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Abstract-we present a formal systolic algorithm to solve the dynamic programming problem 
for an optimal binary search tree. For a fixed integer j such that 2 5 j 5 n, first we derive a 
linear systolic array to evaluate the minimal cost Q,j for 1 5 i < j. Then we combine these (n - 1) 
linear systolic arrays to form a two-dimensional systolic array. The computational model consists 
of [(n2 + 2n - 4)/4] processing elements. The algorithm requires (2n - 3) time steps to solve this 
problem. The elapsed time within a time step is independent of the problem size n. It is suitable for 
the VLSI implementation due to the identical and simple structure of processing elements. We also 
prove the correctness of this algorithm by induction. 

1. INTRODUCTION 

In recent years, computer science has devoted much attention to problems related to highly 

structured computer systems, and their potential applications. Current very large scale integrated 

(VLSI) technology requires uniformity and regularity in both the processing elements (PEs for 

short) and their integration on a given chip. These requirements naturally lead one to conceive 

of a multiprocessor system with a large number of relatively simple and uniform processors 

interconnected in a regular pattern. A simple computational model of such a system is the 

systolic array [ 11. A systolic array is a model of parallel computer consisting of rudimentary PEs, 

each capable of performing some simple operation. Many systolic arrays have been designed to 

solve some problems [2-51. A parallel algorithm which can be executed on a systolic array is 

called a systolic algorithm. 

The dynamic programming for an optimal binary search tree can be solved sequentially in 0(n3) 

running time steps for n its problem size [6]. In this paper, we present a formal parallel algorithm, 

which is executed on a computational model of two-dimensional systolic array, to solve this 

problem. The operations of each individual PE are designed explicitly. The design procedure to 

obtain the systolic algorithm is considered in detail. We hope that this concept can be applied 

to obtain systolic algorithms for solving some other problems. 

4 systolic array can be considered as a network which consists of a few types of computational 

PEs. Since there is no shared memory in our systolic array and the data broadcasting behavior 

is not allowed, the data transformation between PEs should be handled by some explicit com- 

munication links. A communication link with a name e-link which joins PEl to PE2 is called an 

input link of PE2 and an output link of PEl. The data being sent out from PEl via e-link is 

denoted by eout. The data being received by PE2 via e-link is denoted by ei,. Each PE performs 

This work was supported partially by the National Science Council in Taiwan, R.O.C. under the contract number 
NSC 82-0208-M009-22. 
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Figure 1. The graph for the dynamic programrm ‘ng problem. 

the following three tasks: 

(1) to receive data from its input links; 

(2) to execute one loop of the designed systolic algorithm; 

(3) to send data to its output links. 

The maximal time unit (all PEs are considered) to do these three tasks is called a time step. 

In our algorithm the elapsed time unit within a time step is constant. Moreover, if the e-link is 

labeled with 7 delays (denoted by 7D) for 7 a positive integer, it means that when PEl sends 

out its eout at the time step t, then such eout is the ein of PE2 at the time step t + 7. Our systolic 

array requires five communication links. Only one of them has 7 = 2; the remaining links have 

only one delay. The symbol 7D on a link will be omitted when 7 = 1. 

2. THE DESIGN PROCEDURE FOR SOLVING 
DYNAMIC PROGRAMMING 

Without loss of generality, the dynamic programming problem for an optimal binary search 

tree can be stated as follows. 

“For 1 5 i < q < j 5 n, find ci,j = wi,j + iyj~j{ci,g + ce,j} where wi,j are the given values; the 

initial cost value ci,i+i are considered as the value of w;,i+i for 1 5 i 5 n - 1.” 

For any fixed integers i, j with 1 5 i < j 5 n, the process to evaluate the value of the ci,j is 
considered as follows. 

(1) Assume that ci,* and cq,j have been ready for all q with i < q < j. 
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Group the above known cost values into the form ci,q + cq,j. Then two forms of them 

are Set aS a pair. These pail3 are denoted by Pk = {ci,j-k + cj_k,j, Ci,i+k + ci+k,j} for 

1 5 Ic I: [(j - i)/2J. 

