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Organic second-order nonlinear optical (NLO) materi-
als have received increasing interests due to their
potential applications in high-speed electrooptic (E-O)
devices with very broad bandwidth (up to 150 GHz) and
low driving voltages (<1 V).1 In the pursuit of a new
generation of highly efficient NLO polymers for device
fabrications, we have recently developed a series of
dendritic chromophores and chromophore-containing
dendrimers that possess very interesting nanostructures
and E-O activities. By controlling their size, shape, and
molecular architecture, we have achieved dramatically
enhanced poling efficiency in these materials.2-6 These
encouraging results motivate us to extend the similar
site-isolation principle to several commercially available
linear polymers. We have incorporated chromophores
that contain fluorinated dendrons onto a hydroxylsty-
rene photoresist polymer to afford side-chain den-
dronized NLO polymers.7 This new approach allows us
to achieve both high poling efficiency and reduced
synthetic time for E-O materials simultaneously. An
exceptionally large E-O coefficient (97 pm/V at 1.3 µm)
has also been demonstrated. This value is almost twice
higher than those obtained in the guest-host systems.
Even though these results are very impressive, these
materials do not possess the thermal stability that is
needed for practical applications. The poling-induced
polar order will decay quite rapidly upon heating due
to low glass-transition temperature (Tg) of the polysty-
rene backbone.

To improve this deficiency, we try to apply the site-
isolation concept to high-temperature polyimides. In the
past decade, thermally stable and high-Tg polyimides
were vigorously pursued for fabricating E-O devices.1c-e,8

However, most of the NLO polyimides suffer from low
poling efficiency due to the intrinsic chain rigidity and
π-π stacking of the aromatic backbone. Usually, a high-
temperature poling process is needed for orienting
chromophore dipoles. As a result, only a very small
number of chromophores can tolerate these stringent
conditions and afford moderate optical nonlinearity. It
remains a very challenging task to achieve large non-
linearity and good thermal stability simultaneously.
This is also the main reason that significantly hinders
the rapid deployment of E-O devices.8

Here, we report the synthesis and characterization
of a high-Tg aromatic polyimide with pendant den-

dronized NLO chromophores functionalized on a cardo-
bisphenol linkage of a rigid aromatic polyimide back-
bone. Polyimides with this kind of cardo structure
usually possess very high Tg, excellent thermal stability,
and good solubility.9

Scheme 1 outlines the synthetic route for the prepa-
ration of this cardo-type polyimide PI-OH with pendant
phenol groups. After the base hydrolysis of 1, it was
further reacted with excess aniline in the presence of
aniline hydrochloride to afford 9,9-bis(4-aminophenyl)-
2,7-dihydroxyfluorene (3). The polymerization of di-
amine monomer 3 with 4,4′-(hexafluoroisopropylidene)-
diphthalic anhydride was carried out in m-cresol using
isoquinoline as catalyst. The resulting polyimide, PI-
OH, is readily soluble in common organic solvents, such
as THF, DMF, and DMSO. It was fully characterized
by 1H NMR, 13C NMR, GPC, and thermal analysis. The
weight-average molecular weight (Mw) of PI-OH is
approximately 7.3 × 104 with a polydispersity index of
1.9. A distinct Tg was observed at 345 °C by differential
scanning calorimetry (DSC). The high Tg value of PI-
OH can be attributed to its rigid cardo structure along
with the presence of polar hydroxy pendant groups,
which in turn produce significant interchain interac-
tions. As revealed by thermogravimetric analysis (TGA),
this polymer also exhibits outstanding thermal stability
with less than 5% weight loss occurring at 514 °C.

The postfunctionalization process was conducted by
condensing this precursor polymer with R1OH, the
carboxylic derivatives of a dendron-capped polyene-type
CLD chromophore, and a smaller pentafluorobenzoic
acid, sequentially. These steps proceeded in one pot
under a very mild condition using 1,3-dicyclohexylcar-
bodiimide (DCC) and 4-(dimethylamino)pyridinium 4-tol-
uenesulfonate (DPTS) as the condensation reagents. The
resultant NLO polyimide (PI-CLD) was fully character-
ized by 1H NMR, 19F NMR, and UV-vis spectroscopy,
GPC, and thermal analysis. It shows excellent solubility
in common organic solvents, such as chloroform, tet-
rahydrofuran (THF), and cyclopentanone. By comparing
the relative integration of aromatic and aliphatic char-
acteristic peaks in the 1H NMR spectrum, it was found
that 50 mol % of the phenol groups were consumed by
R1OH. It can be converted to a ∼25 wt % loading level
of the core chromophore (donor-conjugation bridge-
acceptor moiety excluding the dendritic part) in PI-
CLD. This was further proved by quantitative analysis
of the UV-vis spectra of its solution in 1,4-dioxane.

