonian.

Now, we introduce the definition of the crossed-cubes. Two two-digit binary

strings x ¼ x1x0 and y ¼ y1y0 are pair related, denoted by x � y, if and only if

ðx; yÞ 2 fð00; 00Þ; ð10; 10Þ; ð01; 11Þ; ð11; 01Þg. An n-dimension crossed-cube
CQn [6] is a graph CQn ¼ ðV ;EÞ that is recursively constructed as follows: CQ1

is a complete graph with two vertices labeled by 0 and 1. CQn consists of two

identical ðn� 1Þ-dimension crossed-cubes, CQ0
n�1 and CQ1

n�1. The vertex

u ¼ 0un�2 . . . u0 2 V ðCQ0
n�1Þ and vertex v ¼ 1vn�2 . . . v0 2 V ðCQ1

n�1Þ are adja-

cent in CQn if and only if (1) un�2 ¼ vn�2 if n is even; and (2) for

06 i < bn� 1=2c, u2iþ1u2i � v2iþ1v2i.
According to the definition, CQn can be viewed as GðCQn�1;CQn�1;MÞ for

some perfect matching M . Again, recursively applying Theorems 1 and 2, we
can easily prove that CQn is super fault-tolerant Hamiltonian for n > 5. As for

n6 5, it can be checked by a computer program that it is super fault-tolerant

Hamiltonian.

The M€oobius cube [5], MQn ¼ ðV ;EÞ, of dimension n has 2n vertices. Each

vertex is labeled by a unique n-bit binary string as its address and has con-

nections to n other distinct vertices. The vertex with address X ¼ xn�1xn�2 . . . x0
connects to n other vertices Yi, 06 i6 n� 1, where the address of Yi satisfies (1)
Yi ¼ ðxn�1 . . . xiþ1xi . . . x0Þ if xiþ1 ¼ 0; or (2) Yi ¼ ðxn�1 . . . xiþ1xi . . . x0Þ if xiþ1 ¼ 1.

From the above definition, X connects to Yi by complementing the bit xi if
xiþ1 ¼ 0, or by complementing all bits of xi . . . x0 if xiþ1 ¼ 1. For the connection

between X and Yn�1, we can assume that the unspecified xn is either 0 or 1,

which gives slightly different topologies. If xn is 0, we call the network generated

the ‘‘0-M€oobius cube’’, denoted by 0-MQn; and if xn is 1, we call the network

generated the ‘‘1-M€oobius cube’’, denoted by 1-MQn.

According to the above definition, 0-MQnþ1 and 1-MQnþ1 can be recursively

constructed from a 0-MQn and a 1-MQn by adding a perfect matching. Re-
cursively applying Theorems 1 and 2, we can easily prove that MQn is super

fault-tolerant Hamiltonian for n > 5. As for n6 5, it can be checked by a

computer program that it is super fault-tolerant Hamiltonian.
5. Conclusion

The fault-tolerant Hamiltonicity and the fault-tolerant Hamiltonian con-

nectivity are essential parameters of an interconnection network. In this paper,
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we propose a family of k-regular, ðk � 2Þ-Hamiltonian, and ðk � 3Þ-Hamilto-

nian connected graphs. These graphs are maximally fault-tolerant, and we call
them super fault-tolerant Hamiltonian graphs.

One of the contributions of this paper is the following. We propose a

construction scheme to construct, with flexibility, many k-regular super fault-
tolerant Hamiltonian graphs for k P 6. As for small values of k, k6 5, there are

some examples in literature, such as twisted-cubes, crossed-cubes, and M€oobius
cubes, etc.

There are many popular interconnection networks which are k-regular
graphs. Some of them, e.g., twisted-cubes, crossed-cubes, and M€oobius cubes,
can be recursively constructed using our construction schemes. And therefore,

they are in fact a subclass of our proposed family of graphs. Then, we know

that they are super fault-tolerant Hamiltonian as long as the case is true for

initial cases k6 5. For small values of k, k6 5, we may use a computer program

to check that it is ðk � 2Þ-Hamiltonian and ðk � 3Þ-Hamiltonian connected.
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