During the evaluation of ci,j, the above pairs Pk will be referred in the decreasing order 

of k. That is, suppose that Pk is used at the time step i!k, then k’ < k” if and only 

if tkl > tkll. 

When PI is used to evaluate ci,j at a time step tl, the given value wi,j is involved at the 

time step tl + 1. This tl + 1 is also the time step that ci,j has produced. 
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Figure 2. The graph for evaluating c;,~ 

a a a 

Let 1 = [(j - i)/2J. W e k now that Pl is the first pair to be used in order to evaluate the ci,j. 
Suppose that to is the time step to evaluate the minimal value in 4. We define c(i, j, I) = min PI 
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and call this c(i,j, I) the P,-partial result of ci,j. Following (I - 1) time steps, the pairs Pk for 

1 5 Ic < 1 will be referred within the time interval (tc,tc + I- l] respectively. That is, the Pk- 

partial result of ci,j which is defined as ~(i,j,k) = min{c(i,j,k+l), ci,j-k+cj_k,j, ci,i+k+Ci+k,j} 

will be evaluated at the time step to + I- Ic. If we let c(i, j, I+ 1) be a large enough number “00,” 

then the c(i, j, I) can be redefined as the min{c(i,j,l + l), ci,j-l + cj-l,j, ci,i+r + ci+,,j}. Since 

we have ci,j = c(i,j, 1) + wi,j, this ci,j will be evaluated at the time step to + 1. We define 

c(i, j, 0) = c(i, j, 1) + wi,j as our desired result ci,j. 

Let j be a fixed integer such that 2 5 j < n. Under the preceding description to evaluate 

the ci,j, we design a linear systolic array to produce the value of ci,j for 1 < i < j. First, an 

ly-plane with integer coordinates is chosen. The z-axis is the index of PE and the y-axis the 

time step (see Figure l), where each PE will be referred to as PE(c, t) for z 2 0 and t 2 1. The 

solving strategy of evaluating ci,j is described as follows. 

(1) From the description of the dynamic programming problem and the order of Pk to be 

referred, we know that the computation of ci,j requires the value of cu,j for i < u. Thus, 

when cu,j coming from a PE( 0, t), we need one communication link (say b-link) to transmit 

such cu,j p assing through PE(0, t), PE(l, t + l), . . . , to PE(r, t + r) for r = j - u. Then 

this cu,j will be stored in a register, say E, of PE(r, t + r) in order to evaluate the follow- 

ing Cvf for 15 21 < u. 

(2) Since the value of c, ,j is propagating on the b-link for (j-u) time steps, and then this cu,j 

will be stored in a register of a PE, we need a control link (say z-link) to indicate that at 

what time step this cu,j will be stored in the register E. 

(3) The &partial results c(i, j, k) of ci,j for 1 5 k: 5 [(j - i)/2] are transmitted on a link 

(say c-link) from PE(t,t) to PE(k - 1, t + l), in order to be used to evaluate the following 

Pk-i-partial results c(i, j, /c - 1) of the Ci,j. 

The diagram of our designed consideration is shown in Figure 1, where b-link, z-link (not 

shown) and c-link have one delay of time step. The symbols (u) and (d) appearing in Figure 1 

mean that these two corresponding input values are received from the output links of other linear 

arrays which are evaluating the c,,, for 1 5 CY < u < j. An illustrative example with j = 7 is 

shown in Figure 2, where the numbers 67, 57, 47 appearing respectively in three PEs mean that 

at the time steps 2, 5, 8, these PEs have stored cs,r, cg,r, c4,7 in their registers, respectively. The 

symbols “*” and “^” mean that PEs are in waiting and stopping states, respectively. 

Figure 1 is projected along the time axis (y-axis) to obtain a linear systolic array as shown in 

Figure 3, where the cij comes out from PE(0) at the time step t = 2(j - i) - 1 for 1 5 i < j. 

