Available online at www.sciencedirect.com

sc.ENCE@D.RECTo

PERGAMON

Acta Astronautica 54 (2003) 69-75

AGHIA
TR AT

www.elsevier.com/locate/actaastro

Academy transactions note

Minimum-time spacecraft maneuver using
sliding-mode control™

Y.W. Jan, J.C. Chiou*

Department of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu 30010, Taiwan, ROC

Received 27 March 2003; accepted 31 March 2003

Abstract

The purpose of this paper is to present a sliding mode control method that can be used to perform a spacecraft large angle
maneuver with minimum time. An algorithm of minimum-time SMC is developed to provide the robust tracking control. The
simulation results are compared with previous developed control schemes, eigenaxis quaternion regulator, to demonstrate the

superiority of the proposed sliding mode control algorithm.

(© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The major tasks in operating a remote-sensing satel-
lite are to perform rapid multitarget acquisition, point-
ing, and tracking. The conventional satellite control
systems for these tasks are based on a sequence of
rotational maneuvers about each control axis to con-
duct the required three-axis large angle maneuver. The
time of such successive rotations is longer (by a fac-
tor of 2 or 3) than that of a single maneuver about the
eigenaxis that has been known and studied in the last
two decades. Among the research, Vadali and Junk-
ins [1] proposed the so-called open-loop schemes for
large-angle maneuvers. The open-loop schemes, how-
ever, are sensitive to spacecraft parameter uncertainty.
Wie et al. [2] chose a linear quaternion feedback reg-
ulator with open-loop decoupling control torque for
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gyroscopic forces to ensure eigenaxis rotations. How-
ever, in their approach, the constraints for reaction
wheel torque were not considered. The sliding mode
control (SMC) is a robust control technique [3] that
has applied to the spacecraft attitude-tracking prob-
lem by Dwyer and Sira-Ramirez [4], Dwyer and Kim
[5], Chen and Lo [6], using the Rodriques parameters
as the attitude measurement. Wie et al. [7] proposed
a PID saturation control logic to provide a rest-to-rest
eigenaxis rotation under slew rate constraint. How-
ever, the attitude tracking with minimum time was not
considered in their research.

In order to improve the aforementioned drawbacks,
an SMC for spacecraft minimum-time tracking ma-
neuver is proposed in this paper. An algorithm of
minimum-time SMC is developed to provide the de-
sired tracking trajectories, which are based on an eige-
naxis rotation with maximum torques. The eigenaxis
rotation with maximum torques eventually provides
the minimum-time maneuver. The condition of satura-
tion on wheel torque has been imposed on the control
algorithm. Meanwhile, the proposed SMC controller
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provides the robust control for removing the effects of
model uncertainty.

2. Spacecraft model description

A rigid spacecraft rotating under the influence of
body-fixed torquing devices is derived in this section.
Reorientation of the spacecraft is accomplished us-
ing three reaction wheels that are aligned along three
body-fixed control axes. The kinematic and dynamic
equations are described by [8]

q=0w (1)
and
ia:z_ﬁy_axaa+ﬁw, @)

respectively, where L is the external torque,
o = (w, ® ;)" is the angular rate and
Gd=[q0 q1 ¢ q3]" denotes the quaternion. The

elements of ¢ are constrained by

1G]l =g+ a1 + a5+ a3 =1. 3)

Furthermore, Q is an orthogonal matrix of quaternion
that can be expressed by the following equation:
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The angular momentum of reaction wheels is ﬁ W=
Iv(o+ Q), where Iy = diag( Ly v Ly ) de-
notes moment of inertia matrix of the three reaction
wheels, and Q = Q,b; + by + Q3b5 is the relative
spin rate. In terms of the wheel angular momentum,

1—7 w> EQ. (2) can be rewritten as
Jo=1 - Tu@+Q) —oxT+1)o— ox Iy
(5)

The control torque, T, generated by reaction wheels
can be expressed as

T =T+ 0) 6)

3. Attitude tracking by SMC

The design procedure of SMC generally contains
two fundamental steps.

