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Abstract—A nonuniform fast Fourier transform (NUFFT) tech-
nique is incorporated into the spectral-domain approach for the
analysis of shielded single and multiple coupled microstrip lines.
Each of the spectral-domain Green’s functions is decomposed
into an asymptotic part and a remaining part. At the interface of
layered dielectrics with conducting strips, the product of a basis
function and an associated Green’s function constitutes an expan-
sion -field. The inverse Fourier transform (IFT) of the expansion

-field is its spatial distribution all over the interface. We take
this advantage to match the final boundary conditions on all the
conducting strips simultaneously. As a result, if all the strips are at
one interface, the number of operations required in this method is
proportional to , but not to 2, where is the number of the
strips. The IFT of the asymptotic part of each expansion -field
can be obtained analytically, and that of the remaining part
can be quickly processed by the NUFFT. The Gauss–Chebyshev
quadrature is used to accelerate the computations of the integrals
resulted from the Galerkin’s procedure. The proposed method is
also applied to investigate the dispersion characteristics of coupled
lines with finite metallization thickness and of coupled lines at
different levels. A convergence analysis of the results is presented
and a comparison of used CPU time is discussed.

Index Terms—Method of moments (MoM), microstrip lines,
nonuniform fast Fourier transform (NUFFT), spectral-domain
approach (SDA).

I. INTRODUCTION

THE ANALYSIS of single and multiple coupled microstrip
lines (MCMLs) has attracted attention from many re-

searchers. Numerical methods, like finite difference time
domain (FDTD) [1] and mature commercial finite-element
simulators such as Ansoft High Frequency Structure Simulator
(HFSS), have good flexibility and efficiency in accurately
determining the dispersive characteristics and normal-mode
parameters of MCMLs. However, analytical formulations are
usually preferred when detailed characteristics of dominant
higher order, evanescent and complex modes are required. For
some tough structures, as it will be reported later, the analysis
even requires a solution procedure capable of providing results
with a very high resolution. In such cases, an analytical formu-
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lation, like the spectral-domain approach (SDA), is promising
to provide correctly converged results [2].

The mixed-potential integral equation (MPIE), in conjunction
with the complex image method [3], can perform the evaluation
of Galerkin’s matrix entries in a very efficient way. The discrete
space-domain formulation [4], [5] can be used to calculate a
large number of higher order modes. The SDA [2], [6]–[10] are
also widely used analytical formulations in analyzing microstrip
structures.

Accelerating the SDA has been an important issue in the past
decades. This is because when any strip has a narrow width or
any dielectric layer has a small thickness, a very large number of
spectral terms must be taken into account [5]. It has been shown
that more than 10 spectral terms are required to calculate the
attenuation constant of a microstrip [7] and the propagation con-
stant of a complex mode of tightly coupled microstrips [2].

Many authors employ an asymptotic extraction technique
[3]–[5], [8], [9] to deal with the acceleration. In this technique,
closed-form asymptotes are extracted from the spectral-domain
Green’s functions, and the remaining terms are processed
separately. In [3], the extracted functions are transformed into
the spatial domain, where the matching of the final boundary
conditions on conducting strips is also performed. In [4] and
[5], the Galerkin’s procedure is performed in the spectral
domain. For a single microstrip [8] and symmetric coupled
microstrips [9] in an open structure, closed forms for the
asymptotic parts of the impedance matrix elements are derived.

The remaining terms have an important contribution to the
final method of moments (MoM) matrix. In [3], the remaining
terms of the Green’s function are expanded as a finite sum of
complex exponential functions and transformed to the spatial
domain. In [4], [5], [8], and [9], the remaining parts of the
impedance matrix elements are directly tackled by numerical
calculations since the remaining functions decay quickly when
the spectral variable is increased.

Recently, a rapidly converging SDA is presented for the exact
analysis of shielded layered microstrips [10]. The direct inte-
gral-equation technique optimizes the MoM by recasting all ma-
trix elements into rapidly converging series. The presented re-
sults, however, are limited to a single microstrip.

This paper presents an alternative method for efficient
analysis of single and multiple coupled microstrips in a
closed structure. The Chebyshev functions weighted with edge
conditions [6], [8], [9] are used as basis functions to expand
the unknown current densities on the strips. The product of
a transformed basis function and a spectral-domain Green’s
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function is a part of the total -field, called the expansion
-field herein. The Fourier transform of the asymptotic part of

each expansion -field consists of slowly converging series.
Through the Laplace transforms, rapidly converging summa-
tions to within an additive function can be obtained [5]. The
transform of the remaining part can be handled by a regular
fast Fourier transform (FFT) technique. To accelerate the
computation, however, we adopt the nonuniform fast Fourier
transform (NUFFT) technique [11], [12] since the sampling
points are allowed to be arbitrarily located in both the original
and transform domains.

