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Abstract—The arrangement graph An;k is a generalization of the star graph. There are some results concerning fault Hamiltonicity and

fault Hamiltonian connectivity of the arrangement graph. However, these results are restricted in some particular cases and, thus, are

less completed. In this paper, we improve these results and obtain a stronger and simpler statement. Let n� k � 2 and

F � V ðAn;kÞ [ EðAn;kÞ. We prove that An;k � F is Hamiltonian if jF j � kðn� kÞ � 2 and An;k � F is Hamiltonian connected if

jF j � kðn� kÞ � 3. These results are optimal.

Index Terms—Hamiltonian cycle, Hamiltonian connected, fault tolerance, arrangement graph.
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1 INTRODUCTION

THE interconnection network has been an important
research area for parallel and distributed computer

systems. Designing an interconnection network is multi-
objected and complicated. For simplifying this task, we
usually use a graph to represent the network’s topology,
where vertices represent processors and edges represent
links between processors. The hypercube [15] and the star
graph [1], [2] are two examples. The hypercube possesses
many good properties and is implemented as many
multiprocessor systems. Akers et. al. [1] proposed the star
graph, which has smaller degree, diameter, and average
distance than the hypercube while reserving symmetry
properties and desirable fault-tolerant characteristics. As a
result, the star graph has been recognized as an alternative
to the hypercube. However, the hypercube and the star are
less flexible in adjusting their sizes.

The arrangement graph [6] was proposed by Day and

Tripathi as a generalization of the star graph. It is more

flexible in its size than the star graph. Given two positive

integers n and k with n > k, the ðn; kÞ-arrangement graph

An;k is the graph ðV ;EÞ, where V ¼ fp j p is an arrangement

of k elements out of the n symbols: 1; 2 � � � ; ng and E ¼
fðp; qÞ j p; q 2 V and p; q differ in exactly one position g. A
more precise definition and an example will be given in the

next section. An;k is a regular graph of degree kðn� kÞ with
n!

ðn�kÞ! vertices. An;1 is isomorphic to the complete graph Kn

and An;n�1 is isomorphic to the n-dimensional star graph.

Moreover, An;k is vertex symmetric and edge symmetric [6].
Hamiltonicity is an important property for network

topologies. Thus, the existence of a Hamiltonian cycle is a
desired property for a new proposed topology. Hamiltonian
connectivity is a related property of Hamiltonicity, namely,
there is a Hamiltonian path between any two vertices of a

graph. Since processors or links may fail sometimes, fault
Hamiltonicity and fault Hamiltonian connectivity are
concerned in many studies on network topologies, such as
hypercubes [4], [11], twisted cubes [10], deBruijn networks
[14], and star graphs [16], [9]. We say that a graph G can
tolerate f faults when embedding a Hamiltonian cycle if
there is a Hamiltonian cycle in G� F for any F �
V ðGÞ [ EðGÞ with jF j � f . We use f-Hamiltonian to denote
this property of G. Similarly, we use f-Hamiltonian connected
to denote the property that there is a Hamiltonian path
between any two vertices in G� F for any F � V ðGÞ [
EðGÞ with jF j � f .

There are also some studies concerning fault Hamiltoni-
city and fault Hamiltonian connectivity of the arrangement
graph. Hsieh et al. [8] studied the existence of Hamiltonian
cycles in faulty arrangement graphs. It is proven that An;k �
F is Hamiltonian if it satisfies one of the following
conditions:

1. (k ¼ 2 and n� k � 3, or k � 3, n� k � 4þ dk2eÞ, and
F � EðAn;kÞ with jF j � kðn� kÞ � 2,

2. k � 2, n� k � 2þ dk2e, a n d F � EðAn;kÞ w i t h
jF j � kðn� k� 3Þ � 1,

3. k � 2, n� k � 3, and F � EðAn;kÞ with jF j � k,
4. n� k � 3, and F � V ðAn;kÞ with jF j � k� 3, or
5. n� k � 3, and F � EðAn;kÞ [ V ðAn;kÞ with jF j � k.

Lo and Chen [12] studied the edge fault Hamiltonian
connectivity of the arrangement graph. They restricted the
fault distribution and then showed that An;k is kðn� kÞ � 2
edge fault Hamiltonian connected. However, these results
are more restricted and less complete.

In this paper, we improve these results to get a much
stronger and simpler statement. We prove that An;k is ðkðn�
kÞ � 2Þ-Hamiltonian and ðkðn� kÞ � 3Þ-Hamiltonian con-
nected if n� k � 2, where the faults can be vertices and
edges. For n� k ¼ 1, An;n�1 is isomorphic to the
n-dimensional star graph, which is bipartite and thus cannot
tolerate any vertex fault when embedding Hamiltonian
cycles and paths. Observing that a regular graph of degree d
is at most ðd� 2Þ-Hamiltonian and ðd� 3Þ-Hamiltonian
connected, our results are optimal. In the following section,
we discuss some basic properties of the arrangement
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graphs. In Section 3, we prove our main theorem. Since
the proof of the main theorem is rather long, several steps
are broken into lemmas. We prove these lemmas in
Sections 4, 5, and in the Appendix.

2 SOME PROPERTIES OF THE ARRANGEMENT

GRAPHS

In this paper, we concentrate on loopless undirected graphs.
For the graph definition and notation, we follow [3]. G ¼
ðV ;EÞ is a graph if V is a finite set and E is a subset of
fða; bÞ j ða; bÞ is an unordered pair of V }. We say that V is the
vertex set and E is the edge set. Two vertices, a and b, are
adjacent i f ða; bÞ 2 E. A path is represented by
hv0; v1; v2 � � � ; vki. We also write the path hv0; v1; v2 � � � ; vki
as hv0; P1; vi; viþ1 � � � ; vj; P2; vt; � � � ; vki, where P1 is the path
hv0; v1; � � � ; vii and P2 is the path hvj; vjþ1; � � � ; vti. A path is a
Hamiltonian path if its vertices are distinct and span V . A
cycle is a path with at least three vertices such that the first
vertex is the same as the last vertex. A cycle is a Hamiltonian
cycle if it traverses every vertex of G exactly once. A graph is
Hamiltonian if it has a Hamiltonian cycle.

Let n and k be two positive integers with n > k. And, let
hni and hki denote the sets f1; 2; � � � ; ng and f1; 2; � � � ; kg,
respectively. Then, the vertex set of An;k, V ðAn;kÞ is fp j p ¼
p1p2 � � � pk with pi 2 hni for 1 � i � k and pi 6¼ pj if i 6¼ j} and
the edge set of An;k, EðAn;kÞ, is fðp; qÞ j p; q 2 V ðAn;kÞ and,
for some i 2 hki, pi 6¼ qi and pj ¼ qj for all j 6¼ ig. Fig. 1
illustrates A4;2.

For consistency, we always use F to denote the faulty set
o f An;k i n t h e f o l l ow ing d i s cu s s i on , whe r e
F � V ðAn;kÞ [ EðAn;kÞ. Let G ¼ ðV 0; E0Þ be a subgraph of
An;k. We use F ðGÞ to denote the set ðV 0 [E0Þ \ F . We say
that an edge ðu; vÞ is fault-free if u; v; and ðu; vÞ are not in F .
Assume that t is any index in hki. Let ft denote the function
defined on V ðAn;kÞ into itself by assigning i1i2 . . . ik to
j1j2 . . . jk, where jt ¼ ik, jk ¼ it, and jr ¼ ir if r 6¼ t; k. The
following lemma is easily derived by the definition of the
arrangement graphs.

Lemma 1. ft is an automorphism of An;k for any t 2 hki.

Let i and j be two positive integers with 1 � i; j � n.

And, let V ðAðj:iÞ
n;k Þ ¼ fp j p ¼ p1p2 � � � pk and pj ¼ ig. Ob-

viously, fV ðAðj:iÞ
n;k Þ j 1 � i � ng forms a partition of V ðAn;kÞ.

Let A
ðj:iÞ
n;k denote the subgraph of An;k induced by V ðAðj:iÞ

n;k Þ. It
is easy to see that each A

ðj:iÞ
n;k is isomorphic to An�1;k�1. Thus,

An;k can be recursively constructed from n copies of

An�1;k�1. Assume that t � k. Let j1; j2; . . . jt be t distinct

indices of hki and i1; i2; . . . ; it be t distinct elements of hni.
We use A

ðj1;j2;...;jt:i1;i2;...;itÞ
n;k to denote the graph induced byTt

l¼1 V ðAðjl:ilÞ
n;k Þ. We have the following lemmas.

L emma 2 . S u p p o s e t h a t k � 2, n� k � 2, a n d
jF j � kðn� kÞ � 2. Then, there exists an index j 2 hki such
that jF ðAðj:iÞ

n;k Þj � ðk� 1Þðn� kÞ � 1 for every i 2 hni.
Proof. Suppose that the lemma is not true. Then, for each

index j 2 hki, t he r e ex i s t s i 2 hni such tha t

jF ðAðj:iÞ
n;k Þj � ðk� 1Þðn� kÞ. Assume that jF ðAðj:ijÞ

n;k Þj �
ðk� 1Þðn� kÞ for j 2 hki and fi1; i2; � � � ; ikg � hni.

Suppose i1; i2; � � � ; ik are not distinct k numbers.

Without loss of generality, assume that i1 ¼ i2. Since

F ðAð1:i1Þ
n;k Þ \ F ðAð2:i1Þ

n;k Þ ¼ ;,

jF j � jF ðAð1:i1Þ
n;k Þj þ jF ðAð2:i1Þ

n;k Þj � 2ðk� 1Þðn� kÞ � kðn� kÞ:

We get a contradiction.

Now, suppose i1; i2; � � � ; ik are distinct. Without

loss of generality, assume that ij ¼ j for each j 2 hki.
We prove that jF ðAð1;2;...;t:1;2;...;tÞ

n;k Þj � ðk� tÞðn� kÞ þ
2ðt� 1Þ for any t with 1 � t � k by induction: Since

jF ðAð1:1Þ
n;k Þj � ðk� 1Þðn� kÞ, the statement holds for t ¼ 1.

