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Abstract—In this paper, a -learning-based multirate transmis-
sion control ( -MRTC) scheme for radio resource management
in multimedia wide-band code-division multiple access (WCDMA)
communication systems is proposed. The multirate transmission
control problem is modeled as a Markov decision process where the
transmission cost is defined in terms of the quality-of-service (QoS)
parameters for enhancing spectrum utilization subject to QoS con-
straint. We adopt a real-time reinforcement learning algorithm,
called -learning, to accurately estimate the transmission cost for
the MRTC. In the meantime, we successfully employ the feature ex-
traction method and radial basis function network (RBFN) for the

-function that maps the original state space into a feature vector
that represents the resultant interference profile. The state space
and memory-storage requirement are then reduced and the con-
vergence property of the -learning algorithm is improved. Simu-
lation results show that the Q-MRTC for a multimedia WCDMA
system can achieve higher system throughput by an amount of 80%
and better users’ satisfaction than the interference-based MRTC
scheme, while the QoS requirements are guaranteed. Also, com-
pared to the table-lookup method, the storage requirement is re-
duced by 41%.

Index Terms—Code-division multiple access (CDMA) communi-
cation system, multirate transmission, -learning, radio resource
management.

I. INTRODUCTION

WIDE-BAND code-division multiple access (WCDMA)
is one of the promising radio-access technologies for

IMT-2000. The objective of a multimedia WCDMA system is
to provide users with radio link access to services comparable
to those currently offered by fixed networks, resulting in
a seamless convergence of both fixed and mobile services.
Different types of services, such as voice, data, image, and
compressed video, are integrated in the multimedia WCDMA
system. Therefore, an adequate radio resource management
(RRM) is required to enhance spectrum utilization while
meeting the quality-of-service (QoS) requirements of heteroge-
neous services. In this paper, the multirate transmission control
(MRTC) scheme for RRM in the WCDMA systems is studied.
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The MRTC in the multimedia WCDMA system is to assign
power and processing gain to service requests to maximize
spectrum utilization and to fulfill QoS requirements and users’
satisfaction. In [1], Choi and Shin proposed an uplink CDMA
system architecture to provide diverse QoS guarantees for het-
erogeneous traffic: real-time (class I) traffic and nonreal-time
(class II) traffic. They theoretically derived the admission
region of real-time connections, transmission power allocation,
and the optimum target signal-to-interference ratio (SIR) of
nonreal-time traffic so as to maximize the system throughput
and satisfy the predefined QoS of heterogeneous traffic.

There is no absolute number of maximum available channels
in the WCDMA system because a WCDMA system is inter-
ference limited; its capacity is affected by multiple access in-
terference (MAI), which is a function of the number of active
users, users’ location, channel impairments, and heterogeneous
QoS requirements. Much research on CDMA capacity estima-
tion is based on MAI and other considerations [2]–[5]. In [2], a
single-service CDMA network with respect to MAI caused by
users in the same and adjacent cells was studied. In [3], Huang
and Bhargava investigated the uplink performance of a slotted
direct-sequence CDMA (DS-CDMA) system providing voice
and data services. A lognormal-distributed MAI model was pro-
posed to estimate the remaining capacity in the CDMA system,
where its mean and variance were given by a function of the
number of users and the mean and variance of each service type.
However, in multimedia WCDMA systems, the measured MAI
value may not be stationary and it may also be affected by user
locations and service profiles. Hämäläinen and Valkealahti [4]
proposed an MAI estimation method to facilitate load control,
admission control, and packet scheduling. Kim and Honig [5]
studied resource allocation for multiple classes of traffic in a
single-cell DS-CDMA system. A joint optimization was investi-
gated over the power and processing gain of the multiple classes
to determine flexible resource allocation for each user subject to
QoS constraints.