After each expansion -field is transformed to the spatial do-
main, the Galerkin’s procedure is performed to set up the final
MoM matrix. The integrand of each MoM entry consists of a
product of an expansion -field and a basis function. If the ex-
pansion -fields are sampled at the nodes or abscissas of the
Gauss–Chebyshev quadrature of the Lobatto’s integration for-
mulas [13], the Galerkin’s integrals can be obtained without
any effort by using the orthogonality of Chebyshev functions.
The abscissas of the numerical quadrature are nonuniformly dis-
tributed on conducting strips, and the strips can be arbitrarily
located; therefore, the NUFFT is more suitable than the regular
FFT in our approach.

In the traditional SDA, the number of operations is propor-
tional to the square of the product of the number of microstrips
and the total number of basis functions for a strip. It can be
anticipated that the number of operations required in the pro-
posed method is directly proportional to the number of lines.
The reason is that each of the spatial expansion -fields on all
the conducting strips can be obtained simultaneously after just
one time the NUFFT is performed if all strips are at the same
interface. This property makes the proposed method particu-
larly suitable for analyzing a shielded microstrip structure with
a large number of conducting strips.

The proposed method is also employed to investigate the
propagation characteristics of MCMLs in a dual-level structure
and coupled lines with finite metallization thickness. The com-
putation requires more NUFFTs so that the relative efficiency
is reduced. This paper is organized as follows. Section II
addresses the NUFFT algorithm and Section III formulates the
asymptotic extraction technique in the SDA. Section IV details
the incorporation of the NUFFT in our approach. Section V
presents the calculation results and compares the CPU time
used by the proposed method and traditional SDA. Section VI
draws the conclusion.

II. NUFFT ALGORITHM

The FFT is a fast algorithm for calculating discrete Fourier
transforms, and has widespread applications in communication
engineering and applied mathematics. It requires that the sam-
pled data should be equally spaced. Recently, a generalizing
FFT algorithm [11] is presented to deal with nonuniformly
or unequally spaced data. Later, a new algorithm (called the
NUFFT [12]) with improved accuracy is proposed without
increasing the computation complexity. The idea of the NUFFT
is to approximate a nonuniform sample point in the space

domain by interpolating an oversampled uniform Fourier basis
using a FFT with finite nonzero coefficients.

Consider the following summation with unequally spaced
output data :

(1)

where the sampled nodes and ’s can be un-
equally spaced. The input sequence can be equally or un-
equally spaced, and and are the numbers of input and
output data points, respectively. It is noted that is
used in [11] and [12]; however, it is found in this study that
can be different from . This property greatly extends the flex-
ibility of the NUFFT algorithm since the numbers of the input
and output data points can be adjusted according to the require-
ment in the application.

To evaluate (1) with unequally spaced , the key step of the
NUFFT is to approximate each with a sum of weighted
complex exponentials at equally spaced nodes in the neigh-
borhood of as follows:

(2)

where is an even positive integer and is an index in-
dicating the oversampling rate of the approximation. The sam-
pling points of the complex exponentials on the right-hand side
of (2) collocate with those of a regular FFT with size

. The larger the value of is, the more accurate the results
are, but the larger size of the regular FFT is required. However,
in all our case studies, and are sufficient to obtain
a good approximation. In (2), denotes the
integer nearest to . The interpolation coeffi-
cients for each , , are given as [12]

(3)

where the entries of the matrix and
column vector are

(4)

(5)

and

(6)

The accuracy factors ’s in (2) are chosen to minimize the
error of approximation in the least square sense. The existence
of the closed-form expression of (5) relies on the choice of

[12]. The values of can be determined and
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Fig. 1. Three analyzed microstrip structures. (a) All MCMLs at one interface
of the dielectric layers. (b) MCMLs at two interfaces of the dielectric layers. (c)
MCMLs with finite metallization thickness.

stored in memory before the microstrip structure is simulated
when and are specified. Substituting (2) into (1) yields

(7)

A regular FFT of size can now be invoked to evaluate
, . In (7), only

entries of are required in the summation for each . It has
been shown in [12] that the accuracy of the NUFFT algorithm
is much better than previously reported results in [11] with an
identical computation complexity of .