Assume that the statement holds for any t0 with

1 � t0 < t � k. By the inclusion-exclusion principle,

jF ðAð1;2;...;t:1;2;...;tÞ
n;k Þj ¼ jF ðAð1;2;...;t�1:1;2;...;t�1Þ

n;k Þj þ jF ðAðt:tÞ
n;k Þj

� jF ðAð1;2;...;t�1:1;2;...;t�1Þ
n;k [ F ðAðt:tÞ

n;k Þj

� jF ðAð1;2;...;t�1:1;2;...;t�1Þ
n;k Þj þ jF ðAðt:tÞ

n;k Þj � jF j
� ððk� tþ 1Þðn� kÞ þ 2ðt� 2ÞÞ þ ðk� 1Þðn� kÞ

� ðkðn� kÞ � 2Þ
¼ ðk� tÞðn� kÞ þ 2ðt� 1Þ:

Thus, the statement holds for any t with 1 � t � k, i.e.,

jF ðAð1;2;...;k:1;2;...;kÞ
n;k Þj � 2ðk� 1Þ � 2. However, the sub-

graph A
ð1;2;...;k:1;2;...;kÞ
n;k of An;k consists of only the single

vertex p ¼ 12 � � � k. So, we get a contradiction. And,

hence, the lemma is proven. tu
Using a similar argument, we have the following lemma.

Lemma 3 . Suppo s e t ha t k � 3, n� k � 2, and
jF j � kðn� kÞ � 3. Then, there exists an index j 2 hki such
that jF ðAðj:iÞ

n;k Þj � ðk� 1Þðn� kÞ � 2 for every i 2 hni.

For simplicity, if there is no ambiguity, we use Ai
n;k to

denote A
ðk:iÞ
n;k and Ei;j to denote the set of edges between Ai

n;k
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and Aj
n;k. Assume that I is any subset of f1; 2; . . . ; ng. We

use AI
n;k to denote the subgraph of An;k induced byS

i2I V ðAi
n;kÞ. The following proposition follows directly

from the definition of the arrangement graphs.

Proposition 1. Let i and j be two distinct elements of hni.

1. jEi;jj ¼ ðn�2Þ!
ðn�k�1Þ! .

2. If ðu; vÞ and ðu0; v0Þ are distinct edges in Ei;j, then

a. fu; vg \ fu0; v0g ¼ ; and
b. ðu; u0Þ 2 EðAi

n;kÞ if and only if ðv; v0Þ 2 EðAj
n;kÞ.

Let u 2 V ðAi
n;kÞ for some i 2 hni. We use NIðuÞ to denote

the set of all neighbors of u which are in AI
n;k. Particularly,

we use N�ðuÞ as an abbreviation of N hni�figðuÞ. We call

vertices in N�ðuÞ the outer neighbors of u. Obviously,

jNfigðuÞj ¼ ðk� 1Þðn� kÞ and jN�ðuÞj ¼ ðn� kÞ. We say

that u is adjacent to Aj
n;k if u has an outer neighbor in

Aj
n;k. Then, we define the adjacent set ASðuÞ of u as

fj j u is adjacent to Aj
n;kg. And, we have the following

proposition:

Proposition 2. For n > k > 1, if u and v are two distinct vertices

in Ai
n;k with dðu; vÞ � 2, then ASðuÞ 6¼ ASðvÞ.

Proof. Let u ¼ u1u2 � � �uk and v ¼ v1v2 � � � vk. If dðu; vÞ ¼ 1,

there is an index j 2 hk� 1i such that uj 6¼ vj. Then,

vj 2 ASðuÞ, but vj 62 ASðvÞ. The statement follows.
If dðu; vÞ ¼ 2, there is a vertex w 2 V ðAi

n;kÞ such that
dðu;wÞ ¼ dðv; wÞ ¼ 1. Let w ¼ w1w2 � � �wk. And, let j1 and
j2 be two indices such that wj1 6¼ uj1 and vj2 6¼ wj2 .
Obviously, j1 6¼ j2. Otherwise, dðu; vÞ ¼ 1. So, wj1 is not
in fu1; u2; � � � ; ukg but in fv1; v2; � � � ; vkg. By definition, wj1

is in ASðuÞ but not in ASðvÞ. Thus, the result also
follows. tu

Let F be a faulty set. The good edge set GEi;jðF Þ is the set

of edges ðu; vÞ 2 Ei;j such that fu; v; ðu; vÞg \ F ¼ ;. Then,
we have following statement.

Proposition 3. Let n > k > 3, n� k � 2, I � hni, and

F � V ðAn;kÞ [EðAn;kÞ. Then,

1. If jF ðAI
n;kÞj � kðn� kÞ � 3, then jGEi;jðF Þj � 3 for

every i 6¼ j 2 I, and

2. If jF ðAI
n;kÞj ¼ kðn� kÞ � 2, then there exists only one

ði; jÞ with jGEi;jðF Þj ¼ 2 if ði; jÞ is the only pair such

that jGEi;jðF Þj < 3.

Proof. First, consider that jF ðAI
n;kÞj � kðn� kÞ � 3. Sup-

pose that jGEi;jðF Þj < 3 for some i; j 2 hni. Since

jEi;jj ¼ ðn� 2Þ!=ðn� k� 1Þ! � ðn� 2Þðn� kÞ � kðn� kÞ,
jF ðAfi;jg

n;k Þj > kðn� kÞ � 3. We get a contradiction.

Now, consider that jF ðAI
n;kÞj ¼ kðn� kÞ � 2. If jIj � 2,

the statement follows. Assume that jIj � 3. Suppose that

there are two pairs fi; jg 6¼ fi0; j0g such that jGEi;jðF Þj < 3

and jGEi0;j0 ðF Þj < 3. If fi; jg \ fi0; j0g ¼ ;, F ðAfi;jg
n;k Þ \

F ðAfi0;j0g
n;k Þ ¼ ; and

jF ðAI
n;kÞj � ðjEi;jj � 2Þ þ ðjEi0;j0 j � 2Þ > kðn� kÞ � 2:

So, fi; jg \ fi0; j0g 6¼ ;. Assume that i ¼ i0 and j 6¼ j0. Let

Vj ¼ fv 2 V ðAi
n;kÞ j v be adjacent to Aj

n;kg, Vj0 ¼ fv 2
V ðAi

n;kÞ j v be adjacent to Aj0

n;kg, and V̂V ¼ Vj \ Vj0 . Then,

jF ðAI
n;kÞj � ðjEi;jj � 2Þ þ ðjEi;j0 j � 2Þ � jV̂V \ F j

� 2ðkðn� kÞ � 2Þ � jV̂V \ F j:

So, jV̂V \ F j ¼ kðn� kÞ � 2, i.e., F � V̂V . Note that the

number of faulty edges inside subgraphs do not affect

the number of fault-free edges between subgraphs.
However,

jVj � V̂V j ¼ jfv ¼ v1 � � � vk j vk ¼ i; j 62 fv1; � � � ; vk�1g;
j0 2 fv1; � � � ; vk�1ggj ¼ ðk� 1Þðn� 3Þ � � � ðn� kÞ
� ðk� 1Þðn� kÞ � 4:

So, jGEi;jðF Þj � 4. We get a contradiction. Thus, there is

only one pair fi; jg such that jGEi;jðF Þj < 3. Then,

suppose that jGEi;jðF Þj � 1.

jF ðAI
n;kÞj � jEi;jj � 1 � kðn� kÞ � 1:

So, jGEi;jðF Þj ¼ 2. Hence, the statement follows. tu

Lemma 4. Suppose that

1. k � 3 and n� k � 2,
2. I � hni with jIj � 2,
3. F � V ðAn;kÞ [ EðAn;kÞ, and
4. Al

n;k � F is Hamiltonian connected for each l 2 I and
jF ðAI

n;kÞj � kðn� kÞ � 3.

Then, for any x 2 V ðAi
n;kÞ and y 2 V ðAj

n;kÞ with i 6¼ j 2 I,

there is a Hamiltonian path of AI
n;k � F joining x and y.

Proof. Since jF ðAI
n;kÞj � kðn� kÞ � 3, by Proposition 3,

jGEi1;i2ðF Þj � 3 for every i1 6¼ i2 2 I. We prove this

lemma by induction on jIj. Suppose that jIj ¼ 2. Then,

I ¼ fi; jg for some i; j. Since jGEi;jðF Þj � 3, there exists

an edge ðu; vÞ 2 GEi;jðF Þ such that u 6¼ x 2 V ðAi
n;kÞ and

v 6¼ y 2 V ðAj
n;kÞ. Then, by assumption that each Al

n;k � F

is Hamiltonian connected, there is a Hamiltonian path P1

of Ai
n;k � F from x to u and a Hamiltonian path P2 of

Aj
n;k � F from v to y. Thus, hx; P1; u; v; P2; yi forms a

Hamiltonian path of AI
n;k � F from x to y.

Now, assume that the lemma is true for all I 0 with

2 � jI 0j < I. Thus, there is an i0 2 I with i0 6¼ i; j. Since

jGEi0;jðF Þj � 3, we can find an edge ðu; vÞ 2 GEi0;jðF Þ
with u 2 V ðAi0

n;kÞ and v 6¼ y 2 V ðAj
n;kÞ. Then, there is a

Hamiltonian path P1 of A
I�fjg
n;k � F from x to u and a

Hamiltonian path P2 of Aj
n;k � F from v to y. Thus,

hx; P1; u; v; P2; yi forms a Hamiltonian path of AI
n;k � F

from x to y. tu
The following lemma is proven by Ore [13].

Lemma 5. A graph G is Hamiltonian if G has at least Cn�1
2 þ 2

edges and Hamiltonian connected if G has at least Cn�1
2 þ 3

edges.

Lemma 6. Assume that n � 3. Then, Kn is ðn� 3Þ-fault
Hamiltonian and ðn� 4Þ-fault Hamiltonian connected.
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Proof. Let F ¼ Fv [ Fe for Fv � V ðKnÞ and Fe � EðKnÞ such
that jF j � n� i for i ¼ 2 or 3. Then,Kn � F is isomorphic
to Kn�jFvj � F 0 for some F 0 � EðKn�jFvjÞ with jF 0j � jFej.
So, the number of edges in Kn�jFvj � F 0 is at least
C

n�jFvj�1
2 þ i. Hence, the proof of this lemma follows

from Lemma 5. tu

3 MAIN THEOREM

Lemma 7. Let G ¼ ðV ;EÞ be a loopless undirected graph and �
be the minimum degree of G. Then, G is at most � � 2
Hamiltonian if � � 2 and � � 3 Hamiltonian connected if
� � 3.