Shin et al. proposed an interference-based channel assign-
ment scheme for DS-CDMA cellular systems [6]. A channel is
assigned if the interference is less than an allowed level, which
is determined by the network, subject to the QoS constraints. In-
stead of a fixed system capacity, this interference-based scheme
can adaptively assign a channel according to the actual system
capacity dependent upon interference such that the system uti-
lization and grade of service can be improved. The interfer-
ence-based scheme was further extended to call admission con-
trol (CAC) in multimedia CDMA cellular systems [7], [8]. Dim-
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itriou and Tafazolli [7] developed a mathematical model to de-
termine the outage limits of a multiple-service CDMA system
and to achieve the maximum aggregated capacity for different
system parameters. Phan-Van and Luong [8] proposed a soft-de-
cision CAC (SCAC) scheme, where the upper and lower bounds
of the interference-limited WCDMA system capacity are de-
rived. In the SCAC, the new call request obtains an admission
grant according to a predefined probability function when the
system operates between the upper and the lower bounds of the
system capacity.

Maximizing spectrum utilization (revenue) while meeting
QoS constraints suggests a constrained Markov decision
process (MDP) [13] or semi-Markov decision process (SMDP)
[9], [10]. These methodologies have been successfully applied
to solve many network control problems; however, they require
extremely large state space to model these problems exactly.
Consequently, the numerical computation is intractable due
to the curse of dimensionality. Also, a priori knowledge of
state-transition probabilities is required. Alternatively, many
researchers turned to use the reinforcement learning (RL)
algorithms to solve the large state space problems [11]–[14].
The most obvious advantage of the RL algorithm is that it could
approach an optimal solution from the online operation if the
RL algorithm is converged.

In this paper, we propose a -learning-based MRTC
( -MRTC) scheme for RRM in the multimedia WCDMA
systems to maximize the system utilization and to fulfill the
users’ satisfaction, subject to QoS requirements of packet
error probability and packet transmission delay. For the in-
terference-limited system, the system interference profile is
chosen as system state and the multirate transmission control is
modeled as a total expected discounted problem. Also, an eval-
uation function is defined to appraise the cumulative cost of the
consecutive decisions for the -MRTC. Without knowing the
state-transition behavior, the evaluation function is calculated
by a real-time RL technique known as -learning [15]. After a
decision is made, the consequent cost is used as an error signal
feedback to the -MRTC to adjust the state-action pairs. Thus,
the learning procedure is performed in a closed-loop iteration
manner that will help the value of evaluation function converge
to optimal radio resource control point.

Noticeably, the -function approximation is the key design
issue in the implementation of the -learning algorithm [16],
[17]. We propose to utilize a feature extraction method and a ra-
dial basis function network (RBFN) in the -MRTC. With the
feature extraction method, the state space of the -function is
mapped into a more compact set, which represents resultant in-
terference profile. The resultant interference profile aggregates
the states and, consequently, improves the convergence prop-
erty. With the RBFN neural network, the storage requirement
of the -function can be significantly reduced. Simulation re-
sults show that while keeping the QoS constraints of the packet
error probability and packet transmission delay guaranteed, the

-MRTC scheme can have higher system throughput by 80%
and better users’ satisfaction than the interference-based scheme
[7]. Also, compared to the table lookup method, the storage re-
quirement is reduced by 41%.

The rest of the paper is organized as follows. The system ar-
chitecture and RRM are described in Section II and the design

of -MRTC is proposed in Section III. The simulation results
are presented in Section IV and the performance comparison
between the -MRTC and interference-based schemes is also
made. Finally, concluding remarks are given in Section V.

II. SYSTEM MODEL

The physical layer and the MAC specifications for WCDMA
are defined by 3GPP [18], [19]. The WCDMA has two types of
uplink-dedicated physical channels (DPCHs): the uplink-dedi-
cated physical data channel (DPDCH) and the uplink-dedicated
physical control channel (DPCCH). A DPDCH is used to carry
data generated by layer 2 and above and a DPCCH is used to
carry layer 1 control information. Each connection is allocated
a DPCH including one DPCCH and zero or several DPDCHs.
The channel is defined in a frame-based structure in which the
frame length ms is divided into 15 slots with length

chips, each slot corresponding to one power con-
trol period. Hence, the power control frequency is 1500 Hz. The
spreading factor (SF) for DPDCH can vary between by

, , carrying 10 bits per slot
and the SF for DPCCH is fixed at 256, carrying 10 bits per
slot. In addition, a common physical channel, called physical
random-access channel (PRACH), is defined to carry uplink
random-access burst(s).

