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DESIGN OF A MULTI-LAYER FUZZY LOGIC CONTROLLER

USING POLE ASSIGNMENT FOR BIPEDAL WALKING AT

VARYING SPEEDS

Kuo-Yang Tu* and Tsu-Tian Lee

ABSTRACT

When a biped robot detects obstacles along its path, it will reduce its walking
speed to change direction for obstacle avoidance.  It is essential for a biped robot to
be able to vary its speed during walking.  To control biped robots with variable walk-
ing speed capability, a Multi-Layer Fuzzy Logic Controller (MLFLC) is developed
using the pole assignment technique in this paper.  This method extends the previous
result, that a switching surface, whose parameters are scaling factors, exists in a Multi-
Layer Fuzzy Logic Controller (Tu et al., 2000).  In this study, the poles of a closed-
loop control system are derived relative to the switching surface parameters, i.e. the
normalized scaling factors.  Therefore, after choosing the appropriate poles, scaling
factors are determined and then a Multi-Layer Fuzzy Logic Controller is designed.
This design has two important features: (1) simplifying Fuzzy Logic Controller (FLC)
design to select only the scaling factors; (2) pursuing the system performance
requirement, based on the pole assignment.  A three-link biped robot is used as the
illustrative example.  Simulation results are included.
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I. INTRODUCTION

Research on biped robots has been conducted
for three decades.  At first, many scientists were only
engaged in theoret ical  s tudies (Frank,  1970;
Vukobratovic et al., 1970; Frank and Vukobratovic,
1979; Gubina et al., 1974; Hemami and Wyman,
1979).  In 1973, Kato and his colleague (Kato et al.,
1974) designed and constructed WL-5, an eleven-de-
gree-of-freedom biped robot to accomplish, the first
walking biped robot in the world.  Biped robot loco-
motion was realized concretely.  In addition to Kato’s

group, other scientists have designed and imple-
mented various kinds of biped robots (Miura and
Shimoyama, 1984; Raibert, 1986; Arimoto and
Miyazaki, 1984; Zheng and Sias. Jr., 1988; Shih and
Gruver, 1992; Kajita et al., 1992; Miller, 1994; Shih
and Chiou, 1998).  Biped robots able to walk like
humans have always been an important research
topic.

Biped walking can be divided into two areas:
static balance and dynamic balance.  Static balance
involves maintaining the Normal Projection of robot’s
Center of Mass (NPCM) inside a stable region, which
is usually the limit defined by the contact points be-
tween the biped feet (or foot) and the ground.  In static
balance, the biped walks slowly to prevent the NPCM
from moving outside of the stable region.  Static bal-
ance imposes a gait speed constraint on biped
walking.  For a fast gait speed, the Zero Moment Point
(ZMP), where the sum of all moments acting on the
biped are equal to zero (Borovac et al., 1989), is de-
fined to replace the NPCM for developing dynami-
cally balanced walking.  Dynamic balance is designed
to consider the ZMP within a stable region such that
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the supporting foot (or feet) can produce opposing
forces to prevent the biped from falling on the ground.
As a result, static balance restricts the biped robot to
walking slowly, while dynamic balance permits it to
walk with a fast gait.  Note that in the case of static
balance, the NPCM and the ZMP are located at the
same point.  This means that static balance is a spe-
cial case of full foot contact dynamic balance (Kum
and Miller, 1999).