There are y + 1 PEs to be used with y = [j/2] - 1. In Figure 3, once the ci,j comes out, it 

is transmitted along the b-link for (j - ;) time steps and finally it is stored in the register E 
of PE(j - i) provided that this PE exists. Since the control link x-link (having the same direction 

of b-link) is used to indicate that this ci,j will be stored in the register E of PE(j - i) at the time 

step t = 3(j - i) - 1, we let the zin = (j - i) in PE(0) at the time step t = 2(j - i) - 1. When 

the ci,j is propagating on the b-link, the value on the z-link is decreased by one at each time 

step. This implies that if zin = 1 is recognized by the PE(j - i) then this PE stores its bin into 

its register E. 

From the above design with 2 5 j 5 n, we obtain (n - 1) linear systolic arrays each consisting 

of [j/2] PEs. We combine these (n - 1) linear systolic arrays to form a two-dimensional array as 

shown in Figure 4, where ci,j comes out from the c-link of PE( j, 0) at the time step t = 2( j - i) - 1. 

In order to let these data ci,j in time arrive at the PEs which require such data ci,j, we introduce 

two communication links (the u-link and the d-link) between the PEs in Figure 4. The d-link 

goes from PE(j, k) to PE(j+ l,lc+ 1) and the u-link from PE(j, Ic) to PE(j + 1, Ic). Moreover, the 

d-link has one time step delay but the u-link has two delays. The ci,j is first transmitted along 

the d-link for (j - i) time steps then it is transmitted along the u-link after this time step. That 

is, once the ci,j has been computed at PE(j, 0), it passes through PE(j + 1, l), PE(j + 2,2), . . . , 
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PE(2j - i, j - i) along the d-link, then passing through PE(2j - i, j - i + l), PE(2j - i, j - i + 2), 

. . . . PE(2j - i, n) along the a-link. The choice of d-link or a-link for propagating the ci,j is 

controlled by a new control link (say y-link). Having a similar consideration on the c-link, the 

y-link indicates whether the ci,j being on the d-link should be redirected to the a-link or not. Note 

that the work of the y-link can be replaced by that of the z-link, because any ci,j is propagating 

on d-link and on b-link for the same (j - i) time steps. Thus, the x-link and y-link have the same 

indicator in a PE at any time step. So we do not show the y-link in our systolic array. 

Note that there are two types of PEs in our computational model. One type contains the 

PE(j,O). The other type contains the PE(j, k) for iE > 0. We use an index I in each PE to 

distinguish these two types. When we consider the behavior of each PE as a finite state machine, 

the diagram of its states is shown in Figure 5, where SO, ~1, sg, and s3 are the initial, executing, 

stopping and waiting states, respectively; “^, *” are two special symbols; “-*, -*” denote the 

logical complements of “^, *” respectively; II = {din} d enotes that the input data d;, of a PE is 

used as a signal to control the states of PEs. When din = ^ is recognized by a PE, then this PE 

stops its execution after this time step. 

2 3 4 5 6 7 8 9 

Figure 4. The systolic array for the dynamic programming. 

Figure 5. The states of PEs. 

3. THE SYSTOLIC ALGORITHM 

To design the systolic algorithm, we define the corresponding five procedures as follows: 

signal-stop G begin bout = ^; aout = ^; coUt = ^; dout = ^;z,,~ := ^ end. 

waiting G begin bout = *; aout = co; coUt = co; dout = *; xoUt := * end. 
adding-w-value E 

begin Z,,t := 2in; C&ut := W; C&t := bin + Gin; bout := bin + Gin; dout I= bin + Gin end. 
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storing-c-value G begin E := bin; aoUt := din; b,,t := *; dout := *; x,,t := * end. 

decreasing-x-value G begin bout := bin; xout := tin - 1; aout := oin; d,,t := din end. 