Proof. Let u 2 V ðGÞ be a vertex of degree �. Removing
ð� � 1Þ edges connecting to u results in the isolation of u.
Clearly, the remaining graph is not Hamiltonian. Then,
consider removing ð� � 2Þ edges which connect to u. Let
v1 and v2 be the remaining vertices connecting to u. Since
� � 3, jV ðGÞj � 4. Thus, it is impossible that there is a
Hamiltonian path in the remaining graph between v1 and
v2 since u connects to only v1 and v2. Hence, the lemma
follows. tu

Theorem 1. Let n and k be two positive integers with n� k � 2.
Then, An;k is kðn� kÞ � 2 Hamiltonian and kðn� kÞ � 3
Hamiltonian connected.

Proof. Our proof is by induction on k. However, the proof
of the induction is rather long. We break the whole proof
into lemmas and prove them in the following sections.

The induction bases are An;1 and An;2. Since An;1 isKn,
by Lemma 6, the theorem is true for An;1. The case of An;2

is stated in the following lemma and its proof is in the
Appendix.

Lemma 8. An;2 is 2ðn� 2Þ � 2 Hamiltonian and 2ðn� 2Þ � 3
Hamiltonian connected if n � 4.

We use the following two lemmas in the induction
steps for the cases k � 3:

Lemma 9. Suppose that, for somek � 3 andn� k � 2,An�1;k�1 is
ðk� 1Þðn� kÞ � 2 Hamiltonian and ðk� 1Þðn� kÞ � 3 Ha-
miltonian connected. Then, An;k is kðn� kÞ � 2 Hamiltonian.

Lemma 10. Suppose that, for some k � 3 and n� k � 2,
An�1;k�1 is ðk� 1Þðn� kÞ � 2 Hamiltonian and ðk� 1Þðn�
kÞ � 3 Hamiltonian connected. Then, An;k is kðn� kÞ � 3
Hamiltonian connected.

The proofs of the two lemmas are in Sections 4 and 5,
respectively. With these lemmas, the theorem is
proven. tu

Hence, our results are optimal.

4 PROOF OF LEMMA 9

Assume that F is any faulty set of An;k with

jF j � kðn� kÞ � 2. By Lemma 2, there exists an index j 2
hki such that jF ðAðj:iÞ

n;k Þj � ðk� 1Þðn� kÞ � 1 for every

i 2 hni. By Lemma 1, we may assume that j ¼ k. So,

jF ðAi
n;kÞj � ðk� 1Þðn� kÞ � 1 for every i 2 hni. Without loss

of generality, we further assume that

jF ðA1
n;kÞj � jF ðA2

n;kÞj � � � � � jF ðAn
n;kÞj:

For convenience, we use N�
F ðuÞ to denote the set of outer

neighbors of u in An;k � F , i.e., N�
F ðuÞ ¼ fv j ðu; vÞ 2

EðAn;kÞ � F and v 2 N�ðuÞ � Fg.
Case 1: jF ðA1

n;kÞj � ðk� 1Þðn� kÞ � 3. Then, by induction

hypothesis, Ai
n;k � F is still Hamiltonian connected for

every i 2 hni. Consider two subcases:

Subcase 1.1: jGEi;jðF Þj � 3 for every i 6¼ j 2 hni. If F ¼ ;,
the lemma follows. If F 6¼ ;, there is an index i such that

jF ðA1
n;kÞj þ

P
l6¼i jEi;l \ F j � 1. Obviously, there are two

distinct indices, j and l, for j; l 6¼ i such that jGEi;jðF Þj � 3

and jGEi;lðF Þj � 3. Thus, we can find two edges ðu; xÞ 2
GEi;jðF Þ and ðv; yÞ 2 GEi;lðF Þ such that u 6¼ v 2 V ðAi

n;kÞ,
x 2 V ðAj

n;kÞ, and y 2 V ðAl
n;kÞ. Then, there is a Hamiltonian

path P1 of A
i
n;k � F from u to v and, by Lemma 4, there is a

Hamiltonian path P2 of A
hni�fig
n;k � F from y to x. Therefore,

hu; P1; v; y; P2; x; ui is a Hamiltonian cycle of An;k � F .
Subcase 1.2: jGEi;jðF Þj < 3 for some i 6¼ j 2 hni. By

Proposition 3, there is only one pair i; j with jGEi;jðF Þj ¼
2 and jGEi0;j0 ðF Þj � 3 for any fi0; j0g 6¼ fi; jg. So, we can find
two edges, ðu; xÞ 2 GEi;jðF Þ and ðv; yÞ 2 GEi;lðF Þ, such that
u 6¼ v 2 V ðAi

n;kÞ, x 2 V ðAj
n;kÞ, and y 2 V ðAl

n;kÞ for l 6¼ i; j.
Then, there is a Hamiltonian path P1 of A

i
n;k � F from u to v

and, by Lemma 4, there is a Hamiltonian path P2 of
A

hni�fig
n;k � F from y to x. Therefore, hu; P1; v; y; P2; x; ui is a

Hamiltonian cycle of An;k � F . See Fig. 2 for an illustration.
Case 2: jF ðA1

n;kÞj ¼ ðk� 1Þðn� kÞ � 2. So, A1
n;k � F is still

Hamiltonian. Let C be a Hamiltonian cycle of A1
n;k � F .

Consider two cases:

Subcase 2.1: jF ðA2
n;kÞj < ðk� 1Þðn� kÞ � 2. Then, Ai

n;k �
F is still Hamiltonian connected for every i 2 hni � f1g.
Since there are at most ðn� kÞ faults outside A1

n;k and

jV ðA1
n;kÞ � F j � ðn� 1Þðn� 2Þ � ðk� 1Þðn� kÞ þ 2

� ðn� 1� kþ 1Þðn� 2Þ � 3ðn� kÞ;

there exists a vertex u on C such that N�
F ðuÞ ¼ N�ðuÞ.

Consider the two neighbors of u on C, say v and v0.

Clearly, jN�
F ðvÞ [N�

F ðv0Þj � 1. Thus, we may assume that

there is an edge ðv; yÞ 2 GE1;iðF Þ for some i 2 hni � f1g.
(If N�

F ðvÞ ¼ ;, we use v0 in place of v.) Then, there is an

edge ðu; xÞ 2 GE1;jðF Þ with j 6¼ i since N�
F ðuÞ � 2. Since

jF ðAhni�f1g
n;k Þj < kðn� kÞ � 2, by Lemma 4, there is a Hamil-

tonian path hx; P1; yi of A
hni�f1g
n;k � F between x and y. Let

C ¼ hu; v; P2; v
0; ui. Then, hu; x; P1; y; v; P2; v

0; ui forms a

Hamiltonian cycle of An;k � F . See Fig. 3a for an illustration.

Subcase 2.2: jF ðA2
n;kÞj ¼ ðk� 1Þðn� kÞ � 2. Then,

n ¼ 5, k ¼ 3, and no fault is outside A1
5;3 and A2

5;3.

So, A2
5;3 � F is still Hamiltonian and A3

5;3 � F , A4
5;3 � F ,

and A5
5;3 � F are Hamiltonian connected. Let C2 be a

Hamiltonian cycle of A2
5;3 � F . Since jGE1;2ðF Þj � 2, let

ðu; vÞ 2 GE1;2ðF Þ for some u 2 V ðA1
5;3Þ and v 2 V ðA2

5;3Þ.
And, let C ¼ hu; u0; P1; u

00; ui and C2 ¼ hv; P2; v
0; vi. Since

N�ðv0Þ ¼ 2, there exists ðv0; yÞ 2 GE2;iðF Þ for some y 2
V ðAi

5;3Þ with i 6¼ 1. By Proposition 2, ASðu0Þ 6¼ ASðu00Þ
and then jASðu0Þ [ASðu00Þj � 3. So, we can assume

that there exists ðu0Þ 2 GE1;jðF Þ for some x 2 V ðAj
5;3Þ

with j 6¼ 2; i. By Lemma 4, there is a Hamiltonian
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path hy; P3; xi of A
f3;4;5g
5;3 between x and y. So,

hu; v; P2; v
0; y; P3; x; u

0; P1; u
00; ui forms a Hamiltonian cycle

of A5;3 � F . See Fig. 3b for an illustration.
Case 3: jF ðA1

n;kÞj ¼ ðk� 1Þðn� kÞ � 1. Then, there are at

most ðn� kÞ � 1 faults outside A1
n;k. So, jF ðAi

n;kÞj � ðn�
kÞ � 1 � 2ðn� kÞ � 3 � ðk� 1Þðn� kÞ � 3 for every i 2
hni � f1g and, by induction hypothesis, Ai

n;k � F is still

Hamiltonian connected. Let f 2 F ðA1
n;kÞ. f is either a vertex

or an edge. Since jF ðA1
n;kÞ � f j ¼ ðk� 1Þðn� kÞ � 2, there is

a Hamiltonian cycle C of A1
n;k � ðF � fÞ. Then, we consider

the following three cases:

1. f is not onC. Letu; vbe any twoadjacent vertices onC.
2. f is an edge on C. Let u; v be the two vertices linked

by f .
3. f is a vertex on C. Let u; v be the two vertices which

are adjacent to f on C.

Thus, we have a Hamiltonian path hu; P1; vi of A1
n;k � F .

Since jN�ðuÞj ¼ jN�ðvÞj ¼ ðn� kÞ and

jASðuÞ [ASðvÞj ¼ n� kþ 1;

there must exist two edges ðu; xÞ 2 GE1;iðF Þ and ðv; yÞ 2
GE1;jðF Þ with i 6¼ j 2 hni � f1g. By Lemma 4, there is a

Hamiltonian path hy; P2; xi of Ahni�f1g
n;k between x and y. So,

hu; P1; v; y; P2; x; ui is a Hamiltonian cycle of An;k � F . See

Fig. 4 for an illustration
This completes the induction proof. And, hence, the

lemma follows. tu

5 PROOF OF LEMMA 10

Assume that F is any faulty set of An;k with
jF j � kðn� kÞ � 3. By Lemma 3, there exists an index
j 2 hki such that jF ðAðj:iÞ

n;k Þj � ðk� 1Þðn� kÞ � 2 for every
i 2 hni. By Lemma 1, we may assume that j ¼ k. So,
jF ðAi

n;kÞj � ðk� 1Þðn� kÞ � 2 for every i 2 hni. Without
loss of generality, we further assume that
jF ðA1

n;kÞj � jF ðA2
n;kÞj � � � � � jF ðAn

n;kÞj. Let x 2 Ai
n;k and y 2

Aj
n;k with i; j 2 hni be two arbitrary vertices. We shall

construct a Hamiltonian path of An;k � F between x and y.
For convenience, again we use N�

F ðuÞ to denote the set of
outer neighbors of u in An;k � F , i.e., N�

F ðuÞ ¼ fv j ðu; vÞ 2
EðAn;kÞ � F and v 2 N�ðuÞ � Fg.