Step 1: Choose the sliding surface such that the
control goal can be achieved. The four quaternions
sliding surfaces are chosen as

§=K(G§—q:)+(G—q:)=0 ™
and their time derivatives are given by
§=K(G—q:)+(q—4)=0, (@

where s=[sop s1 $2 3 ]T, 6:[ 0 0 O O]T,
K is a constant and positive definite diagonal matrix,
and ¢, is the reference quaternion trajectory. Note that
for the trajectories confined to the surface of Eq. (7),

Ge = —Kge. )

where ge =g — g;. The solution of Eq. (9) can be easily
obtained as

ge(1) = e~ 3:(0). (10)

This solution shows that the selected sliding surfaces
are exponential stable for the reason that K is positive
definite.

Step 2: Design the control law such that the reach-
ing and sliding conditions on the sliding surfaces are
satisfied. With this in mind, the spacecraft dynamic
equations can be expressed in terms of quaternion by
taking the time derivative of Eq. (1) and substituting
Eq. (5) to obtain

§=0w+0I"'(M - T), (11)
where

M=L-oxI+l)o-oxl,o

The control law for the sliding phase can be found by
enforcing § = 0. Substituting Eq. (8) into Eq. (11),

which gives the control law for the reaction wheel
torques,

T =M +10{[K({ — ) — G + Q0l=D - sen(9)},
(12)
where O™ is the pseudo inverse of O defined as
—q1 q0 93 —q2
=000 =2~ -5 @ @
—q3 92 —q q0
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Matrix D in Eq. (12) is a constant and positive definite
diagonal matrix. The discontinuous term has the ef-
fect of moving the trajectory back towards the sliding
surface when deviations occur resulting from external
disturbances or system modeling errors.

In order to demonstrate the stability of the proposed
control design, Lyapunov’s direct method is used to
show that the control law given in Eq. (12) is asymp-
totically stable for the reaching phase motion. A posi-
tive definite candidate Lyapunov function is given by
V= %ETE. The requirement for ensuring the reaching
and sliding conditions on the sliding surfaces is

V=5"1K(@§ — ) — G+ Qo+ OI7'(M — T)] <.
(13)
Substituting Eq. (12) into Eq. (13) results in a stability
constraint of
—5{(I — QOKG — §) — 41— 74"3)
STQQ*D sgn(s)

1.
(14)

The controller design parameters are the values of K
and D matrices of Eq. (12). Typical uncertainty arising
in spacecrafts during maneuver phase is mainly mass
property. Specific constraints on D for the uncertainty
of mass property are considered as follows.

The true spacecraft inertia is denoted by

0>

I=1Iy+ Al (15)

where I is the measured value of spacecraft inertia,
and A7 is the measurement error. It is assumed that
AT is sufficiently small such that the zeroth-order term
from the binomial expansion of (/o + AI)~! is valid.
This assumption leads to the following relations:

]_711_0 N],

I;'Al = 0. (16)

Replacing / with I, in control law equation
(12) results in

T =M + 100" {[K(G — ) — §: + Qw]—Dsgn(5)}.
(17)

Again, performing the calculations analogous to Egs.
(13) and (14), but using Eqgs. (16) and (17) yields the

constraint relation

_ =SHU = 00KG =) ~§1-7')
ST00"Dsen(3)

0 1

(18)

for ensuring closed-loop stability. This constraint is
identical to that of the nominal case, where the space-
craft inertia is known exactly.

If larger errors in the inertia matrix exist, then Eq.
(16) is not valid and constraint equation (18) should
be used with a worst-case estimate of the inertia er-
rors. We assume that the disturbance torque due to

the inertia errors on the spacecraft . is bounded. This
value is unique for a given maneuver. The derivation
for the constraint on D to ensure stability is similar

to that of Eqgs. (13) and (14), where L is unknown
and therefore not included in control law (12). The
time derivative of Lyapunov function V results in a
maneuver-dependent constraint similar to Eq. (14)

—{U — QO")IK(@G — 1) — Gl —gq"§+ 0T 'L}

0> STQO*D sgn(s)

1

(19)

for ensuring stability.