Algorithm: DYNAMIC-PROGRAM E 

[Initial state]. 

Set tin = 0 in PE(j,O) for 2 5 j 5 n. Set tin = 00 for PE(j,k) with k > 0. Set E = * in 

all PEs. Set oin = oo in PE(2m + 1, m) for m positive integer. Set I = 0 in PE(j, 0) and I = 1 

in PE(j, k) for k > 0. The input data for the d-link in PE(j, 0) are (0, *, 0, *, . . . ,O, “}, where 

the 0 appears exactly (j - 1) times. The input data for the b-link and the x-link in PE(j,O) 

are the sequences {wj-i,j, *, wj_z,j, *, . . . , wl,j, *} and (1, *, 2, *, . . . , j - 1, *}, respectively. That 

is, the components of links are interspaced within stars which provide the delay needed so the 

components can meet PE(j, 0) correctly. 

[Execution state]. 

repeat /* do parallel for all PEs */ 

if din = ^ then signal-stop; 

if din = * then waiting; 

if din # n and din # * then 

begin 

case I of 

0: adding-w-value; 

1: begin 

if Zin = 1 then storing-c-value else decreasing-x-value; 

Gout := min{ci, , ain + bin, din + E} 
end 

end 

until din = ^. 

4. THE CORRECTNESS PROOF 

We use the notation PE(j, k)[din = 1, coUt = 2, . . .]t = to to denote the statement that PE(j, k) 

has din = 1, c,,t = 2, and so on at the time step t = to. The symbol “A +- B” means that 

the statement A implies the statement B. From the initial state of our systolic algorithm, two 

lemmas are obtained. 

LEMMA 1. For 0 5 k < [j/2] < j 2 n, we have PE(j, k)[din = ^, dout = ^]t = 2j - k - 2. 

PROOF. The input data for the d-link of PE(j - k, 0) are (0, *, 0, *, . . . ,O, “} with zeros appearing 
(j - k - 1) times. The procedure of signal-stop implies that 

PE(j - k, O)[din = ^) dout = ^]t = 2(j - k - 1). 

+PE(j - k + 1, l)[din = ^, dout = ^]t = 2(j - k - 1) + 1. 

+PE(j, k)[& = ^) dout = ^]t = 2(j - k - 1) + k = 2j - k - 2. I 

LEMMA 2. For 1 2 k < j 5 n, we have PE(j, k)[xin = 1, z,,,,~ = *]t = 3k - 1. 

PROOF. From the initial values on the z-link, we have PE(j, O)[Zi, = 5, zoUt = 6]t = 26 - 1 

for 1 5 6 5 j - 1. The procedure decreasing-x-vahe executes the statement: “if xin > 1 then 

2out = %I - 1 else xoUt = *” in all the PE(j, k) with k # 0. Thus, we have 

PE(j, O)[xin = 6, xout = k]t = 2k - 1. 

*PE(j, l)[Xi, = k, x,,t = k - l]t = 2k. 

+PE(j, k)[xin = 1, x,,,t = *]t = 36 - 1 forl<k< [j/2]. I 
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LEMMA 3. For 1 5 k < [j/2] < j < n, PE(j,k) assigns its bin into its register E and PE(j, k) 

assigns its din to aout at the time step t = 3k - 1. 

PROOF. By Lemma 2 and the execution of procedure storing-c-value which performs the as- 

signments E := bi, and a,,t := din. I 

The major part of the correctness verification in our algorithm is the following proposition. 

(**) “The value of ci,j is produced in PE(j, 0) at the time step t = 2(j -i) - 1 for 1 <_ i < j 5 n.” 

That is, we will show PE(j, 0)[ c,,t = ci,j]t = 2(j - i) - 1. This proposition (**) will be proved 

by mathematical induction on the variable N = (j - i). 

LEMMA 4. The proposition (**) is true for N = 1. 