Case 1: jF ðA1
n;kÞj � ðk� 1Þðn� kÞ � 3. Then, by induction

hypothesis, Ai
n;k � F is still Hamiltonian connected for

every i 2 hni. Consider two subcases:
Subcase 1.1: i 6¼ j. Since jF j � kðn� kÞ � 3, by Lemma 4,

there is a Hamiltonian path of An;k � F joining x to y.
Subcase 1.2: i ¼ j. By induction hypothesis, there is a

Hamiltonian path P of Ai
n;k � F from x to y. Let l be the

number of vertices on P . Then,

l ¼ ðn� 1Þ!
ðn� kÞ!� jF \ V ðAi

n;kÞj � ðn� 1Þðn� 2Þ � jF ðA1
n;kÞj

� ðn� 1Þk� ðk� 1Þðn� kÞ þ 3

� kðn� 1Þ � kðn� kÞ ¼ kðk� 1Þ � 2k:

We claim that there exist two adjacent vertices u and v on P

such that jN�
F ðuÞj � 1 and jN�

F ðvÞj � 2. Suppose that the
statement is false. Then, for every two adjacent vertices u0

and v0 on P , jN�
F ðu0Þj þ jN�

F ðv0Þj � maxf2; n� kg ¼ n� k.
Thus, jF j � bl=2cðn� kÞ � kðn� kÞ. We get a contradiction.
Therefore, there exist two neighbors a and b of u and v,
respectively, such that ðu; aÞ 2 GEi;i0 ðF Þ and ðv; bÞ 2
GEi;j0 ðF Þ with i0 6¼ j0 2 hni � fig. Since jF j � kðn� kÞ � 3,
by Lemma 4, there is a Hamiltonian path ha; P1; bi of
A

hni�fig
n;k � F . The Hamiltonian path P of Ai

n;k � F can be
written as hx; P2; u; v; P3; yi for some subpaths P1 and P2.
Then, hx; P2; u; a; P1; b; v; P3; yi is a Hamiltonian path of
An;k � F from x to y. See Fig. 5 for an illustration.

Case 2: jF ðA1
n;kÞj ¼ ðk� 1Þðn� kÞ � 2. So, A1

n;k � F is still
Hamiltonian and there are at most ðn� kÞ � 1 faults outside
A1

n;k. Let C be a Hamiltonian cycle of A1
n;k � F . Now,

consider the following four subcases:
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Subcase 2.1: i ¼ j ¼ 1. If x; y are adjacent on C, let C ¼
hx; P ; y; xi and then the proof is similar to Subcase 1.2.
Suppose x; y are not adjacent on C. Assume that
C ¼ hx; v; P1; y; u; P2; xi. Since there are at most ðn� kÞ � 1
faults outside A1

n;k, both jN�
F ðuÞj and jN�

F ðvÞj are at least 1
and one of them is at least 2. So, we can find two edges
ðu; aÞ 2 GE1;i0 ðF Þ a n d ðv; bÞ 2 GE1;j0 ðF Þ w i t h
i0 6¼ j0 2 hni � f1g. By Lemma 4, there is a Hamiltonian
path P3 of A

hni�f1g
n;k � F from a to b. Therefore ,

hx; P2; u; a; P3; b; v; P1; yi is a Hamiltonian path of An;k � F
between x and y. See Fig. 6a for an illustration.

Subcase 2.2: i ¼ 1 and j 6¼ 1. Let C ¼ hx; u0; P1; u; xi.
Since jASðuÞ [ASðu0Þj � n� kþ 1 and there are at most
ðn� k� 1Þ faults outside A1

n;k, we conclude that one of u
and u0 has an outer neighbor in An;k � F which is not in
Aj

n;k. We may assume that ðu; vÞ 2 GE1;j0 ðF Þ with j0 6¼ j. By
Lemma 4, there is a Hamiltonian path hv; P2; yi of
A

hni�f1g
n;k � F . Then, hx; u0; P1; u; v; P2; yi is a Hamiltonian

path of An;k � F . See Fig. 6b for an illustration.
Subcase 2.3: i ¼ j 6¼ 1. Consider two cases:

1. n� k � 3. The number of vertices on C which are
adjacent to Ai

n;k is at least

jE1;ij � jF ðA1
n;kÞj ¼ ðn� 2Þ � � � ðn� kÞ

� ðk� 1Þðn� kÞ þ 2 � ðn� kÞðn� k� 1Þ þ 2:

Since there are at most ðn� k� 1Þ faults outside A1
n;k

and

ðn� kÞðn� k� 1Þ þ 2� 2ðn� k� 1Þ
¼ ðn� k� 1Þðn� k� 2Þ þ 2 � 4;

there is one pair of adjacent vertices u and v on C
such that jN�

F ðuÞj ¼ jN�
F ðvÞj ¼ n� k and u is adjacent

to Ai
n;k in An;k � F . Let ðu; u0Þ 2 GE1;iðF Þ for some

u0 2 V ðAi
n;kÞ. And, let C ¼ hu; v; P1; ui. Without loss

of generality, assume that u0 6¼ y. Since Ai
n;k � F is

Hamiltonian connected, let P ¼ hx; P2; u
0; v0; P3; yi be

a Hamiltonian path of Ai
n;k � F between x and ywith

u0 6¼ v0. Since there are two neighbors of u0 on P , we
may assume that jN�

F ðv0Þj � 2 without loss of
generality. Let ðv0; aÞ 2 GEi;i0 ðF Þ for some a 2
V ðAi0

n;kÞ with i0 6¼ 1. Since N�
F ðvÞ ¼ n� k � 3, there

is an edge ðv; bÞ 2 GE1;j0 ðF Þ for some b 2 V ðAj0

n;kÞ
with j0 6¼ i; i0. By Lemma 4, there is a Hamiltonian
p a t h hb; P4; ai o f A

hni�f1;ig
n;k � F . S o ,

hx; P2; u
0; u; P1; v; b; P4; a; v

0; P3; yi forms a Hamilto-

nian path of An;k � F between x and y. See Fig. 7 for

an illustration.
2. n� k ¼ 2. Then, there is at most one fault f outside

A1
n;k. Consider the vertices on C which are adjacent

to Ai
n;k. Clearly, the number of them is at least 2 and

the number of other vertices on C is also at least 2.
Thus, there are two pairs of vertices on C, say fu; vg
and fr; sg, such that u; r are adjacent to Ai

n;k and v; s
are not. Since there is at most one fault outside A1

n;k,
w e may a s sume th a t N�

F ðuÞ ¼ N�ðuÞ and
N�

F ðvÞ ¼ N�ðvÞ. Let C ¼ hu; P1; v; ui. And, let ðu; u0Þ 2
GE1;iðF Þ for some u0 2 V ðA1

n;kÞ. Without loss of
general i ty , assume that u0 6¼ y. Then, le t
hx; P2; u

0; v0; P3; yi be a Hamiltonian path of
Ai

n;k � F . If N�
F ðv0Þ 6¼ N�ðv0Þ, i.e., f is adjacent or

incident to v0, then we may use fr; sg in place of
fu; vg. Thus, we assume that jN�

F ðv0Þj ¼ jN�ðv0Þj ¼ 2
and then there is an edge ðv0; aÞ 2 GEi;i0 ðF Þ for some
a 2 V ðAi0

n;kÞ with i0 6¼ i. S ince i 6¼ ASðvÞ and
jN�

F ðvÞj ¼ 2, there is an edge ðv; bÞ 2 GE1;j0 ðF Þ for
some b 2 V ðAj0

n;kÞ with j0 6¼ i; i0. By Lemma 4, there is
a Hamiltonian path hb; P4; ai of A

hni�f1;ig
n;k � F . So,

hx; P2; u
0; u; P1; v; b; P4; a; v

0; P3; yi forms a Hamilto-
nian path of An;k � F between x and y.

Subcase 2.4: i; j; 1 are distinct. Since

jV ðA1
n;kÞ � F j � ðn� 1Þðn� 2Þ � ðk� 1Þðn� kÞ þ 2

� ðn� 1� kþ 1Þðn� 2Þ � 3ðn� kÞ;

we can find two adjacent vertices u and v on C such that

N�
F ðuÞ ¼ N�ðuÞ and N�

F ðvÞ ¼ N�ðvÞ. Let C ¼ hu; P1; v; ui.

Consider two cases:

1. N�ðuÞ or N�ðvÞ is fx; yg. Assume that N�ðuÞ ¼ fx; yg.
Then, n� k ¼ 2 and there is at most one fault outside

A1
n;k. Assume that there is no fault in Ai

n;k. Let

F 0 ¼ F ðAhni�f1g
n;k Þ [ fxg. (If there is a fault in Ai

n;k, we

can change x to y.) Then, jF 0j ¼ 2 � kðn� kÞ � 3 and

Al
n;k � F 0 is still Hamiltonian connected for every

l 2 hni � f1g. By Proposition 2, there is a neighbor of

v, say w, such that w 2 Ai0

n;k with i0 62 f1; jg. Clearly,
w 6¼ x. By Lemma 4, there is a Hamiltonian path

hw;P2; yi of Ahni�f1g
n;k � F 0. So, hx; u; P1; v; w; P2; yi is a

Hamiltonian path of An;k � F . See Fig. 8a for

illustration.
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2. None of N�ðuÞ and N�ðvÞ is fx; yg. Then, there is an

index i0 2 ASðuÞ [ASðvÞ such that i0 62 f1; i; jg. As-

sume that there is an edge ðu; aÞ 2 GE1;i0 ðF Þ for some

a 2 V ðAi0

n;kÞ. ConsiderN�
F ðvÞ. Suppose that there is an

outer neighbor b of v in Ai
n;k or A

j
n;k. We may assume

that b 2 V ðAi
n;kÞ. Then, there is a Hamiltonian path

hx; P2; bi ofAi
n;k � F and a Hamiltonian path ha; P3; yi

of A
hni�f1;ig
n;k � F . And, we have a Hamiltonian path

hx; P2; b; v; P1; u; a; P3; yi of An;k � F . Suppose that

there is no outer neighbor of v in Ai
n;k or Aj

n;k. Since

jASðvÞj � 2 and i; j 62 ASðvÞ, there is an edge ðv; bÞ 2
GE1;j0 ðF Þ for some b 2 V ðAj0

n;kÞ with j0 62 f1; i; j; i0g.
Then, there is a Hamiltonian path hx; P2; bi of Afi;j0g

n;k �
F and a Hamiltonian path ha; P3; yi ofAhni�f1;i;j0g

n;k � F .