Two types of services are considered in this paper: real-time
service as type 1 and nonreal-time service as type 2. The system
provides connection-oriented transmission for real-time traffic
and best-effort transmission-rate allocation for nonreal-time
traffic. To guarantee the timely constraint of real-time service, a
UE always holds a DPCH while it transmits real-time packets,
regardless of the variation of the required transmission rate.
The real-time UE may generate variable rate information
whose characteristics are indicated in its request profile. On the
other hand, a UE should contend for the reservation of a DPCH
to transmit a burst of nonreal-time packets and will release
the DPCH immediately, while the burst of data is completely
transmitted. The nonreal-time data are transmitted burst by
burst.

When a UE has traffic to transmit, it first sends its service re-
quest embedded in a random-access burst via PRACH. For the
service request profile, a real-time request provides the mean
rate and rate variance to indicate its transmission-rate require-
ment, while a nonreal-time request provides the maximum and
minimum rate requirements. As the base station receives the
new request, the admissible transmission rate will be evaluated.
Due to the service requirements, RRM performs two different
kinds of decision. For a real-time request, it will be accepted
or rejected. On the other hand, for a nonreal-time request, an
appropriate transmission rate will be allocated. A nonreal-time
request specifies the range of the required transmission rates
for itself and would be blocked if the WCDMA system cannot
provide a suitable transmission rate to satisfy its required trans-
mission rate. In this paper, we assume that all packets have the
same length. Also, a data packet is assumed to be transmitted in
a DPDCH frame by a basic rate channel and, therefore, a mul-
tirate channel can transmit multiple data packets in a DPDCH
frame.
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The transmission power of a physical channel should be ad-
justed dependent on its spreading factor, coding scheme, rate-
matching attributes, and BER requirement. Here, we assume
that all physical channels adopt the same coding scheme and
have the same rate-matching attributes and BER requirement.
Therefore, the power allocation for a physical channel is simply
dependent on its spreading factor and is in inverse proportion
[20]. Since each UE determines its uplink transmission power
in a distributed manner, the total received interference power at
base station is time varying. For operational stability, the trans-
mission power is determined under the consideration of max-
imal allowed interference power. In this way, for WCDMA sys-
tems, the SIR-based power control scheme that is specified by
3GPP is equivalent to the strength-based power control scheme.
Consequently, the complexity of the multirate transmission con-
trol is reduced and the operation can disregard the variation of
the received interference.

To maximize the spectrum utilization, the radio resource
management is designed to accommodate as many of the access
requests as possible and to allocate the transmission rate of each
request as largely as possible, while the QoS requirements are
fulfilled. An erroneous real-time packet will be dropped since
there is no retransmission for real-time packets, while the erro-
neous nonreal-time packets will be recovered via the automatic
repeat request (ARQ) scheme. The packet error probability
(denoted by ) and the packet transmission delay (denoted
by ) are considered as the system performance measures.
Also, the maximum tolerable packet error probability, denoted
by , and maximum tolerable packet transmission delay time,
denoted by , are defined as the system QoS requirements.

III. DESIGN OF -MRTC

A. State, Action, and Transmission Cost Function

The radio resource management of a multimedia WCDMA
system is regarded as a discrete-time MDP problem, where
major events are arrivals of service requests in a cell. The
service request arrivals would trigger the transition of the
system state such that the radio resource control is executed.
For the arrival of the th request, the system state is assumed
at , defined as

(1)

where and denote the mean and variance of the interfer-
ence from existing connections, indicates that is an arrival
of type , and is transmission rate requirement of the type
request, , 2. The is the interference profile. Since
the capacity of the WCDMA system is interference limited, the
interference profile is employed to indicate the system load [3].
The , where and denote the mean rate
and the rate variance of a real-time request, respectively; the

where and denote the maximum
rate and the minimum rate requirements of a nonreal-time re-
quest, respectively.

Based on the system state , the multirate transmission con-
troller will determine an action (denoted by ) for the th re-
quest arrival. The action is defined as

• Real-time request:

if accepted
if rejected

(2)

• Nonreal-time request:

if accepted
if rejected.