PROOF. When N = 1, this proposition (**) is shown by the initial state and the execution of 

adding-w-value. That is, we have PE(j,O)[bi, = wj_l,j,ci, = 0, c,“t = bin + ci,]t = 1. Thus, 

cj_l,j = wj_l,j is produced in PE(j, 0) at the time step t = 2(j - j + 1) - 1 = 1. I 

Now we assume that the proposition (**) is true for all N 5 m with m a given positive integer. 

We want to show that the proposition (**) is true for N = m + 1. The following three lemmas 

are considered under this induction hypothesis. 

LEMMA 5. For 1 5 i < j 5 n, N = m + 1 and 1 5 k 5 [(j - i)/2J, we have 

(a) PE(j, k)[E = cj-k,j]t = 3k - 1. 

(b) PE(j, k)[din = cd,j_k]t = 2j - k - 2i - 1. 

(c) PE(j, k)[bin = Ci+k,j]2 = 2j - k - 2i - 1. 

(d) PE(j, k)[ai, = ci,i+k]t = 2j - k - 2i - 1. 

PROOF. 

(a) Following Lemma 3, we have PE(j, k)[si, = l]t = 3k - 1. By the induction assumption 

with j - (j - k) = k 5 m, we have 

PE(j,O)[b,,t = tout = cj-k,j]t = 26 - 1. 

*PE(j, k)[bin = cj-k,j]t = 3k - 1. 

Hence, we obtain PE(j, k)[E = cj_k,j]t = 3k - 1 by the procedure stating-c-value. 

(b) By (j - k) - i 2 m, PE(j - k, O)[d,,t = c,,t = ci,j-k]t = 2(j - k - i) - 1 and this ci,j_k is 

transferring on the d-link for k time steps. We obtain 

PE(j, k)[din = ci,j_k]t = 2(j - k - i) - 1 + k = 2j - k - 2i - 1. 

(c) BY j - (i + k) I m, PE(j,O)[Lt = tout = ci+k,j ]t = 2(j - i - k) - 1 and this ci+k,j is 

transferring on the b-link for k time steps. We have 

PE(j, k)[bin = ci+k,j]t = 2j - k - 2i - 1. 

(d) By (i+k)-i 5 m,PE(i+k,O)[d OUt = tout = ci,;+k]t = 2k- 1 and this ci,i+k is propagating 

on the d-link for k time steps. We have 

PE(i + 2k, k)[din = ci,i+k]t = 3k - 1. 

From Lemma 2 together with k < [(i + 2k)/2], we have 

PE(i + 2k, k)[Zin = l]t = 3k - 1. 

+PE(i + 2ky k)[a,“t = din = ci,i+k]t = 3k - 1. 

Then this ci,i+k is transferring on the a-link for 2(j - i - 2k) time steps. Therefore, we 

have 

PE(j, k)[ain = ci,i+k]t = 2j - k - 2i - 1. I 
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From the value of k with the constraint 1 5 k 5 [(j - i)/2], we obtain 2j - k - 2i - 1 > 3k - 1. 

Thus, the two values of ci,j-k + Cj-k,j and ci,i+k -I- ci+k,j for evaluating the c(i,j, k) will be 

retrieved and performed by PE(j, k) in time. The evaluation of the &partial result of ci,j is at 

the time step t = 2j - k - 2i - 1 for 1 < k 5 [(j - i)/2]. F or an illustrative example of the 

evaluation of c1,7, we have i = 1, j = 7 and k 5 3. The evaluations of c(1,7,3), c(1,7,2) and 

c(1,7,1) are at the time step 8, 9, 10 respectively. The value cl,7 = w1,7 + c(l,7, 1) is obtained 

at t = 11 (see Figure 2). 

Let I = [(j - i)/2]. The following two lemmas show that the first q-partial result c(i,j, I) of 

ci,j is evaluated at the time steps t = 31- 1 or t = 31+ 1 depending on whether (j - i) is an even 

or an odd integer. 