So, hx; P2; b; v; P1; u; a; P3; yi is a Hamiltonian path of

An;k � F . See Fig. 8b for an illustration.

Hence, the lemma follows. tu

6 CONCLUSION AND DISCUSSION

There are many studies concerning fault-tolerant Hamilto-
nicity and fault-tolerant Hamiltonian connectivity. We find
that the current results on the arrangement graphs [8], [9]
are not optimal. In this paper, we obtain an optimal result
that the arrangement graph An;k for n� k � 2 is ðkðn� kÞ �
2Þ-Hamiltonian and ðkðn� kÞ � 3Þ-Hamiltonian connected.
For the case n� k ¼ 1, since An;n�1 is isomorphic to an
n-dimensional star graph which is bipartite, it cannot
tolerate any vertex fault as far as fault Hamiltonicity and
fault Hamiltonian connectivity are concerned.

In order to establish the fault-tolerant Hamiltonian
property, we find that it is difficult to construct a fault-
free Hamiltonian cycle directly. Therefore, we propose a
new idea for proving this result. We propose to use fault
Hamiltonian connectivity as a tool to attack the fault
Hamiltonicity of the arrangement graph. We prove that it
is f fault-tolerant Hamiltonian by simultaneously proving it
is f � 1 fault-tolerant Hamiltonian connected. This strategy
makes the proof tractable and systematic. It would be useful
to apply this strategy to other interconnection networks for
the same type of problems.

APPENDIX

PROOF OF LEMMA 8

In this section, we concentrate our discussion on An;2. As
the degree of An;2 is relatively larger than that of An;k for
k � 3, it can tolerate more faults. This makes the proof
complex and we must use some special properties of An;2.
In fact, when n is small, such as 4; 5; 6, the resource (vertices
or edges) which we can use is few. To prove these cases is
very tedious. With a long and detailed discussion, we have
completed the theoretical proof for a small value of n

(n ¼ 4; 5; 6). Nevertheless, we do not present them in this
paper for reducing complexity. However, we can also verify
these small cases directly using the computer by translating
the original proof into a program.

Now, we give a quick view of An;2 and then present some
of its special properties. An;2 consists of nðn� 1Þ vertices
and nðn� 1Þðn� 2Þ edges. Indeed, it admits a vertex
decomposition into n subgraphs, each isomorphic to Kn�1.
Each vertex is labeled by a 2-digit string and, clearly,
connects to 2ðn� 2Þ neighbors, where half of them are outer
neighbors. So, ASðuÞ ¼ n� 2 and there is only one sub-
graph not adjacent to u for any vertex u 2 V ðAn;2Þ. (Recall
that ASðuÞ is the adjacent set of u.) On the other hand,
jEi;jj ¼ n� 2 for any i; j 2 hni, so there is only one vertex in
Ai

n;2 not adjacent to Aj
n;2. These two properties are important

for our proof. In the following, we first show two useful
propositions. Then, we divide the proof of Lemma 8 into
two parts: first for Hamiltonicity and second for Hamilto-
nian connectivity.

Given any F � V ðAn;2Þ [EðAn;2Þ, by Lemma 1, we may
assume that

max
i2hni

fjF ðA1:i
n;2Þg � jF ðA1

n;2Þj � jF ðA2
n;2j � � � � � jF ðAn

n;2Þj:
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Recall that Ai
n;2 is the abbreviation of A2:i

n;2. So, we have the

following proposition:

Proposition 4 (Fault distribution in An;2). Let F �
V ðAn;2Þ [EðAn;2Þ with jF j � 2n� 6 and

max
i2hni

fjF ðA1:i
n;2Þjg � jF ðA1

n;2Þj � jF ðA2
n;2j � � � � � jF ðAn

n;2Þj:

Then, jF ðA1
n;2Þj � n� 3. In other words,

jF ðA2
n;2Þj � jF j � 2jF ðA1

n;2Þj þ 2:

Proof. Let j be the index such that

jF ðA1:j
n;2Þj ¼ max

i2hni
fjF ðA1:i

n;2Þjg:

Suppose that jF ðA1
n;2Þj � n� 2. The intersection of

A1:j
n;2 and A1

n;2 contains only the vertex j1 for j 6¼ 1 or

is empty for j ¼ 1, so jF ðA1:j
n;2Þ \ F ðA1

n;2Þj � 1. Thus,

jF j � jF ðA1:j
n;2Þj þ jF ðA1

n;2Þj � 1 � 2n� 5, which contra-

dicts the given condition. So, jF ðA1
n;2Þj � n� 3.

Then, consider jF ðA2
n;2Þj. Let l ¼ jF ðA1

n;2Þj. Since
jF ðA1:j

n;2Þ \ F ðA2
n;2Þj � 1,

F ðA2
n;2Þ � jF j � jF ðA1:j

n;2Þ [ F ðA1
n;2Þ � F ðA2

n;2Þj
� jF j � ð2l� 1Þ þ jF ðA1:j

n;2Þ \ F ðA2
n;2Þj

þ jF ðA1
n;2Þ \ F ðA2

n;2Þj
� jF j � ð2l� 1Þ þ 1þ 0 ¼ jF j � 2lþ 2:

Hence, the statement follows. tu
The following proposition uses a method similar to that

used in Lemma 4 which helps us to construct a Hamiltonian

path between any two given vertices in a given index set I

of subgraphs of An;2. Notice that all subgraphs of An;2 are

isomorphic to Kn�1, which is ðn� 3Þ Hamiltonian and ðn�
4Þ Hamiltonian connected. For convenience, we introduce a

new notation, EF ðAi
n;2Þ, called extended faulty set of Ai

n;2.

EF ðAi
n;2Þ is defined to be the set F ðAi

n;2Þ þ
P

l6¼iðEi;l \ F Þ.
Lemma 11. Let F � V ðAn;2Þ [ EðAn;2Þ and I � hni with n � 7

and jIj � 2. Let x 2 V ðAi
n;2Þ and y 2 V ðAj

n;2Þ with i 6¼ j 2 I.

Then, there is aHamiltonian path ofAI
n;2 � F between x and y if

jF ðAI
n;2Þj � n� 7þ jIj and jF ðAl

n;2Þj � n� 5 for each l 2 I.

Proof. Since each subgraph of An;2 is isomorphic toKn�1, by

the given condition,Al
n;2 � F contains at least four vertices

and, by Lemma 6, is still Hamiltonian connected for each

l 2 I. We prove this proposition by induction on jIj:
Case 1: jIj ¼ 2. Then, I ¼ fi; jg and jF j � n� 5. Since

jEi;jj ¼ n� 2, jGEi;jðF Þj � 3. There is an edge ðu; vÞ 2
GEi;jðF Þ for u 6¼ x 2 V ðAi

n;2Þ and v 6¼ y 2 V ðAj
n;2Þ. Since

Ai
n;2 � F and Aj

n;2 � F are still Hamiltonian connected,
there are a Hamiltonian path hx; P1; ui of Ai

n;2 � F and a
Hami l ton ian path hv; P2; yi of Aj

n;2 � F . Thus ,
hx; P1; u; v; P2; yi forms a Hamiltonian path of AI

n;2 � F
between x and y.

Case 2: jIj ¼ d � 3. Assume that, for any I 0 � hni with
2 � jI 0j < d, the statement is true. Consider the following
two cases:

Subcase 2.1: jF ðAI�fi;jg
n;2 Þj � nþ d� 8. Without loss

of generality, assume that jEF ðAi
n;2Þj � jEF ðAj

n;2Þj.
Thus, jF ðAI�fig

n;2 Þj ¼ jF ðAI
n;2Þj � jEF ðAi

n;2Þj � nþ d� 8.

(Remember that jF ðAI
n;2Þj � nþ d� 7.) Since jF ðAi

n;2Þj �
n� 5 and jEi;lj ¼ n� 2 for l 6¼ i, there is an index i0 6¼ j

such that jGEi;i0 ðF Þj � 2. Otherwise, jGEi;i0 ðF Þj � 1 for

all i0 6¼ i; j and

jEF ðAi
n;2Þj ¼ jF ðAi

n;2Þj þ
X
l6¼i

ðEi;l \ F Þ
�����

�����
� n� 5þ ðn� 3� ðn� 5ÞÞ � ðd� 2Þ > nþ d� 7

for d � 3 which gives a contradiction. Thus, there is

an edge ðu; vÞ 2 GEi;i0 ðF Þ for u 6¼ x 2 V ðAi
n;2Þ and

v 2 V ðAi0
n;2Þ. Since Ai

n;2 � F is Hamiltonian connected,

there are a Hamiltonian path hx; P1; ui of it and, by

induction hypothesis, a Hamiltonian path hv; P2; yi of

A
I�fig
n;2 � F . So, the path hx; P1; u; v; P2; yi forms a Hamil-

tonian path of AI
n;2 between x and y.

Subcase 2 . 2 : jF ðAI�fi;jg
n;2 Þj ¼ nþ d� 7. Then ,

jEF ðAi
n;2Þj ¼ jEF ðAj

n;2Þj ¼ 0. If I ¼ fi; j; i0g, i.e., d ¼ 3,
then jF ðAi0

n;2Þj ¼ n� 4, which contradicts the given
condition. So, jIj ¼ d � 4. Since n � 7, there is an index
i0 2 I � fi; jg such that jEF ðAi0

n;2Þj � 2. So,

F A
I�fi;i0g
n;2

� ����
��� � nþ d� 9:
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However, jF ðAfi;i0g
n;2 Þj � n� 5. So, jGEi;i0 ðF Þj � 3 and then

there are two edges, ðu; u0Þ; ðv; v0Þ 2 GEi;i0 ðF Þ, where

u; v 2 V ðAi
n;2Þ and u0; v0 2 V ðAi0

n;2Þ such that u; v 6¼ x. Let

j0 62 fi; i0; jg. Since jGEi;j0 ðF Þj � 3, there is an edge

ða; bÞ 2 GEi;j0 ðF Þ, where a 2 V ðAi
n;2Þ and b 2 V ðAj0

n;2Þ �
F such that a 6¼ x; u. Note that v and a can be the same

vertex. Since Ai
n;2 � fv; ag is still Hamiltonian connected,

there is a Hamiltonian path hx; P1; ui of Ai
n;2 � fv; ag.