III. APPROACH

In the SDA formulation for the shielded MCMLs in Fig. 1(a)
and (b), the Green’s functions [14] can be written as a sum of
asymptotic and remaining parts, e.g.,

(8)

where is the modal propagation constant to be determined, and
is in the limit of . For a complex

mode, the propagation constant is denoted as . It can be

shown that , , or can be written as
with

(9)

if the observation fields and the currents are at the same inter-
face, and

(10)

if they are at different interfaces. is either or times
a material constant, and the spectral variables .

In the solution procedure, the basis functions for the unknown
current densities on the strips are [6]

(11a)

(11b)

otherwise.
(11c)

where and are the center and width of strip , respectively,
is the number of strips, and is the number of basis func-

tions for expanding or on a strip. and stand
for the Chebyshev polynomials of the first and second kinds,
respectively. It has been shown that the transformed basis func-
tions are the Bessel functions of the first kind [2], [6]. In the
spectral domain, a product of a transformed basis function and a
Green’s function is an expansion -field tangential to the plane
at or . When these -fields are transformed into
the spatial domain, as indicated in (8), they can be divided into
an asymptotic part, denoted with superscript and a remaining
part, with superscript as

(12a)

where

(12b)

and

(12c)

In (12c), , , or represents the Fourier transform
of the total current distribution on a strip. In (12b), ,

, , or is the inverse Fourier transform (IFT) of the
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product of in (10) and th basis function of for
the strip . When the observation fields and currents are at the
same interface, and can be expressed as

(13a)

(13b)

where is the Bessel function of order of the first kind.
Evaluation of (13) may take much time since the two series
converge slowly. Fortunately, based on the formulation in [5],
a much more rapidly converging summation to within an ad-
ditive function independent of can be obtained, and only a
couple of terms are required for results with sufficient accuracy.
When the observation fields and currents are at different inter-
faces, and can be quickly obtained by numerical
calculations since they are exponentially decay functions. The
NUFFT processing of the remaining parts will be addressed in
Section IV.

The unknown coefficients ’s and ’s in (11) can be re-
solved by employing the Galerkin’s procedure in the spatial do-
main, i.e.,

(14a)

(14b)

for , and , and a matrix of
can be established. By enforcing the determi-

nant of this matrix to be zero, the propagation constant for
any mode of the MCMLs can be solved, and the entries of the
corresponding eigenvector are the unknown coefficients.

IV. INCORPORATING THE NUFFT INTO THE ANALYSIS

The NUFFT algorithm is employed to calculate these sum-
mations in (12c), which will converge if is truncated at a suf-
ficiently large number . The total -fields in (12a) can be
expressed as

(15a)

(15b)

where the expansion -field, say, , is a partial longi-
tudinal component resulted from the IFT of the product of
and the transform of the th basis function of for strip in
(11b). Let the expansion -fields be expanded in a convergent
series as

(16a)

or

(16b)

where or , and is the number of Chebyshev functions
for the approximation. It is obvious that the results of (14) will
simply be or weighted by proper constants [13] by uti-
lizing the orthogonal property of the Chebyshev polynomials.
For example, the coefficients are given by

(17a)

(17b)

It means that if the sample points are ,
i.e., the nodes of a Gauss–Chebyshev quadrature [13], the eval-
uation of (14) will require no computation effort. It is noted that

in (17) also represents the number of nodes of the numer-
ical quadrature so it must be no less than . A database for
the sampling nodes can be established before the program is ex-
ecuted. A general structure of MCMLs can have any number
of lines with arbitrary widths, spacings, and positions. Conse-
quently, it would be impossible to have the sampled points for
the -fields be uniformly distributed on the conducting strips.
This is the very reason why the NUFFT algorithm is particularly
suitable for this approach.

In the traditional SDA, the number of operations for estab-
lishing the final MoM matrix is proportional to ,
with being the number of spectral terms in the summa-
tion. It can be shown that the number of operations for the
proposed method is , excluding
the operations for a Gauss–Chebyshev quadrature. The term

is the number of operations for a regular
FFT of size . Thus, the proposed method is particularly
suitable for analyzing MCMLs with a large number of strips at
one dielectric interface.

For microstrips with finite metallization thickness, as shown
in Fig. 1(c), the mixed spectral-domain approach (MSDA) [7]
can be invoked. The unknown variables become the tangential

-fields (or equivalent magnetic current sources) in apertures.
The MSDA Green’s functions have similar asymptotic prop-
erties to those in (9) and (10), and the approach in (12)–(17)
are still applicable to this case if the basis functions in (11) are
adopted. It is worth mentioning that extra NUFFTs have to be
performed to obtain the spatial expansion -fields in the aper-
tures in Fig. 1(c) at and . Thus, the improvement
in computation using this approach will be degraded.