It has been observed that highly polarizable push-
pull compounds like CLD-type chromophores are highly
solvatochromic in polar solvents and solid-state environ-
ments. For example, a CLD-type chromophore without
the protection of dendritic moieties shows significant
different λmaxs in various polymer matrices: 657 nm in
poly(methyl methacrylate) (PMMA), 667 nm in amor-
phous polycarbonate (APC), and 698 nm in a polar
polyquinoline (PQ-100).10 Since PI-CLD is a side-chain
dendronized NLO polymer with a quite polar and rigid
polyimide backbone, it should possess a quite different
microenvironment to the NLO chromophores compared
to that of the flexible polystyrene backbone reported
earlier (Figure 1 inset).7 However, even such a different
macromolecular environment, PI-CLD shows a very
similar chromophoric charge-transfer absorption peak* To whom correspondence should be addressed.
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compared to that of PS-CLD (Figure 1). The UV-vis
spectra of the thin film PI-CLD and PS-CLD on glass
slides exhibit similar main absorption bands with
absorption maxima (λmaxs) at 711 and 708 nm, respec-
tively, both of which are ascribed to the π-π* charge-

transfer band of the CLD chromophore (Table 1). This
comparison demonstrates that the environment around
the chromophores is dictated by the site-isolation effect
provided by the surrounding dendrons and is indepen-
dent of the polymer matrix that we selected. This
finding is also in good agreement with the similar
solvatochromism study of the 3-D shape dendritic chro-
mophore that we previously reported.3

The E-O measurements for PI-CLD, and the de-
tailed comparisons of its poling parameters with those
of PS-CLD, are critical for evaluating the role of the
dendrons in affecting the poling efficiency of PI-CLD.
The solution of PI-CLD in cyclopentanone (11 wt %,
filtered through a 0.2 µm syringe filter) was spin-coated
onto indium tin oxide (ITO) glass substrates. The films
were baked under vacuum at 100 °C overnight to ensure
the removal of the residual solvent. Then a thin layer
of gold was sputtered onto the films as the top electrode
for performing the high-electric field poling. The opti-
mum poling condition of the film was achieved at 155
°C with a DC electric field of 0.85 MV/cm. The r33 value
was measured using the thin-film reflection technique
at 1.3 µm11 and showed a very large E-O coefficient of

Scheme 1. Synthesis of Cardo-Type NLO Polyimide (PI-CLD) with Dendronized Chromophore

Table 1. Physical Property Comparison between Two Side-Chain Dendronized NLO Polymers PI-CLD and PS-CLD

λmax
(nm)

n1300
a

(nTE/nTM)
n1550

b

(nTE/nTM) Tg (°C)
dye content

(wt %)
poling field

(V/µm) r33
c (pm/V)

poling efficiency (%)d

(ractual/rtheo)

PI-CLD 711 1.7104/1.6864 1.6875/1.6660 155 25 85 71 81
PS-CLD 708 1.5851/1.5776 1.5813/1.5738 90 20 142 97 78

a The refractive indexes at 1.3 µm. b The refractive indexes at 1.55 µm. c The experimental EO coefficient at 1.3 µm. d The ratio of
experimental r33 value (ractual) to theoretically predicted r33 value (rtheo) using the two-level model.

Figure 1. UV-vis spectrum comparison of two side-chain
dendronized NLO polymers in different polymer matrixes: PI-
CLD, polyimide; PS-CLD, polystyrene.
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71 pm/V. This high r33 value represents ∼81% of the
highest achievable r33 value (88 pm/V) that is predicted
by using the two-level model.12 Most importantly, when
compared to the flexible polymer PS-CLD, the similar
high poling efficiency (∼80% of the theoretically achiev-
able E-O activity) has been reproduced in high Tg and
rigid polymer PI-CLD.

Moreover, this high-Tg PI-CLD exhibits a much
improved alignment stability compared to that of PS-
CLD. The poled PI-CLD retains higher than 90% of
its original r33 value after more than 600 h at 85 °C
(Figure 2). For comparison, the flexible polymer PS-
CLD with a much lower Tg (90 °C) shows only 37% of
its original r33 value after heating at 70 °C for 144 h.

The structural features of PI-CLD can explain very
well for its high poling efficiency and excellent thermal
stability. This cardo-type polyimide has a rigid and 3-D
extended main chain, and along the V-bended repeating
units, the dendronized chromophores are attached on
the fluorene ring that is perpendicular to the imido
backbone. This kind of spatial arrangement can sup-
press strong interchain interactions of polyimide and
reduce potential phase separation between the highly
aromatic, rigid polyimide backbone and chromophores.
In addition, the cardo-type linkage of the dendronized
chromophores may also facilitate the self-assembly of
these NLO molecules to form potentially ordered cylin-
drical rigid rods which will facilitate the dipole align-
ment during the poling process because less steric
hindrance caused by chromophore/polymer chain en-
tanglements.

In conclusion, we have successfully applied the site-
isolation principle to a rigid 3-D cardo-type polyimide
with very high Tg. High poling efficiency has been
achieved to afford a very large E-O coefficient (71 pm/V
at 1.3 µm). More than 90% of this value can be retained
at 85 °C for more than 650 h. Comprehensive studies
to optimize the properties of these high-Tg materials for
E-O device fabrication are in progress.
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Figure 2. Temporal stability of E-O activity of PI-CLD at
85 °C.
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