Since Ai0

n;2 � F is Hamiltonian connected, there is a

Hamiltonian path hu0; P2; v
0i of it. By induction hypoth-

esis, there is a Hamiltonian path hb; P3; yi of AI�fi;i0g
n;2 � F .

Thus, hx; P1; u; u
0; P2; v

0; v; ða; Þb; P3; yi forms a Hamilto-

nian path between x and y. See Fig. 9 for an illustration.
Hence, the lemma follows. tu

Now, we prove Lemma 8. We divide the proof into two
parts: first for Hamiltonicity and second for Hamiltonian
connectivity. For the readability of the proof, we introduce
the general steps of our proof for constructing a Hamilto-
nian cycle or path for each case here:

1. Find some key vertices in a particular order.
2. Construct some critical subpaths between key

vertices.
3. Use Lemma 11 to construct the remainding part.
4. Concatenate these subpaths to form a Hamiltonian

cycle or path.

Part 1. An;2 is 2ðn� 2Þ � 2 Hamiltonian for n � 7.

Proof. Let F � V ðAn;2Þ [EðAn;2Þ be an arbitrary faulty

set of An;2 with jF j � 2n� 6. By Proposition 4, we

may assume that maxi2hnifjF ðA1:i
n;2Þg � jF ðA1

n;2Þj �
jF ðA2

n;2j � � � � � jF ðAn
n;2Þj and jF ðA1

n;2Þj � n� 3. Consider

the following three cases:

Case 1. jF ðA1
n;2Þj � n� 5. Then, Ai

n;2 � F is still

Hamiltonian connected for each i 2 hni. If jF j ¼ 0, the

statement follows. If 0 < jF j � 2n� 7, let i be the index

such that jEF ðAi
n;2Þj ¼ 1. If jF j ¼ 2n� 6, then jF j > n for

n � 7 and, by pigeonhole principle, there is an index i

such that jEF ðAi
n;2Þj � 2. So, jF ðAhni�fig

n;2 Þj � 2n� 8. Now,

consider the edges connecting to Ai
n;2. Since jEi;lj ¼ n� 2

for l 6¼ i and jF ðAi
n;2Þj � n� 5, there are two distinct

i nd i c e s i1; i2 6¼ i su ch tha t jGEi;i1ðF Þj � 2 and

jGEi;i2ðF Þj � 2. Otherwise,

jF j � ðn� 5Þ þ ðn� 3� ðn� 5ÞÞðn� 2Þ > 2n� 6:

So, there are two edges ðu; xÞ 2 GEi;i1ðF Þ and ðv; yÞ 2
GEi;i2ðF Þ such that u 6¼ v 2 V ðAi

n;2Þ, x 2 V ðAi1
n;2Þ, and

y 2 V ðAi2
n;2Þ. Since Ai

n;2 � F is Hamiltonian connected,

there is a Hamiltonian path hu; P1; vi of it. Let

I ¼ hni � fig. Since jF ðAI
n;2Þj � 2n� 8 ¼ nþ jIj � 7, by

Lemma 11, there is a Hamiltonian path hy; P2; xi of

AI
n;2 � F . So, hu; P1; v; y; P2; x; ui forms a Hamiltonian

cycle of An;2 � F . See Fig. 10 for an illustration.
Case 2. jF ðA1

n;2Þj ¼ n� 4. Then, A1
n;2 � F is still

Hamiltonian and there are n� 2 faults outside A1
n;2. Let

C1 be a Hamiltonian cycle of A1
n;2 � F . We observe that

jF ðA2
n;2Þj � jF ðA1

n;2Þj, so jF ðA2
n;2Þj � n� 4. Consider the

following two subcases:
Subcase 2.1. jF ðA2

n;2Þj � n� 5. Then, for every i 6¼ 1,
Ai

n;2 � F i s s t i l l Hami l tonian connected and
jV ðAi

n;2Þ � F j � 4. Since jV ðA1
n;2Þ � F j � 3, there are two

adjacent vertices u and v on C1 such that jN�
F ðuÞj � 1 and

jN�
F ðvÞj � 2. Otherwise,

jF j � n� 4þ 3ðn� 3Þ > 2n� 6:

Thus, there are two edges, ðu; xÞ 2 GE1;iðF Þ and

ðv; yÞ 2 GE1;jðF Þ, w i t h i 6¼ j 2 hni � f1g. L e t

I ¼ hni � f1g. Then, jF ðAI
n;2Þj � n� 2 � nþ jIj � 7. By

Lemma 11, there is a Hamiltonian path P1 of AI
n;2 � F

joining x to y. Assume that C1 ¼ hv; P2; u; vi. Then,
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hu; x; P1; y; v; P2; ui forms a Hamiltonian cycle of

An;2 � F .

Subcase 2.2. jF ðA2
n;2Þj ¼ n� 4. So, A2

n;2 � F is still

Hamiltonian and Ai
n;2 is Hamiltonian connected for

every i 2 hni � f1; 2g. Let C2 be a Hamiltonian cycle of

A2
n;2 � F . Clearly, there are at most two faults outside

A
f1;2g
n;2 and, so, there are at least three indices is such

that jF ðAi
n;2Þj þ jE1;i \ F j þ jE2;i \ F j ¼ 0. Assume that

4; 5; 7 are such indices. Since jV ðA1
n;2 � F Þj � 3 and

jV ðA2
n;2 � F Þj � 3, jGE1;7ðF Þj � 2 and jGE2;7ðF Þj � 2.

There are two vertices a 6¼ b in A7
n;2 such that ðu; aÞ 2

GE1;7ðF Þ and ðv; bÞ 2 GE2;7ðF Þ for some u 2 V ðA1
n;2Þ

and v 2 V ðA2
n;2Þ. Clearly, there is a Hamiltonian path

P1 of A7
n;2 joining b to a. Consider the two neighbors of

u on C1. There must be one of them adjacent to A5
n;2.

Let u0 be such a vertex and ðu0; xÞ 2 E1;5 for some

x 2 V ðA5
n;2Þ. Obviously, ðu1; xÞ 2 GE1;5ðF Þ. Similarly,

there is a vertex v0 adjacent to v on C2 and an edge

ðv0; yÞ 2 GE2;6ðF Þ for some y 2 V ðA6
n;2Þ. Let C1 ¼

hu; P2; u
0; ui and C2 ¼ hv; v0; P3; vi, respectively. Let

I ¼ hni � f1; 2; 7g. Then jF ðAI
n;2Þj � 2 � nþ jIj � 7. By

Lemma 11, there is a Hamiltonian path P4 of AI
n;2 � F

joining x to y. Thus, hu; P2; u
0; x; P4; y; v

0; P3; v; b; P1; a; ui
forms a Hamiltonian cycle of An;2 � F . See Fig. 11 for

an illustration.
Case 3. jF ðA1

n;2Þj ¼ n� 3. Then, A1
n;2 � F may not be

Hamiltonian. However, similar to Case 3 of Lemma 9,
there is a Hamiltonian path hu; P1; vi of A1

n;2 � F for some
vertices u; v 2 V ðA1

n;2Þ � F . By Proposition 4, jF ðA2
n;2Þj �

2n� 6� 2ðn� 3Þ þ 2 ¼ 2 � n� 5 for n � 7 and, then,
Ai

n;2 � F are Hamiltonian connected for each i 6¼ 1. Since
jN�ðuÞj ¼ jN�ðvÞj ¼ n� 2, jN�

F ðuÞj � 1 and jN�
F ðvÞj � 2.

Otherwise,

jF j � n� 3þmaxfn� 2; 2ðn� 3Þg > 2n� 6:

So, there exist two edges ðu; xÞ 2 GE1;iðF Þ and

ðv; yÞ 2 GE1;jðF Þ w i t h i 6¼ j 2 hni � f1g. S i n c e

jF ðAhni�f1g
n;2 Þj � n� 3, by Lemma11, there is aHamiltonian

path hy; P2; xi of A
hni�f1g
n;2 � F . So, hu; P1; v; y; P2; x; ui

forms a Hamiltonian path of An;2 � F .
This completes the proof of Part 1. tu

Part 2. An;2 is 2ðn� 2Þ � 3 Hamiltonian connected for n � 7.

Proof. Let F � V ðAn;2Þ [EðAn;2Þ be an arbitrary faulty set of

An;2 with jF j � 2n� 7. By Proposition 4, we may assume

that

max
i2hni

fjF ðA1:i
n;2Þg � jF ðA1

n;2Þj � jF ðA2
n;2j � � � � � jF ðAn

n;2Þj

and jF ðA1
n;2Þj � n� 3. Let x 2 V ðAi

n;2Þ and y 2 V ðAj
n;2Þ for

some i; j 2 hni. We claim that there is a Hamiltonian path

of An;2 � F from x to y. Consider the following cases:
Case 1. jF ðA1

n;2Þj � n� 5. Then, for every i 2 hni,
Ai

n;2 � F i s H a m i l t o n i a n c o n n e c t e d a n d
jV ðAi

n;2Þ � F j � 4. Consider the following two subcases:
Subcase 1.1. i 6¼ j. By Lemma 11, there is a Hamilto-

nian path of An;2 � F from x to y.
Subcase 1.2. i ¼ j. Let P be a Hamiltonian path of

Ai
n;2 � F f r om x t o y. F i r s t , c on s i d e r t h a t

jF ðAhni�fig
n;2 Þj � 2n� 8. Since jV ðAi

n;2Þ � F j � 4, there are
two vertices u and v adjacent on P such that jN�

F ðuÞj � 1
and jN�

F ðvÞj � 2. Otherwise,

jF j � maxf2ðn� 2Þ; 4ðn� 3Þg > 2n� 7:

Thus, there are two edges, ðu; aÞ 2 GEi;i0 ðF Þ and

ðv; bÞ 2 GEi;j0 ðF Þ, for some a 2 V ðAi0
n;2Þ and b 2 V ðAj0

n;2Þ
with i0 6¼ j0. Notice that u, v, x, and y are not necessarily

distinct. Then, let P ¼ hx; P1; u; v; P2; yi, where P1 or P2
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may be of length 0. Let I ¼ hni � fig. Then,

jF ðAI
n;2Þj � 2n� 8 ¼ nþ jIj � 7. By Lemma 11, there is

a Hamiltonian path P3 of AI
n;2 � F from a to b. So,

hx; P1; u; a; P3; b; v; P2; yi forms a Hamiltonian path of

An;2 � F from x to y. See Fig. 12a for an illustration.
Next, consider that jF ðAhni�fig

n;2 Þj ¼ 2n� 7. Then,
jEF ðAi

n;2Þj ¼ 0. By pigeonhole principle, there is an
index i1 such that jEF ðAi1

n;2Þj � 2. Since jF ðAi1
n;2Þj �

n� 5 and jEF ðAi
n;2Þj ¼ 0, jGEi;i1ðF Þj � 3 and then there

is an edge ðu; u0Þ 2 GEi;i1ðF Þ for u 2 V ðAi
n;2 � fx; ygÞ and

u0 2 V ðAi1
n;2Þ. Consider the two neighbors of u on P .