V. RESULTS AND DISCUSSIONS

Here, convergence tests are performed and the accuracy of
the results is examined before the propagation characteristics of
microstrips are presented. The used CPU time of the proposed
method is then compared with that of the conventional SDA
and Ansoft HFSS, version 7. In the NUFFT approximation (2),

and are used.
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TABLE I
CONVERGENCE ANALYSIS AND COMPARISON OF THE CPU TIME FOR A

QUASI-TEM MODE OF AN EIGHT-LINE MICROSTRIP STRUCTURE

OBTAINED BY THE TRADITIONAL SDA AND THE PROPOSED METHOD

A. Validity Check

For an eight-line microstrip in Fig. 1(a), let the structural pa-
rameters be , , , ,

, – be 0.26, 0.22, 0.18, 0.14, 0.16, 0.2, 0.24 and
0.28, and – be 18.495, 0.25, 0.21, 0.17, 0.15, 0.19, 0.23,
0.27, and 18.355. All dimensions are in millimeters and the fre-
quency is 10 GHz. Table I compares the convergence and the
CPU time for calculating the normalized propagation constant
of a propagation mode obtained by the traditional SDA and the
proposed method. In the traditional SDA, is used, and
the final MoM matrix has a size of 64 64. If we assume that the
result is converged at the number of spectral terms ,
then will be required for a result with a relative
deviation less than 0.05%. In the proposed method, the conver-
gence behavior of the results depends on the values of , ,
and . Here, one value is used for the eight strips. First, the
results remain almost unchanged as is increased from 3 to
5, for the listed and values. When is increased from

to 64, only the sixth significant decimal digit of the results
changes. There are two significant facts that are not shown in
this table. First, the results for and are between
those for and . When is changed from 64
to 128, however, the fifth significant decimal digit changes. This
indicates that the number of spectral terms for evaluating in
(8) or in (12c) can be critical for obtaining highly accurate
results. Second, the results for and 512 are between
those for and , and those for agree
with those for to at least six significant decimal
digits.

In Table I, the numbers in the parentheses next to the nor-
malized propagation constants are the CPU time for calculating
the results. The CPU time is measured with a MATLAB program,
version 5.3 on a PC with a Pentium III processor of 900 MHz. If
the NUFFT result with , is compared
with the SDA result with , an improved computa-
tion efficiency of 60 times is obtained. We also use the Ansoft’s
HFSS with a Pentium III processor of 1 GHz to simulate the
structure. The result is 2.6061 and it takes 33 s.

In Table II, results reported in [15] are referred to validate
the proposed method. If Fig. 1(a) is referred, ,

, , , , ,
and , all in millimeters. In the proposed method,

are used. As indicated in this table, can be

TABLE II
VALIDITY CHECK OF THE MODAL SOLUTIONS OBTAINED BY THE PROPOSED

METHOD. STRUCTURE IN FIG. 1(a): " = " = 1, " = 8:2,
a = 18, w = 1:8, s = s = 8:1, h = h = 1:8,

AND h = 5:4, ALL IN MILLIMETERS

Fig. 2. Dependence of modal propagation constants for a shielded single
microstrip on the thickness of a dielectric substrate. Structural parameters
are a = 12:7 mm, w = 1:27 mm, h = 0 mm, h = 11:43 mm,
s = s = (a � w)=2, and " = 8:875.

used for obtaining results for various modes converged to three
decimal significant digits. The results are in close agreement
with the referred data.

B. Modal Propagation Characteristics for Single and Multiple
Coupled Microstrips

Fig. 2 shows the charts for some leading modes of a shielded
single microstrip line on a substrate with and
thickness and mm. The modal solutions,
including quasi-TEM, higher order, evanescent, and complex
modes, with mm have a good agreement with those
in [16]. As shown in Fig. 2, the propagation constants for the
quasi-TEM modes do not vary significantly as is changed.
For the first higher order modes, however, the mode charts have
significantly deviations when frequency is higher than 20 GHz.
The frequency band with complex modes migrates to higher
frequencies when the thickness of the substrate is decreased.

Fig. 3 shows the dispersive propagation characteristics of
the quasi-TEM modes of an eight-line microstrip structure, of
which the structural parameters are identical to those in Table I.
The normalized phase constants for the two leading modes
are referred to the vertical axis on the right, while those of the
others are referred to that on the left. At the lower frequency
end of interest, the fourth through the eighth modes have
very close phase constants. The program has to solve these
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Fig. 3. Dispersive normalized phase constants for the quasi-TEM modes of a
shielded eight-line microstrip structure. Structural parameters are identical to
those of Table I.