LEMMA 6. For 1 5 i < j 5 n, N = m + 1, let 1 = [(j - i)/2j. If m + 1 is an even integer, then 

we have 

(a) The q-p ar la result c(i,j, 1) of ci,j is evaluated in PE(j, l) at the time step t = 31 - 1, t’ 1 

(b) The value of ci,j is coming out from PE(j, 0) at the time step t = 2(j - ;) + 1. 

PROOF. 

(a) Following the description in Section 2, we have P, = {ci,j_, + cj_l,j, ci,i+l + ci+l,j} with 

1 = l(j - i)/2] and c(i, j, l) = min 9. By (j-i) = N = m+l is even, we have 1 = (j-i)/2 

and j - 1 = i + 1. Hence, the two terms appearing in P, are identical. That is, we have 

C(i,j, 1) = Ci,j-1 + Cj-l,j. By the induction assumption with (j - 1) - i = 21- 1 = 1 5 m, 

we have 

PE(_i - l,O)[cout = ci,j-l, dout = ci,j-Jt = 2(j - 1 - i) - 1 = 2(i + I- i) - 1 = 21- 1. 

+PE(j, l)[di, = ci,j_,]t = 31 - 1. 

Similarly, we have 

PE(j, O)[c,“t = Cj_l,j) bout = Cj-,,j]t = 2l- 1. 

+PE(j, l)[bi” = cj_l,j]t = 31 - I. 

From Lemma 2 we have 

PE(j, l)[Zin = l]t = 31 - 1. 

aPE(j, l)[E = bin = cj_l,j]t = 31 - 1. 

Note that PE(j,f)[ai, = CO,C~~ = m]t = 31 - 1 f rom the initial state. Thus, we obtain 

PE(j, l)[c,“t = C(i,j, 1) = din f E = Ci,j-l + Cj-,,j]t = 31 - 1. 

(b) From Lemma 5, the remaining &partial results c(i,j, k) of ci,j with 1 5 k < 1 are 

evaluated in the time interval [31,41- 21. That is, we have 

PE(j, k)[cin = ~(i, j, k + l), c,,t = ~(i, j, k)]t = 31- 1 + (1 - k) for 1 5 k 2 1. 

*PE(j, O)[ci, = ( C i,j, l),bi, = Wi,j,C,,t = Gin + bin = Cij]t = 41 - 1. 

Since j - i = m + 1 = 21, we have 41 - 1 = 2(m + 1) - 1 = 2(j - i) - 1. Hence, ci,j is 

coming out from PE(j, 0) at the time step t = 2(j - i) - 1 for j - i = m + 1. Therefore, 

the proposition (w) is true for N = m + 1 which is an even integer. I 

LEMMA 7. For 1 5 i < j 5 n, N = m + 1, let l = [(j - i)/2]. If m + 1 is an odd integer, then 

we have 

(a) The PI-partial result c(i, j, 1) of ci,j is evaluated in PE(j, 1) at the time step t = 31+ 1. 

(b) The ci,j is coming out from PE(j,O) at the time step t = 2(j - i) - 1. 
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PROOF. 

(a) Since j - i = m + 1 is an odd integer, we have 1 = m/2 and j - i = 21+ 1. As we have 

mentioned, the first q-partial result of Ci,j is c(i, j, I) = min{ci,j_, + cj_r,j, ci,i+, + ci+r,j}; 

here we assume that j - 1 > i + 1. We claim that these four cost values will appear in 
PE(j, 1) at t = 31+ 1. 

(1) By (j - 1) - i 5 m, PE(j - l,O)[ Gout = Ci,j-l, dout = Ci,j-,]t = 2(j- I- i)- 1 = 21+ 1. 

+ PE(j,l)[di, = ci,j-l]t = 31+ 1. 

(2) BY j - (j - 1) < m, PE(j, O)kout = Cj-l,j, b out = cj-l,j ]t = 2(j - j + 1) - 

+ PE(j, l)[bin = cj-,,j]t = 31 - 1. 