There must be one of them, say v, such that N�
F ðvÞ � 2.

(Otherwise, jF j � 2ðn� 3Þ > 2n� 7.) Then, there is an
edge ðv; bÞ 2 GEi;i2ðF Þ for b 2 V ðAi2

n;2Þ with i2 6¼ i1. In
Ai1

n;2, since jV ðAi1
n;2 � F Þj � 4, there is a vertex v0 6¼ u0 2

V ðAi1
n;2 � F Þ such tha t jN�

F ðv0Þj � 3. (Otherwise ,
jF j � 3ðn� 4Þ > 2n� 7.) So, there is an edge ðv0; aÞ 2
GEi1;i3ðF Þ for a 2 V ðAi3

n;2Þ with i3 6¼ i; i2. Let P ¼
hx; P1; u; v; P2; yi and let P3 be a Hamiltonian path of
Ai1

n;2 � F between u0 and v0. Let I ¼ hni � fi; i1g. Since
jF ðAI

n;2Þj � 2n� 9 ¼ n� 7þ jIj, by Lemma 11, there is a
Hamiltonian path P4 of AI

n;2 � F between a and b. Thus,
hx; P1; u; u

0P3; v
0; a; P4; b; v; P2; yi forms a Hamiltonian

path of An;2 � F . See Fig. 12b for an illustration.
Case 2: jF ðA1

n;2Þj ¼ n� 4 and jF ðA2
n;2Þj � n� 5. Then,

A1
n;2 � F is still Hamiltonian and all the other subgraphs

are still Hamiltonian connected. Let C1 be a Hamiltonian
cycle of A1

n;2 � F . Consider the following four subcases:
Subcase 2.1: i ¼ j ¼ 1. If x and y are adjacent on C1,

the proof is similar to the first situation of subcase 1.2. So,
consider that x and y are not adjacent on C1. Then,
jV ðA1

n;2Þ � F j � 4. (Otherwise, x and y must be adjacent.)
Let C1 ¼ hx; P1; u; y; P2; v; xi, where x; u; y; v are distinct.
Since there are at most ðn� 3Þ faults outside A1

n;2, we can
assume that jN�

F ðuÞj � 1 and jN�
F ðvÞj � 2. (Otherwise,

jF j � n� 4þ 2ðn� 3Þ > 2n� 7.) So, there are two edges
ðu; aÞ 2 GE1;i0 ðF Þ and ðv; bÞ 2 GE1;j0 ðF Þ for a 2 V ðAi0

n;2Þ
and b 2 V ðAj0

n;2Þ with i0 6¼ j0. Let I ¼ hni � f1g. Then,
jF ðAI

n;2Þj � n� 3 � nþ jIj � 7. By Lemma 11, there is a
Hamiltonian path P3 of AI

n;2 � F from a to b. So,
hx; P1; u; a; P3; b; v; P2; yi forms a Hamiltonian path of
An;2 � F from x to y. See Fig. 13 for an illustration.

Subcase 2.2: i ¼ j 6¼ 1. Let P be a Hamiltonian path of

Ai
n;2 � F from x to y. First, consider that there is an edge

ðu0; uÞ 2 GE1;iðF Þ for u 2 V ðAi
n;2Þ and u0 2 V ðA1

n;2Þ. With-

out loss of generality, assume that u 6¼ y. (u may be x.)

Let P ¼ hx; P1; u; v; P2; yi, where P1 or P2 may be of

length 0. Suppose that there is an edge ðv; bÞ 2 GEi;i0 for

b 2 V ðAi0
n;2Þ with i0 6¼ 1. Then, consider the two neighbors

of u0 on C1, where C1 is a fault-free Hamiltonian cycle of

A1
n;2 � F . There must be one of them, say v0, such that

N�
F ðv0Þ � 3. (Otherwise, jF j � n� 4þ 2ðn� 4Þ > 2n� 7.)

Let C1 ¼ hu0; P3; v
0; u0i. Then, there is an edge ðv0; aÞ 2

GE1;j0 ðF Þ f o r a 2 V ðAj0

n;2Þ w i t h j0 6¼ i; i0. L e t

I ¼ hni � f1; ig. Since jF ðAI
n;2Þj � n� 3 � nþ jIj � 7, by

Lemma 11, there is a Hamiltonian path ha; P4; bi of

AI
n;2 � F . Then, hx; P1; u; u

0; P3; v
0; a; P4; b; v; P2; yi forms a

Hamiltonian path of An;2 � F from x to y. See Fig. 14a for

an illustration.

Now, consider the case that there is no such vertex b as

above. Then, there are ðn� 3Þ edge (or vertex) faults

connecting to v such that these faults are not inA1
n;2 nor in

Ai
n;2. Thus, besides these faults, all faults are in A1

n;2.

F ðAi
n;2Þ ¼ ;. Letw 6¼ x; u; y; v. Then, there is aHamiltonian

path P1 of A
i
n;2 � fx; ug between w and y since Ai

n;2 is ðn�
5Þ-Hamiltonian connected. Clearly, jN�

F ðwÞj > 1. There is
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an edge ðw; cÞ 2 GEi;i0 ðF Þ for c 2 V ðAi0

n;2Þ with i0 6¼ 1.

Similarly to the previous situation, there is a neighbor v0

of u0 on C1 such that jN�
F ðv0Þj � 3. Let C1 ¼ hu0; P2; v

0; u0i.
And, let ðv0; aÞ 2 GE1;j0 ðF Þ for a 2 V ðAj0

n;2Þ with j0 6¼ i; i0.

Let I ¼ hni � f1; ig. Since jF ðAI
n;2Þj � n� 3 � nþ jIj � 7,

there is a Hamiltonian path ha; P3; ci of AI
n;2 � F . Then,

hx; ðu; Þu0; P2; v
0; a; P3; c; w; P1; yi forms a Hamiltonian

path of An;2 � F . See Fig. 14b for an illustration.

Now, consider that GE1;iðF Þ ¼ ;. Then, jF ðAf1;ig
n;2 Þj �

n� 2 and at most ðn� 5Þ faults are outside A
f1;ig
n;2 . Thus,

there are three indices i1; i2; i3 such that, for each

l 2 fi1; i2; i3g, jF ðAl
n;2Þj þ jE1;l \ F j þ jEi;l \ F j ¼ 0. Since

jF ðAi
n;2Þj � n� 5, jGEi;i1ðF Þj � 3 and, so, there is an edge

ðu; cÞ 2 GEi;i1ðF Þ f o r u 2 ðV ðAi
n;2Þ � F [ fx; ygÞ a n d

c 2 V ðAi1
n;2Þ. Clearly, there is a neighbor v of u on P

adjacent to Ai2
n;2. Let b be the neighbor of v in Ai2

n;2.

Obviously, ðv; bÞ 2 GEi;i2ðF Þ. Let P ¼ hx; P1; u; v; P2; yi,
where P2 may be of length 0. Then, consider A1

n;2. Since

jF ðA1
n;2Þj ¼ n� 4, jGE1;i1ðF Þj � 2 and, so, there is an edge

ðu0; dÞ 2 GE1;i1ðF Þ for u0 2 V ðA1
n;2Þ and d 6¼ c 2 V ðAi1

n;2Þ.
Similarly, there is a neighbor v0 of u0 on C1 adjacent to

Ai3
n;2. Let a be the neighbor of v0 in Ai3

n;2. Then,

ðv0; aÞ 2 GE1;i3ðF Þ. Let C1 ¼ hu0; P4; v
0; u0i. And, let

I ¼ hni � f1; i; i1g. Then, jF ðAI
n;2Þj � n� 5 � nþ jIj � 7.

By Lemma 11, there is a Hamiltonian path ha; P5; bi of

AI
n;2 � F . S o , hx; P1; u; c; P3; d; u

0; P4; v
0; a; P5; b; v; P2; yi

forms a Hamiltonian path of An;2 � F from x to y. See

Fig. 15 for an illustration.

Subcase 2.3: i ¼ 1 and j 6¼ 1. Since there are two

neighbors of x on C1 where C1 is a Hamiltonian cycle of

A1
n;2 � F , one of them, say u, has at least two neighbors in

An;2 � F . (Otherwise, jF j � n� 4þ 2ðn� 3Þ > 2n� 7.)

So, there is an edge ðu; vÞ 2 GE1;j0 ðF Þ for v 2 V ðAj0

n;2Þ
with j0 6¼ j. By Lemma 11, there is a Hamiltonian path P2

of A
hni�f1g
n;2 � F from v to y. Let C1 ¼ hx; P1; u; xi. Then,

hx; P1; u; v; P2; yi forms a Hamiltonian path of An;2 � F

from x to y.

Subcase 2.4: i; j; 1 are distinct. Since there are at most
ðn� 3Þ faults outside A1

n;2, there is a subset S of hni with
jSj � 2 such that jF ðAl

n;2Þj þ jE1;l \ F j ¼ 0 for each l 2 S.
First, consider that i or j 2 S. Without loss of generality,
assume that i 2 S. Since jV ðA1

n;2Þ � F j � 3, jGE1;iðF Þj � 2
and then there is a vertex u on C1 such that ðu; u0Þ 2
GE1;iðF Þ for u0 6¼ x 2 V ðAi

n;2Þ. Let P1 be a Hamiltonian
path of Ai

n;2 between x and u0. Since there are two
neighbors of u on C1, one of them, say v, satisfies that
jN�

F ðvÞj � 3. (Otherwise, jF j � n� 4þ 2ðn� 4Þ > 2n� 7.)
Thus, there is an outer neighbor v0 2 V ðAi0

n;2Þ of v in
An;2 � F with i0 62 f1; i; jg. Let C1 ¼ hu; P2; v; ui. Let
I ¼ hni � f1; ig. Then, F ðAI

n;2Þj � n� 3 � nþ jIj � 7. By
Lemma 11, there is a Hamiltonian path P3 of AI

n;2 � F
from v0 to y. Thus, hx; P1; u

0; u; P2; v; v
0; P3; yi forms a

Hamiltonian path of An;2 � F from x to y. See Fig. 16a for
an illustration.