Fig. 4. Dispersive normalized phase constants for a dual-level shielded
eight-line microstrip structure. Structure parameters are " = 10:2,
" = 8:2, " = 1, a = 40, h = 1:27, h = 0:53, h = 5:4, w –w
are 0.22, 0.14, 0.2, and 0.28, w –w are 0.26, 0.18, 0.16, and 0.24, s –s
are 19.005, 0.56, 0.5, 0.74, and 18.355, and s –s are 18.495, 0.68, 0.46,
0.62, and 18.905. All dimensions are in millimeters.

normalized modes with an accuracy of at least four significant
decimal digits to distinguish their values.

It is worth mentioning that it will be difficult using the fi-
nite-element HFSS to generate the whole mode charts shown in
Figs. 2 and 3. The reason is as follows. In using HFSS for calcu-
lating the propagation constant of a transmission line, one has to
key in a guessed phase difference for the period in the longitu-
dinal direction of the periodic structure for simulation. This ap-
proach works well for normal modes. When evanescent or com-
plex modes are required, however, the total phase difference of
the simulation circuit becomes problematic. For the results with
a high resolution, HFSS will need many more passes to assure
and justify the converged solutions than that for a single mode.

Fig. 4 plots the normalized phase constants of the quasi-TEM
modes for a shielded dual-level eight-line microstrip structure.
The structure is changed from that in Fig. 3, leaving strips 1, 3,
5, and 7 on the top level and moving strips 2, 4, 6, and 8 to the
interface between layers 1 and 2. The CPU time for obtaining
the eight modes at one frequency point by the proposed method
with and is 3.03 s, and that by the
traditional SDA with and is 70.21 s. The
improved computation efficiency is reduced to 23 times.

Fig. 5. Dispersive normalized phase constants for a dual-level microstrip
structure. Structural parameters in Fig. 1(b) are a = 25:4 mm,
h = w = w = 0:127mm,h = 25:146mm, s = s = 12:895mm,
s = s = 12:378 mm, " = " = 12, and " = 1.

Fig. 6. Effective constants for a pair of coupled microstrip lines with finite
metallization thickness. Structural parameters in Fig. 1(c) are " = 12:5,
" = 1,w = w = s , h = 0:6mm, h = 10mm, and s = s = 6mm.

Fig. 5 shows the dispersive for dual-level coupled lines
in Fig. 1(b) with mm, mm,

mm, mm,
mm, , and . The three plots have

mm, mm, and mm. The results with
mm have a good agreement with those in [17].

Fig. 6 plots the dispersive characteristics of a pair of coupled
microstrips in Fig. 1(c) for various values of , the metalliza-
tion thickness. The measured results are referred to [18]. We
choose the case with at 5 GHz for comparing
the used CPU time by the proposed method with that by the
MSDA. This small thickness may introduce a serious conver-
gence problem to the MSDA program since a large number
of spectral summation terms are required to obtain accurately
converged data. It is found that the MSDA provides

and when and , respectively,
at . Thus, it is reasonable to assume the con-
verged result to be 3.0382. Table III lists the values and
the CPU time used by the MSDA and the proposed method. If
an agreement to five significant decimal digits is required, the
CPU time required for proposed method is between 16–20 s,
while that for the MSDA is 75 s. The CPU time ratio is reduced
approximately four times. The reduction is obviously resulted



96 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 1, JANUARY 2004

TABLE III
CONVERGENCE ANALYSIS AND COMPARISON OF THE CPU TIME FOR AN ODD

MODE OF A PAIR OF COUPLED LINES WITH t=h = 0:01 OBTAINED BY

THE MSDA AND THE PROPOSED METHOD

from the fact that the unknown variables are now at four dielec-
tric interfaces. Moreover, with reference to Fig. 1(c), there are
three “isolated” apertures at and so extra
times of the NUFFT will be invoked, and this causes the pro-
posed method to increase the CPU time significantly.

VI. CONCLUSION

The NUFFT algorithm and asymptotic extraction technique
have been combined to efficiently and accurately analyze the
propagation characteristics of single and multiple coupled mi-
crostrips in a shielded enclosure. The computation is further ac-
celerated by a Gauss–Chebyshev quadrature. For an infinitely
thin eight-line microstrip structure, the CPU time used by the
proposed method is only one 60th of that by the traditional SDA
for results with similar accuracy. When the method is applied to
microstrips at different dielectric interfaces or with finite metal-
lization thickness, the computational efficiency is reduced from
four to ten.
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