Both statically and dynamically balanced walk-
ing has been designed for biped locomotion.  During
statically balanced walking, the stable region of a
biped robot is the convex hull formed by one sup-
porting foot or two supporting feet.  The stable re-
gion for providing opposing forces to support the ro-
bot body is thus small.  Statically balanced walking
is usually applied to four- or more-legged robots such
that at least three feet form a larger stable region to
support the robot’s body.  The stability of such a
multi-legged walking robot was adequately quanti-
fied by Song and Waldron (1988).  However, static
balance is still important in the study of a practical
biped-walking robot, especially when the body needs
to support a load or to move on rough terrain such as
stairs or a sloping surface.  Shih and Chiou designed
a biped robot for statically balanced walking on an
uneven floor (Shih and Chiou, 1998).  Furthermore,
dynamically balanced walking biped robots have been
developed (Miura and Shimoyama, 1984; Kajita et
al., 1992; Takanishi et al., 1985; Furusho and Sano,
1990; Grishin et al., 1994).  More specifically, Zheng
and Shen (1990) proposed a quasi-dynamic gait for a
biped robot to climb a sloping surface.  In contrast to
static balance, dynamic balance has been widely stud-
ied in biped walking.  However,  in practical
environments, an obstacle will force a biped robot to
walk slowly for avoidance, or rough terrain will force
it to adjust its step length for an adequate foothold.
Thus, biped robots need to change speed during walk-
ing in practical environments.  At slow speeds, the
biped needs to stabilize statically during walking,
while dynamic balance is required at fast speeds.  As
a result, both static and dynamic balance are needed
for changing the gait in biped walking.

For changing gait, Hodgins and Raibert (1991)
used a biped running machine to evaluate three meth-
ods for controlling step length.  These three methods
involve adjusting the forward running speed and the
duration of the stance and flight phases.  Evaluation
results showed that the forward speed method gives
the widest range of adjustments with good accuracy.
Minakata and Hori (1994) proposed the control of the
parameters of a virtual inverted pendulum for real-
time speed changes for biped walking.  Kum and
Miller (1999) designed Cerebelar Model Arithmetic
Computer (CMAC) neural networks to control a

biped robot for variable-speed gaits.  The control ar-
chitecture contains five CMAC neural networks to
take the correction in various lean postures for vari-
able-gait speed.  Such control architecture is compli-
cated and requires much time for training the neural
networks.  In this paper, we propose a Multi-Layer
Fuzzy Logic Control (MLFLC) to control the biped
robot for varying speeds during walking.  The MLFLC
design intends to find a simple way to simultaneously
allow both statically and dynamically balanced
walking.

This paper extends the MLFLC developed in (Tu
et al., 2000) to formularize normalized scaling factor
design.  It is shown that normalized scaling factors
are related to the pole locations of a MLFLC system.
The MLFLC design is thus reduced into selecting
normalized scaling factors from characteristic
functions, which are formed by pole placement.  Such
MLFLC design has two important features.  First, the
MLFLC design is reduced to selecting only its nor-
malized scaling factors.  Unlike the traditional MIMO
FLC design that considers many factors, such as fuzzy
sets, membership functions, linguistic rules and scal-
ing factors, the proposed MLFLC provides a way to
simplify the FLC design for MIMO systems.  Second,
because normalized scaling factors are selected from
the pole placement, this MLFLC design is based on
performance issues.  This paper also extends the
MLFLC design to pursue performance requirements.
More specifically, as the poles are placed at a loca-
tion far from the origin, the system will result in faster
time response.  Based on this, an MLFLC can be eas-
ily designed such that its time response simulta-
neously satisfies slow and fast walking gaits.  Thus,
the designed MLFLC also resolves the problem of
control of a biped robot walking at varying gaits.

The remainder of this paper is organized as
follows.  The model of a three−link biped robot is
introduced in section II.  In section III, some prelimi-
naries of MLFLC are introduced.  The stability is ana-
lyzed in section IV.  Section V is devoted to deriving
the relationships between normalized scaling factors
and pole locations.  In section VI, a three-link biped
robot system is used as the illustrative example of
MLFLC design.  Finally, conclusions are presented
in section VII.

II. PROBLEM STATEMENT

This section first describes the dynamic model
of a three-link biped robot and then formulates the
problem of the biped working at varying speeds.  In
addition, a performance index is defined to compute
the consumed energy of the biped system.

Figure 1 shows a mechanical model of a
three-link biped robot.  Table 1 shows the physical
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dimensions of this biped robot.  Its dynamical equa-
tion is

    M ( θ ) θθ = f ( θ , θθ ) + NT (1)

where       θθ = [θ1 θ2 θ3]T ,   T =[T1  T2  T3]T,   M (.) and
  N  are the matrices of 3×3, and  f (.) is the column

vector of 3×1.  The detailed description of the dy-
namical equation is given in Appendix A.