(3)

If the state-action pair has been determined, an im-
mediate transmission cost is defined as

(4)

where is the packet error probability,
is the packet transmission delay, and is the weighting factor.

is a random variable because channel fading and
imperfect power control are not included in the state-action
pair yet. We further define an evaluation function, denoted by

, as the expected total discounted cost counting from
the initial state-action pair over an infinite time. It is
given by

(5)

where is a discounted factor. The multirate trans-
mission control is to determine an optimal action, denoted by

, which minimizes the -function with respective to the cur-
rent state. The minimization of the -function represents the
maximization of the system capacity and the fulfillment of QoS
requirements.

Let be the transition probability from state with
action to the next state . Then, can be expressed as

(6)

where . Eq. (6) indicates that the func-
tion of the current state-action pair can be represented in terms
of the expected immediate cost of the current state-action pair
and the function of the next state-action pairs.

Based on the principle of Bellman’s optimality [21], the op-
timal action can be obtained by a two-step optimality opera-
tion. The first step is to find an intermediate minimal of ,
denoted by , where the intermediate evaluation func-
tion for every possible next state-action pair is minimized
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Fig. 1. Structure of Q-learning-based multirate transmission control (Q-MRTC) scheme.

and the optimal action is performed with respect to each next
state . is given by

Min

for all (7)

Then we can determine the optimal action with respect to
the current state such that is minimal, which can be
expressed as

Min (8)

However, it is difficult to find the and to
solve (7). In this paper, we adopt a real-time reinforcement
learning algorithm, called the -learning algorithm [15], [16],
to find the optimal resource allocation without a priori knowl-
edge of and . To find the optimal ,
the -learning algorithm computes the value in a recursive
method using available information , where

and are the current and the next states, respectively, and
and are the action for current state and its immediate
cost of the state action pair, respectively.

B. -MRTC

Fig. 1 shows the structure of the -learning-based multi-
rate transmission control ( -MRTC) scheme. When a service
request arrives at system state , the -function computation
block computes the value of for every possible action

. The rate allocation block then determines the optimal rate
allocation or call rejection with respect to all the current
values of all possible actions. In the -learning-rule block, the
immediate cost can be observed and the -learning
rule is used to adjust the value of . The -learning rule
is formulated by

if
otherwise

(9)

where is the learning rate and

Min

(10)
Since only one action pair is chosen for evaluation in each
learning epoch, for the -learning rule, only the value of the

chosen action pair is updated, while others are kept unchanged.
Also, in (10), the operation of Min is executed by

comparing the values of all the possible action candidates for
state and then choosing the desired action with minimal

value.
In [15], Watkins and Dayan had proved the convergence the-

orem of -learning. Here, the theorem is restated as: if the value
of each admissible pair is visited infinitely often and the learning
rate is decreased to zero in a suitable way, then the value of

in (9) will converge to with probability 1.
Usually, if the state space is too large, it would require a huge

amount of memory to store the values of -function and take
a long time for the -learning algorithm to converge. To tackle
the above problems, in the -function computation block, we
employ the feature extraction method and radial basis function
network (RBFN) for the -function approximation in the pro-
posed -MRTC. Here, the state-action pair is first transformed
into a dimension-reduced feature vector; then, the feature vector
is used as input parameters to compute the corresponding
value that is stored in the RBFN network.

The feature extraction method maps the original state-action
pair into a feature vector that must be properly chosen to re-
flect the important behavior characteristics of the state-action
pair [17]. In the WCDMA system, after the state action is per-
formed, the change of interference is the most significant out-
coming response. Therefore, the feature vector of is se-
lected to be the resultant interference profile, denoted by

, where indicates the change of
interference profile due to action at state . In other
words, the state-action pair can be converted to resultant
interference profile . It is noted that the
dimension of the resultant interference profile is smaller than
that of the original state-action pairs. While a strength-based
closed-loop power control is assumed, the received power for a
unit of transmission rate is set to 1. Consequently,
is obtained by

if accepts a real-time request,
if accepts a nonreal-time request with rate ,
if rejects a request.