Consider that i; j 62 S. Let i0 and j0 be two indices

in S and i0 6¼ j0. Then, jF ðAi0

n;2Þj þ jE1;i0 \ F j ¼ 0 and

jF ðAi0
n;2Þj þ jE1;i0 \ F j ¼ 0. Since jV ðA1

n;2Þ � F j � 3, there

is a vertex u onC1 adjacent toA
i0

n;2 and there is a neighbor v

ofuonC1 adjacent toA
j0

n;2. Letu
0 be the neighbor ofu inAi0

n;2

and v0 the neighbor of u inAj0

n;2. Without loss of generality,

we may assume that jF ðAfi;i0g
n;2 Þj � jF ðAfj;j0g

n;2 Þj. Then,

jF ðAfi;i0g
n;2 Þj � n� 5. So, by Lemma 11, there is a Hamilto-

nian path P2 of A
fi;i0g
n;2 between x and u0. Let

I ¼ hni � f1; i; i0g. Then, jF ðAI
n;2Þj � n� 4 � nþ jIj � 7.

By Lemma 11, there is a Hamiltonian path P4 of A
I
n;2 � F

from b to y. Then, hx; P3; w; w
0; P2; a; u; P1; v; b; P4; yi forms a

Hamiltonian path of An;2 � F from x to y. See Fig. 16b for

an illustration.
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Fig. 16. Lemma 8, Part 2, subcase 2.4.

Fig. 17. Distribution of faults when n ¼ 7 and jF ðA2
7;2Þj ¼ 3.



Case 3: jF ðA1
n;2Þj ¼ n� 4 and jF ðA2

n;2Þj ¼ n� 4. Then,

there is only one fault outside A1
n;2 and A2

n;2. By

Proposition 4, jF ðA2
n;2Þj ¼ n� 4 � jF j � 2ðn� 4Þ þ 2.

Thus, 3n� 14 � jF j � 2n� 7 and then n ¼ 7. Fig. 17

shows the distribution of faults when n ¼ 7. Clearly, there

is no other index i1 6¼ 2 such that jF ðA1:i1
7;2 Þj � 3. Thus, this

case is similar to the case that jF ðA1
n;2Þj ¼ n� 4 and

jF ðA2
n;2Þj � n� 5, which we have discussed in Case 2.

Case 4: jF ðA1
n;2Þj ¼ n� 3. Then,

jF j � 2ðn� 3Þ þ 2 ¼ 1 � jF ðA2
n;2Þj � � � � � jF ðAn

n;2Þj:

Let jF ðA1:îi
n;2Þj ¼ maxl2hnifjF ðA1:l

n;2Þjg. By Proposition 4,

jF ðA1:îi
n;2Þj ¼ n� 3, jF j ¼ 2n� 7, and

F ðA1:îi
n;2Þ \ F ðA1

n;2Þ ¼ fîi1g:

Without loss of generality, assume that îi ¼ 2. Then,

F � fv1v2 j v1 ¼ 2 or v2 ¼ 1g [
fðu1u2; v1v2Þ j u1 ¼ v1 ¼ 2 or u2 ¼ v2 ¼ 1g:

Thus, for each vertex u 2 ðA1
n;2 � F Þ, u is not 21 and

N�
F ðuÞ ¼ N�ðuÞ. And, for any l 6¼ 1 and l0 6¼ l,

jF ðAl
n;2Þj � 1 and jEl;l0 \ F j � 1. Moreover, there are

at least three subgraphs containing no fault since

jF � F ðA1
n;2Þj � n� 4. Similarly to Case 3 in Part 1, there

is a Hamiltonian path of A1
n;2 � F . Let hu; P ; vi be this

path. Notice that such u and v are determined by F ðA1
n;2Þ

and are not chosen freely. Now, consider the following

four subcases:

Subcase 4.1: i ¼ j ¼ 1. First, consider that x and

y are adjacent on P . Let P ¼ hu; P1; x; y; P2; vi.
Notice that P1 or P2 may be of length 0. There

are two edges ðu; u0Þ 2 GE1;i0 ðF Þ and ðv; v0Þ 2
GE1;j0 ðF Þ for u0 2 V ðAi0

n;2Þ and v0 2 V ðAj0

n;2Þ with

i0 6¼ j0. Since jF ðAhni�f1g
n;2 Þj ¼ n� 4 � nþ ðn� 1Þ � 7, by

Lemma 11, there is a Hamiltonian path hu0; P3; v
0i of

A
hni�f1g
n;2 . Then, hx; P1; u; u

0; P3; v
0; v; P2; yi forms a Hamil-

tonian path of An;2 � F from x to y.
Now, consider that x and y are not adjacent on P . Let

P ¼ hu; P1; x; w; P2; z; y; P3; vi. Notice that it is possible that
w and z are the same.However,we take jN�ðwÞ [N�ðzÞj as
ðn� 2Þ in the following discussion. Since n� 2 � 4, there
are four edges, ðu; u0Þ 2 GE1;i1ðF Þ, ðv; v0Þ 2 GE1;i2ðF Þ,
ðw;w0Þ 2 GE1;i3ðF Þ, a n d ðz; z0Þ 2 GE1;i4ðF Þ, f o r
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Fig. 18. Lemma 8, Part 2, subcase 4.1 and subcase 4.2.

Fig. 19. Lemma 8, Part 2, subcase 4.3 and subcase 4.4.



u0 2 V ðAi1
n;2Þ, v0 2 V ðAi2

n;2Þ, w0 2 V ðAi3
n;2Þ, and z0 2 V ðAi4

n;2Þ
such that i1; i2; i3; and i4 are four distinct indices. Since
dðu;wÞ ¼ 1 in A1

n;2, by Lemma 2,

ASðuÞ [ASðvÞ ¼ hni � f1g:

So, wemay assume thatAi1
n;2 andAi3

n;2 contain no fault. Let
I ¼ fi1; i3g and I 0 ¼ hni � f1; i1; i3g. Then, jF ðAI

n;2Þj � 1
and jF ðAI 0

n;2Þj � n� 4 � nþ jI 0j � 7. By Lemma 11, there
are a Hamiltonian path hu0; P4; w

0i of AI
n;2 � F and a

Hami l ton ian path hz0; P5; v
0i of AI 0

n;2 � F . Thus ,
hx; P1; u; u

0; P4; w
0; w; P2; z; z

0; P5; v
0; v; P3; yi forms aHamil-

tonian path of An;2 � F . See Fig. 18a for an illustration.
Subcase 4.2: i ¼ j 6¼ 1. Since dðu; vÞ ¼ 1 in A1

n;2,
i 2 ASðuÞ [ASðvÞ. We may assume that u is adjacent to
Ai

n;2 and the neighbor of u in Ai
n;2 is u0. Without loss of

generality, we may assume that u0 6¼ y. Since jF ðAi
n;2j � 1,

there is a Hamil tonian path of Ai
n;2 � F . Let

hx; P1; u
0; w; P2; yi be the path, where w 6¼ u0. Since there

are atmost ðn� 4Þ faults outsideA1
n;2, jN�

F ðwÞj � 2. There is
an edge ðw; zÞ 2 GEi;i0 ðF Þ for z 2 V ðAi0

n;2Þwith i 6¼ 1. Since
jN�

F ðvÞj ¼ n� 2 � 4, there is an edge ðv; v0Þ 2 GE1;j0 ðF Þ for
v0 2 V ðAj0

n;2Þ with j0 62 fi; i0g. Let I ¼ hni � f1; ig. Then,
jF ðAI

n;2Þj � n� 4 � nþ jIj � 7. By Lemma 11, there is a
H am i l t o n i a n p a t h hv0; P3; zi o f AI

n;2 � F . S o ,
hx; P1; u

0; u; P ; v; v0; P3; z; w; P2; yi forms a Hamiltonian
path of An;2 � F . See Fig. 18b for an illustration.

Subcase 4.3: i ¼ 1 and j 6¼ 1. Without loss of general-
ity, assume that x is not v. Let P ¼ hu; P1; x; w; P2; vi,
where x 6¼ w. Since

jN�
F ðuÞj ¼ jN�

F ðvÞj ¼ jN�
F ðwÞj ¼ n� 2 � 4;

there are three edges,

ðu; u0Þ 2 GE1;i1ðF Þ; ðw;w0Þ 2 GE1;i2ðF Þ;

and

ðv; v0Þ 2 GE1;i3ðF Þ;

for u0 2 V ðAi1
n;2Þ, w0 2 V ðAi2

n;2Þ, and v0 2 V ðAi3
n;2Þ, where

i1; i2; i3, and j are distinct. Obviously, we may assume
that Ai1

n;2 and Ai2
n;2 contain no fault. Let I ¼ fi1; i2g and

I 0 ¼ hni � f1; i1; i2g. Then, jF ðAI
n;2Þj � 1 and

jF ðAI 0

n;2Þj � n� 4 � nþ jI 0j � 7:

By Lemma 11, there are a Hamiltonian path hu0; P3; w
0i of

AI
n;2 � F and a Hamiltonian path hv0; P4; yi of AI 0

n;2 � F .
Then, hx; P1; u; u

0; P3; w
0; w; P2; v; v

0; P4; yi forms a Hamil-
tonian path of An;2 � F . See Fig. 19a for an illustration.

Subcase 4.4: i; j; 1 are distinct. Since

jASðuÞ [ASðvÞj ¼ n� 1;

there are two edges ðu; u0Þ 2 GE1;i0 ðF Þ and ðv; v0Þ 2
GE1;j0 ðF Þ for u0 2 V ðAi0

n;2Þ and v0 2 V ðAj0

n;2Þ such that
i; j; i0; j0 are distinct and Ai0

n;2 contains no fault. Let I ¼
fi; i0g and I 0 ¼ hni � f1; i; i0g. Then, jF ðAI

n;2Þj � 2 � n� 5
and jF ðAI 0

n;2Þj � n� 4 � nþ jI 0j � 7. By Lemma 11, there
are a Hamiltonian path hx; P1; u

0i of AI
n;2 � F and a

Hamil tonian path hv0; P2; yi of AI 0
n;2 � F . Thus ,

hx; P1; u
0; u; P ; v; v0; P2; yi forms a Hamiltonian path of

An;2 � F . See Fig. 19b for an illustration.

Hence, the lemma follows. tu
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