After some manipulation in Eq. (1), we have

       θθ = M – 1( θ ) f ( θ , θθ ) + M – 1( θ )NT (2)

Let     Y T = [θ1 θ1 θ2 θ2 θ3 θ3] .  Then, (2) can be re-
written as

   Y = Fb( Y ) + Gb( Y ) Tb (3)

where   Y ∈ R6 describes the system state,     Fb( Y ) ∈ R6,
   Gb( Y )∈ R6×3, and    Tb ∈ R3 are the control inputs.

The following definition is required for evalu-
ating the system performance of the designed
MLFLC.

Definition 1: For the dynamical system (3), a Per-
formance Index is defined as

   

PI =∆
Y TQ6×6 Y

Y
max

T
Y

max

+
T b

TR3×3 T b

T b max

T
R3×3 T b max

dt

(4)

where Q6×6 and R3×3 are the weight matrices.
Biped walking is performed by repeating a gait

cycle.  During a gait cycle, the biped legs are con-
trolled to support and to move its body.  Each gait
cycle of the biped can be divided into four phases:
(1) right-leg support phase; (2) right-leg to left-leg
support exchange phase; (3) left-leg support phase;
and (4) left-leg to right-leg support exchange phase.
Phases (2) and (4) are also named double-support
phases.  A biped robot is controlled to repeat the four

phases for walking.
Usually, a gait cycle is viewed as the desired

walking pattern of a biped robot.  The desired walk-
ing pattern is accomplished using a set of its joint
trajectories.  That is, if all joints are controlled to
follow the set of joint trajectories, then the biped
walks with the desired walking pattern.  According
to Lee and Liao (1988), trajectory planning in the
sagittal plane can be obtained by

 θ1
* =D1cosh3.094t+D2sinh3.094t (5)

 θ2
* =0 (6)

 θ3
* =P0+P1t+P2t2+P3t3 (7)

where

P0=θm

P1=3.094[D1sinh(3.094Tm)+D2cosh(3.094Tm)]

P2=−(3θm+3.094C2Tm+2P1T+3P0)/   Tm
2

P3=(3.094C2Tm+2θm+P1Tm+3P0)/   Tm
3

D1=−θm

D2=θm/tanh(1.54Tm)

Note that θm denotes the maximal swing angle be-
tween the leg and the vertical in the sagittal plane,
Tm denotes the period of a single-support phase, and
the desired trajectory of θi is   θ i

* .  In this research,
θm=30° and Tm=0.5 second.

In this paper, the MLFLC design is devoted to
solving the following three problems.

Problem 1: System stability.
Given the dynamic system in (3), find the suffi-

cient conditions that guarantee the MLFLC system is

Table 1 The physical dimensions of the three-link
biped robot

Parameter Length or weight

 1   (length of link 1) 0.933 m
 2  (length of link 2) 0.28 m
 3  (length of link 3) 0.933 m

m1 (weight of link 1) 12.2 kg
m2 (weight of link 2) 49.0 kg
m3 (weight of link 3) 12.2 kg

Fig. 1  Torque, force, angles and relative angles
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globally asymptotically stable.

Problem 2: To achieve stable walk with less PI.
A MLFLC is designed to achieve (i) fast time

response and (ii) less PI.

Problem 3: Biped walking at varying speeds.
An MLFLC is designed to control the biped sys-

tem for following the desired walking pattern in (5)-
(7), even if Tm in (5)-(7) is varying.

III. A MULTI-LAYER FUZZY LOGIC
CONTROLLER (MLFLC) AND ITS

APPROXIMATED FUNCTION

In this section, some results from our previous
paper (Tu et al., 2000; Lee et al., 1997) will be
introduced.  These results will be used to design the
normalized scaling factors in an MLFLC.