(11)
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Fig. 2. Q-function computation by RBFN neural network.

RBFN is a three-layer self-growing neural network, including
an input layer, an output layer, and a hidden layer [16]. The
hidden layer consists of a sequence of nodes whose activation
functions are normalized Gaussian. The RBFN neural network
performs a function approximation for the function. When the
RBFN is well trained, the values of all the state-action pairs
are stored in the RBFN. With the input parameters of the resul-
tant interference profile, the RBFN calculate the corresponding

value.
The key concept of RBFN is local tuning and separated

storage. Each node in the hidden layer represents a part of the
characteristics of the input vectors and stores these charac-
teristics locally. Thus, it breaks a large dimensional mapping
function into multiple small-dimensional functions. Due to
the separated storage property, only some hidden nodes in the
RBFN would be adjusted with respect to the new input error
signal, which can reduce the training epoch significantly. Fig. 2
shows the -function computation performed by the RBFN.
The state-action pair is mapped into its corresponding
resultant interference profile and the
RBFN neural network then calculates as a function
of . The well-known back-propagation
learning rule is applied in the training process.

The value for state-action pair is updated by (9)
when the next request arrives and is served as an
error signal, which is backpropagated in the neural network.
With the feature extraction method and RBFN neural network,
the -MRTC can obtain efficiently through the on-
line operation. As noted, will approach to
through the training procedure, while the convergence theorem
of -learning holds.

C. Parameter Initialization

Before the -MRTC is performed for the online operation,
it is necessary to assign a proper set of initial values. An ap-
propriate initialization can provide a good relationship of the
input parameters and the decision output for an event at the be-
ginning of system operation such that the transient period of

-learning procedure would be short. To obtain the initial
values, the composite interference received at base station is as-
sumed to be log-normally distributed. Although the assumption
of log-normal distribution may not hold in some cases, it indeed
provides a meaningful initial guess rather than a random initial-
ization.

For a given state-action pair , the initial value of
is set according to QoS measurements. Since the

packet transmission delay cannot be calculated in advance,
the normalized expected packet error probability is pre-
ferred as the initial value of and is expressed as

, where is the expected
packet error probability if the state-action pair is per-
formed. The is given by

(12)

where is the packet length, is the bit error probability
at the interference level , and is the log-normal function
for interference level with mean and variance

. The is given by [5]

(13)

with parameters of and , which are adjustable for matching
with a particular coding scheme, and is the spreading factor
of a basic rate channel.

In summary, the procedure of -MRTC is described as fol-
lows.

• Step 1: State-Action Construction
Construct the current state and find

a set of all possible actions for state , denoted by ,
when a new request arrives.

• Step 2: -Value Computation
For the set of state-action pairs ,

compute the respective values by the RBFN
neural network.
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• Step 3: Rate Allocation
Determine the optimal action such that the

value of is minimum, i.e.,
Min .

• Step 4: -Value Update
Update the values by (9) as the next event arrives

with state and the online cost is obtained. Since
the value is stored in a neural network,
is used as an error signal backpropagated into the neural
network, instead of the error between the desired and the
actual outputs. Go to Step 1.

IV. SIMULATION RESULTS AND DISCUSSION

In this simulation, two kinds of traffic are transmitted via the
real-time service: one is two-level transmission rate traffic and
the other is -level transmission rate traffic. They are modeled
by two- and -level Markov modulated deterministic process
(MMDP), respectively. The two-level MMDP is generally
used to formulate ON–OFF voice traffic stream and the -level
MMDP is to formulate the advanced speech or other real-time
traffic streams, e.g., video. On the other hand, the nonreal-time
service is considered to transmit variable-length data bursts.
The arrival process of the data burst is Poisson and the data
length is assumed to be with a geometric distribution. A data
burst can carry any type of wireless data, e.g., e-mail, wireless
markup language (WML) pages, etc. The detailed traffic
parameters are listed in Table I. A basic rate in the WCDMA
system is assumed to be a physical channel with .
For each connection, DPCCH is always active to maintain
the connection reliability. To reduce the overhead cost of
interference produced by DPCCHs, the transmitting power of a
DPCCH is smaller than its respective DPDCH by an amount of
3 dB. The other simulation parameters are given as ,

, and .
A conventional interference-based scheme proposed in

[7] is used as a benchmark for comparison with -MRTC.
The interference-based scheme would admit the connection
for a real-time request or allocate a transmission rate for a
nonreal-time request if the expected packet error probability in
terms of the resultant SIR is smaller than the QoS requirement.