4. Tracking reference of eigenaxis maneuver with
maximum torque

It has been recognized that minimization of the
maneuver time around the eigenaxis might be the
solution to find the most fast tracking reference.
An eigenaxis rotation results in the shortest angu-
lar path and, therefore, also in minimum time when
the maximum torque is applied. In this section, a
minimum-time maneuver trajectory is derived through
the concept of applying maximum torque during the
eigenaxis maneuver. Firstly, we can express Eq. (12)
as

T =M + Naew — 10" D sgn(5). (20)

The gyroscopic torque, disturbance torque A/ and
the torque needed for on-sliding-phase control,
T1Q*Dsgn(5), is assumed to be relatively small com-
pared to the slew torque. This assumption is true if
the satellite is three-axes stabilized with low reaction
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wheel momentum before the eigenaxis rotation com-
mences. Note that using a suitable momentum dump-
ing method can ensure this assumption. If we ignore

gyroscopic and disturbance torque M and accept the
fact that the torque needed for on-sliding phase is
small. Then by assuming / = diag(l, I, I ), the
minimum-time maneuver trajectory can be obtained
from the following equations:

I_(j)r = Nslew» (21)
—dqr1 —qr2 —qr3
. 1 g0 —4r3 qr2 | —
G = or. (22)
qr3 qr0 —qr1

—qr2 qri qr0

For an eigenaxis slewing, we have

where if

i or j=x,

i oor j=y,

i or j=z

then

gei O  {ej = {el,
qei O {ej = (e,
dei  OU  (ej = (e3-

The unique constant ratio properties in Eq. (23) during
an eigenaxis rotation can be used to determine the
available reaction wheel torque for a minimum time
slew. With Eq. (23), the minimum-time slew torque
can be written as

Nat—i .
+vmin | —— | diag(D)qvee, t € (0,1),
~ ; -
Nslew - e
. Nsat—i . T
—ymin|= diag(I)qyee, t € (tn,2th),
Yer

(24)
where #, is the time to reach halfway mark during
Wr3 )T: Qvec =

[4e1(0)  ge2(0)  ge3(0)]', N is the saturated
wheel torque in body axis 7, and v € (0, 1) is the total
saturated torque. To satisfy the torque constraint, we

slew maneuver, o, = (®;; O

have v < 1. This is to enable a minimum-time slew
while providing a small additional torque for satellite’s
rotation around eigenaxis. This small additional torque
is used to accommodate gyroscopic and disturbance

torque M and to counteract any perturbations due to
modeling errors and external disturbances.

While the slew torque Ngew in Eq. (24) used to
generate the minimum-time tracking in open loop, the
halfway mark is determined using feedback from the
error quaternion. The largest error quaternion vector
components [ geri(f) qema(t) qems(t)] are coms
pared to its precomputed values at the halfway mark
(ghair) to determine if the maneuver time reaches #,:

>0 Vi<,
max|qerri(t)| — Ghalf = (25)
i <0 Vt>t,
where
_QerrO
- Gerrl
qerr =
Gerr2
L Gerr3
[ qvo qr1 qr2 qr3 qo
| TYn qr0 qr3 —qr2 q1
—qr2 —qr3 qro qr1 q> ’
L =413 qr2 —4r1 g0 93
(26)
maxi‘qerri(o)| N
= — . 27
Ghalf Isin(/2)| sin 4 (27)

5. Simulation results

In order to demonstrate the superiority of the
proposed minimum-time SMC algorithm, we further
adapt the eigenaxis quaternion regulator:

T =M + Kgyee + Dov. (28)

It has been shown in Ref. [2] that an eigenaxis
rotation will occur when K = kdiag(I) and D =
d diag(I), where k and d are positive constants.

A typical remote sensing spacecraft system is
used as an example. Fig. 1 depicts the remote
sensing spacecraft on orbit configuration. The
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Roll

Pitch

aw

Fig. 1. Experimental spacecraft on-orbit configuration.