1=21- 1. 

By Lemma 2 we have PE(j, l)[Zin = l]t = 31- 1. Hence, PE(j, I)[E = cj_i,j]t = 31- 1. 

This implies PE(j, l)[E = cj-l,j]t = 31+ 1. 

(3) By (i + 1) - i < m, we have 

PE(i + l,O)[Cout = Ci,i+lr Clout = Cj,i+l]t = 2(i + I- i) - 1 = 21- 1. 

By I< [(i + 21)/2] and Lemma 2, we have 

PE(i + 21,1)[xici, = l]t = 31- 1. 

+PE(i + 21,l)[di” = ci,i+/, 2in = 1, aout = ci,i+l]t = 31 - 1. 

*PE(j, l)[ai, = Ci,i+/]t = 31- 1 + 2(j - i - 21) = 31+ 1. 

(4) By j - (i + 1) 5 m, PE(j, O)[C,,~ = Ci.+l,j, bout = ci+,,j]t = 2(j - i - 1) - 1 = 21+ 1. 

+ PE(j, l)[bin = ci+,,j]t = 31+ 1. 

Therefore, these four cost values are already in PE(j, 1) at t = 31 + 1. Hence, the 

q-partial result c(i, j, 1) of Ci,j is evaluated in PE(j, 1) at t = 31+ 1. 

(b) From PE(j, l)[ c,,t = c(i, j, l)]t = 31+ 1 and the result of Lemma 5, the following &partial 

results c(i, j, k) with 1 5 L < 1 are evaluated in the following (I- 1) time steps. That is, 

we have 

PE(j, l)[~,,,~ = c(i, j, l)]t = 31+ 1. 

+PE(j, k)[Cin = C(i, j, k f l), Gout = c(i,j,k)]t=31+1+1-k=41-k+l forl<k<l. 

+PE(j,l)[Ci” = C(i,j,Z), Co"t = C(i,j,l)]t = 41. 

+PE(j, O)[Ci, = C(i,j, I), bin = wi,j, c,"t = tin + bin = ci,j]t = 41+ 1. 

+PE(j, O)[C,“~ = Ci,j]t = 41+ 1. 

Since I= m/2 and m + 1 = j - i, we have 41+ 1 = 2(m + 1) - 1 = 2(j - i) - 1. Therefore, 
the proposition (**) is true when N = m + 1 is an odd integer. I 

THEOREM. For 1 5 i < j 5 n, the systolic algorithm DYNAMIC-PROGRAM is correct to 
produce ci,j in PE(j, 0) at the time step t = 2(j - i) - 1. 

PROOF. Under the mathematical induction, this theorem is proved by the results of Lemmas 4, 6 
and 7. I 
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5. CONCLUSION 

In this article, we present a formal systolic algorithm to solve the dynamic programming 

problem of an optimal binary search tree. For a fixed integer j such that 2 5 j 5 n, first we 

derive a linear systolic array with [j/Z] PEs to evaluate the minimal cost q,j for 1 _< i < j. Then 

we combine these (n - 1) linear systolic arrays to form a two-dimensional systolic array. Hence, 

this computational model consists of [(n’ + 2n - 4)/4] PEs. The systolic algorithm requires 

(2n - 3) time steps to solve this problem. The elapsed time within a time step is independent of 

the problem size n. It is very suitable for the VLSI implementation due to the identical and simple 

structure of PEs. We also prove the correctness of this algorithm. In general, the verification 

of a parallel algorithm is difficult for the concurrent executions of many PEs. However, the 

mathematical induction is a suitable method to be used for verifying the correctness of a systolic 

algorithm. This designed consideration of our systolic algorithm can be applied to solve other 

problems, such as the combinatorial enumeration, the computational geometry and the graph 

theory problems. Furthermore, for developing the systolic algorithms, we are interested in the 

study of systolic algorithms such that the storage in any PE and the elapsed time of a time step 

are considered to be independent of the problem size. 
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