Fig. 3 illustrates the throughput of the -MRTC and the
interference-based scheme versus the request arrival rate. The

-MRTC has throughput higher than the interference-based
scheme and the throughput improvement becomes greater as
the request arrival rate becomes larger. Generally speaking,

-MRTC can improve the maximum throughput by an amount
of 80% over the interference-based scheme. The reason is
that, in the -MRTC, the transmission cost comprises the cost
of immediate and consecutive decision and the behavior of
interference variation is taken into consideration for multirate
transmission control. Also, the -MRTC performs an online
reinforcement learning algorithm to estimate the transmission
cost. The estimation error is backpropagated to the -MRTC
and reduced through the closed-loop learning procedure.
Therefore, the -MRTC could provide a more accurate esti-
mation for multirate transmission cost and greater throughput
improvement when the traffic load becomes large. On the other

TABLE I
TRAFFIC PARAMETERS IN THE

MULTIMEDIA WCDMA SYSTEM

hand, the interference-based scheme generally estimates the
multirate transmission cost of packet error probability at the
instant of a request arrival. Actually, some existing connections
may terminate or handoff between two consecutive arrivals
and the received interference level decreases subsequently.
Therefore, the interference-based scheme would overestimate
the multirate transmission cost.

Fig. 4 illustrates the blocking probability versus the request
arrival rate. It can be found that the blocking probability of the

-MRTC is much smaller than that of the interference-based
scheme for real-time and nonreal-time requests and that the
blocking probabilities of the real-time requests are higher than
those of the nonreal-time requests. The reason is that the ad-
mitted transmission rate of the nonreal-time requests are nego-
tiable. It can also be seen that -MRTC has a larger difference
between the real-time and nonreal-time blocking probabilities
than the interference-based scheme. This is because the interfer-
ence-based scheme generally accommodates fewer connections
and operates in a lower interference condition so that the inter-
ference variation due to the variable-rate transmission behavior
of the real-time requests is smaller. By contrast, -MRTC ac-
commodates more requests and operates in a higher interfer-
ence situation so that the interference variation produced by
the real-time requests becomes more critical. That is, the vari-
able-rate transmission behavior contributes a higher admission
cost for the -MRTC.

We further define an overall users’ satisfaction index (USI)m
which is a linear combination of (type 1) and
(type 2), where the ( ) is the admitted transmission rate
for type 1 (type 2) and the ( ) is the desired transmission
rate for type 1 (type 2); and . That is, USI
is expressed as

(14)

where is the weighting factor.
Fig. 5 depicts USI versus the request arrival rate for different

traffic patterns, where , denoting the percentage of the
real-time traffic-arrival requests in the traffic load, varies
from 0.1 to 0.3. It can be found that -MRTC has higher
USI than the interference-based scheme and the improvement
is more significant as the traffic load becomes heavier. This
is because -MRTC can accurately estimate the multirate
transmission cost. Also, USI decreases as the request arrival
rate increases. Since the high traffic load may decrease the
admitted transmission rate for new requests, the USI value
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Fig. 3. Throughput versus the request arrival rate.

Fig. 4. Blocking probability versus request arrival rate.

decreases consequently. Another observation is that, under the
fixed weighting factor ( ), the USI decreases as
increases. This is because the real-time requests produce inter-
ference variation higher than nonreal-time ones do, which leads
to larger real-time blocking probability and less nonreal-time
admitted transmission rate.

Fig. 6 depicts USI versus the request arrival rate for different
weighting factors , 0.5, and 0.7. It can be found that the
USI of -MRTC is lower when is larger (more weighting on

type-1 service) because -MRTC accommodates more requests
and operates under higher interference condition. Thus, the in-
terference variation produced by real-time requests becomes
critical. From Figs. 5 and 6, it can be concluded that the vari-
able-rate transmission characteristic of real-time requests plays
an important role for the multirate transmission control in the
multimedia WCDMA systems.