The MLFLC design is based on a simple Fuzzy
Logic Controller (FLC) as shown in Fig. 2.  A simple
FLC is a two-inputs one-output system.  More
specifically, its linguistic rules are designed as shown
in Fig. 3, where  Ai and  Bi  (for i=-3, ..., 0, ..., 3.) are
the fuzzy sets for the normalized input Ee and Ec,
respectively, and Ui (for i=-3, ..., 0, ..., 3) is the con-
trol action of the FLC.  As shown in Fig. 3, the

diagonal control actions U0 are arranged like a switch-
ing line in a suction controller.  The control actions
paralleling U0 are arranged to increase from U−3 on
the left-bottum corner to U3 on the right-top corner
like the boundary layer neighboring on the switching
line.  In a word, the linguistic rules of the simple FLC
are arranged as a suction controller to have a switch-
ing line and a boundary layer.  Thus, the simple FLC
is termed a Fuzzy Suction Controller (FSC).

In the FSC, not only its linguistic rules, but also
its characteristics are like a suction controller.  The
following Lemmas present this fact.

Lemma 1 (Tu et al., 2000): If
1. Its linguistic rules are designed as shown in Fig.

2,
2. The membership functions representing the

fuzzy sets are a complement type (seeing Ap-
pendix B),

Then the FSC has a switching line

  GTx = G1x1 + G2x2 = 0 (8)

Where G1 and G2 are the scaling factors to normalize
Ee and Ec, respectively, and x1 and x2 are the input
variables.
Note that x1 and x2 satisfy

G1x1=Ee and

G2x2=Ec (9)

The FSC is not only similar to a Sliding-Mode
Controller (SMC), but also able to reduce chattering,
which results from discontinuous control action.  Al-
though a quasi-SMC, termed suction controller, to
suck the state vector into a boundary layer was pro-
posed by Slotine (1984), it is difficult to determine a
suitable boundary layer.  Slotine (1984) used a linear
function to approximate the boundary layer.  The pro-
posed FSC can change its boundary layer via the con-
trol action U−2, ..., U2 of Fig. 3.  As a result, the FSC
is more flexible for sucking the state vector within a
boundary layer and avoiding chattering.

Lemma 2 (Tu et al., 2000): Let the output of the FSC
be FFLC(x).  Then, it can be approximated by

   FFLC(x) = – Gu(GTx + sgn (GTx)δ) (10)

where Gu is the de-normalized scaling factor,  GTx is
the switching line, and δ is the absolute value of the
difference between the actual output and  GTx.

The FSC is the basic component of a MLFLC.
Fig. 4 shows the scheme of the MISO system’s
MLFLC, namely the Γ .  In Fig. 4, Γ  is constructed

Fig. 2  A simple control scheme

A−3 A−2 A−1 A0 A2A1 A3

U0

Ec

Ee

B3 U1 U2 U3 U3U3 U3

~

~

U−1B2 U0 U1 U2 U3U3 U3
~

U−2B1 U−1 U0 U1 U3U2 U3

U−3B0 U−2 U−1 U0 U2U1 U3
~

~

U−3B-1 U−3 U−2 U−1 U1U0 U2
~

U−3B-2 U−3 U−3 U−2 U0U−1 U1

U−3B-3 U−3 U−3 U−3 U−1U−2 U0
~

~ ~ ~ ~ ~ ~

Fig. 3  The Fuzzy Suction Controller (FSC) linguistic rules
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with the sequence from the first layer to the last layer.
The first layer plays the role of input and the last layer
is used to produce a controller output.  Except that
the first layer has normalized scaling factors and the
last layer has a de-normalized scaling factor, the other
layers have no scaling factor.  One layer is connected
to the other layer directly, as shown in Fig. 4.  Note
that, in each layer, two inputs feed into one FSC and
then this FSC output connects to the next layer.  Thus,
every layer in the FSC requires an even number of
inputs.  When numbers of inputs are odd in one layer,
the last input of this layer is directly connected to the
next layer.  In Fig. 4, the second layer shows such a
situation,   xn 2n 2

1  is unconnected to the second layer and
is directly connected to the third layer.