Table 1
Initial and final satellite orientation in Euler angles (1-2-3
sequence)

Boundary Roll Pitch Yaw
condition (deg) (deg) (deg)
Initial value 0 0 0
Final value 30 45 0
Table 2

Controller parameters

SMC W = diag(1,1,1,1)
A = diag(0.001,0.001,0.001,0.001),
¢ =0.002,v=09

K = diag(3.64,6.58,6.72),

D = diag(25.5,46,47)

Quaternion
regulator

large angle maneuver of interest is specified in
terms of Euler angles as shown in Table 1, with
I =diag[182 329 336]kg m?. The maneuver on
yaw is null for the most Earth-pointing remote sens-
ing cases. The configuration of reaction wheels in the
simulated spacecraft has been deliberately arranged to
accommodate the capability of fast attitude maneuver.
According to the wheel configuration, the maximum
wheel torque Ng,e =[0.56  0.52  0.24] N m, max-
imum wheel speed Q. = 5400 rpm, and MOI of
wheel I, = 0.041 kg m? are used in the simulation.
In this paper, we assume the nominal inertia ma-
trix is perturbed by 10% and an initial orientation er-
ror of 2°. Control parameters for all simulation cases
are listed in Table 2. Because of the existence of

Euler Angle Histories for Quatemion Regulator

Euler Angles (degrees)

20 40 60 80 100
Time (sec)

Euler Angle Histories for Fast-SMC

Euler Angles (degrees)

100

Time (sec)

Fig. 2. Euler angles for large-angle slew.

nonideality in the practical implementation of sgn(s),
the control law in Eq. (12) generally suffers from
the chattering problem. To alleviate such undesirable
performance, the sign function is modified as

1 S > &,
sat(s;, &) =< s lsi| <e i=0,1,2,3. (29)
-1 5 < —g,

The simulation has been carried out by using
Matlab/Simulink software with 100 s simulation time.
Fig. 2 shows a large angular rotation with the cor-
responding roll, pitch and yaw angles during the
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Euler Angle Histories for Quatemion Regulator
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Fig. 3. Reaction wheels torques during large-angle slew.

maneuvers. The proposed SMC algorithm precedes
the quaternion regulator with respect to the slew
time and pointing accuracy. Compared to the pro-
posed SMC algorithm, the quaternion regulator is
not inherently time optimal. In Fig. 3, the corre-
sponding reaction wheel torques for two cases have
been obtained. At the beginning of the slewing,
we observe that the quaternion regulator produced
a maximum constant wheel torque constraint of
Nt =[0.56 0.52 024 ] N m. The proposed SMC
algorithm satisfies the torque constraint by using

40.9992

Stability Residual
[

S
©w
8
=3

Time (sec)

Fig. 4. Stability constraint residual for the fast-SMC maneuver
(must be negative for stability as described in Eq. (14)).

0.468 Nm on pitch axis with v = 0.9 as the upper
limit. Therefore, they provide 0.052 Nm for the ad-
ditional small torques. The maximum wheel speed is
much lower than the speed limit of 5400 rpm given
by hardware capability. Fig. 4 demonstrates the satis-
faction of stability constraint, given in Eq. (14) that
must be negative. This result verified the control law
design of SMC where closed-loop stability has been
ensured.

6. Conclusions

An algorithm of minimum-time SMC to perform
fast large-angle maneuvers is proposed for a three-axis
reaction wheel control of spacecraft. An eigenaxis
rotation with maximum torques has been used to de-
termine the tracking reference for the proposed SMC
tracking control. The maneuver time of the proposed
minimum-time SMC control is much faster (by a
factor of 2 or 3) than the conventional approach that
is based on a sequence of rotational maneuvers about
each control axis to conduct the required three-axis
large-angle maneuver. Compared to the quaternion
regulator obtained from simulation optimization, the
minimum-time SMC has been demonstrated to im-
prove the slew time performance for the experimental
target rotation of a typical small remote sensing satel-
lite. Moreover, robustness against inertia modeling
errors is ensured by tracking the reference maneuver.
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