Fig. 7 shows the QoS measures 1) the packet error proba-
bility and 2) the packet transmission delay versus the request
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Fig. 5. USI versus the request arrival rate for different traffic patterns.

Fig. 6. USI versus the request arrival rate for different weighting factors.

arrival rate. It can be seen that -MRTC can always keep
the QoS requirements of packet error probability and packet
transmission delay. By contrast, only the QoS requirement
of packet error probability is kept in the interference-based
scheme. It is because -MRTC dynamically evaluates the
transmission cost that is in terms of packet error proba-
bility and packet transmission delay. The -MRTC is more
suitable for multimedia WCDMA systems than is the inter-
ference-based scheme. Also, it can be seen that the average

packet error probability of the -MRTC is larger than that
of the interference-based scheme; however, the -MRTC can
still hold the packet error probability within the QoS con-
straint. This is because the interference-based scheme is too
conservative in the multirate transmission control and be-
cause it admits less requests and allocates lower transmission
rates. On the other hand, the -MRTC obtains the transmis-
sion cost from the online operation of the WCDMA system.
Consequently, it can accommodate more requests and appro-
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Fig. 7. QoS measures. (a) Packet error probability and (b) transmission delay versus the request-arrival rate.

priately allocate transmission rates as much as possible, under
the QoS constraints.

To evaluate the performance of storage requirement reduc-
tion, we assume a table lookup method in which the contin-
uous-valued parameters of the resultant interference profile are
partitioned into several discrete levels. Generally, a different
number of discrete levels leads to different system throughput
and different storage requirements. As an example for compar-
ison, we divide the interference mean of the re-
sultant interference profile into 40 levels and the interference
variance into 10 levels, which has similar system

performance as a RBFN neural network. Table II shows the
number of required storage units. There are 400 storage units
required in the table lookup method. On the contrary, only 118
hidden neuron nodes are required in the RBFN neural network.
While there are two parameters in each hidden node, there are
236 storage units required for RBFN. Therefore, RBFN can
achieve storage requirement reduction of 41%. Furthermore,
the table lookup method is static partioned and it is hard to
find a proper partition level, especially for bursty traffic. How-
ever, in the RBFN neural network, the value of each meaningful
state-action pair is stored and adjusted separately in a corre-
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TABLE II
NUMBER OF REQUIRED STORAGE UNITS: AN EXAMPLE

sponding hidden node. That is, the storage space is nonlinearly
partitioned in the RBFN neural network. While the traffic load
and pattern change with time, the hidden nodes of the RBFN
neural network can self-organize dynamically and the storage
space can be repartitioned accordingly.

V. CONCLUDING REMARKS

In this paper, we propose a -learning-based multirate trans-
mission control scheme for radio resource management in mul-
timedia WCDMA systems. The -learning algorithm is applied
to accurately estimate the transmission cost for the multirate
transmission control and the feature extraction method and ra-
dial basis function network are employed for -function ap-
proximation that maps the original state-action pairs into the re-
sultant interference profile.

Simulation results show that -MRTC can improve the
throughput of multimedia WCDMA system by 80% over
the conventional interference-based scheme proposed in [7],
under the constraint of the QoS requirements of packet error
probability and packet transmission delay. Also, the -MRTC
provides better users’ satisfaction. It is because the -learning
algorithm performs closed-loop control by applying the system
performance measures as a feedback to adjust the multirate
transmission cost and, correspondingly, the -MRTC can have
self-tuning capability to adaptively estimate the transmission
cost. Moreover, the storage requirement of RBFN neural net-
work is less than that of the conventional table-lookup method
by the amount of 41%.

The multirate transmission control considered in this paper
is only at the call/burst level. However, since the interference
profile may change during the call/burst holding time, it is pos-
sible for the system, during the service holding time, to renego-
tiate/reallocate the transmission rate according to the variation
of interference profile. Combining a real-time scheduling algo-
rithm with the -MRTC to further enhance the communication
quality and achieve higher system throughput can be studied fur-
ther.
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