From Lemma 1, in the first layer of the MISO
system’s MLFLC, the FSCs have the following
switching lines

G1x1+G2x2=0,

G3x3+G4x4=0, ..., and

Gn−1xn−1+Gnxn=0 (11)

Similarly, the second layer FSCs have the following
switching surfaces

G1x1+G2x2+G3x3+G4x4=0, ..., and

Gn−5xn−5+Gn−4xn−4+Gn−3xn−3+Gn−2xn−2=0 (12)

Note that because xn−1 and xn are directly connected
to the third layer, they can not appear on Eq. (12).
Therefore, in the last layer, the FSC has a switching
surface

S=    C T x

=G1x1+G2x2+G3x3+G4x4+...+Gn−3xn−3

+Gn−2xn−2+ Gn−1xn−1+Gnxn=0 (13)

where    C T =[G1  G2  ...  Gn−1  Gn].  Thus, Γ  has a
switching surface as shown in Eq. (13).

Γ  is the MISO system.  For the MIMO system,
many MISO systems’ MLFLCs are composed to re-
sult in many outputs.  Consider an m-input n-output
system.  The MLFLC needs m MISO systems to re-
sult in m outputs.  This scheme, shown in Fig. 5, is
the MIMO system’s MLFLC designed for a MIMO
nonlinear system.  In Fig. 5, Γ l (for l=1, ..., m) is the
lth MISO system’s MLFLC.  Let the normalized scal-
ing factors of Γ l be Gl,j, for j=1, ..., n, and the de-
normalized scaling factor of that be Gl,u.  Then, simi-
lar to (13), Γ l has a switching surface

Sl=     C l
T x

=Gl,1x1+Gl,2x2+Gl,3x3+Gl,4x4+...+Gl,n−3xn−3

+Gl,n−2xn−2+Gl,n−1xn−1+Gl,nxn=0 (14)

where    C l
T =[Gl,1  Gl,2  ...  Gl,n−1  Gl,n] is the vector

formed by the normalized scaling factors. In addition,
there are m MISO system’s MLFLCs (Γ l, for l=1, ...,

m.) in the MIMO system’s MLFLC.  Thus, m switch-
ing surfaces form the switching manifold in the
MLFLC.  Deriving from Eq. (14), the switching mani-
fold is

   S T = [S1  S2  ...  Sm]

=    [ C0
T x ]T=0, (15)

where   C0 = [   C1     C2   ...     Cm],    C l
T =[Gl,1  Gl,2  ...

Gl,n−1  Gl,n], for l=1, ..., m.

From Lemma 2, the output of the MISO system’s
MLFLC can be approximated by

The first layer

The second layer

The last layer

FSC

FSC

FSC

FSC

FSC

FSC

FSC

G1

G2

G3

G4

x1 x1

x2

x3

x4

xn-3

xn-2

xn-1

xn

Gn-3

Gu

Gn-2

Gn-1

Gn

u T

1

x2
1

x(n/2)−1
1

xn/2
1

Fig. 4 The scheme of the MISO system’s MLFLC, namely the Γ Fig. 5 The block diagram of MIMO system’s MLFLC for a non-
linear system
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    Tl = – Gl, u( C l
T x + sgn( C l

T x )δl) (16)

where Gl,u is the de-normalized scaling factor, and
    C l
T x  is the switching surface.  When the states are

outside of the boundary, the output of Γ l can be
approximated by

TT= [T1  T2  ...  Tm] (17)

where Tl=−(Gl,u−δl), sgn(    C l
T x ), for l=1, ..., m.  Eq.

(17) will be employed to study the stability of the
MLFLC in the next section.

Equations (15) and (17) imply that the normal-
ized and the de-normalized scaling factors are the
main parameters of the MLFLC.  Specifically, the de-
normalized scaling factors can determine the bounded
value of the MLFLC outputs, and the normalized scal-
ing factors are the parameters of the switching mani-
fold in the MLFLC.  Traditional MIMO FLC design
must consider many factors, such as fuzzy sets, mem-
bership functions, linguistic rules, and scaling factors,
etc.  Too many factors will result in complication of
the FLC design.  In contrast to traditional MIMO FLC
design, the MLFLC only considers de-normalized and
normalized scaling factors.  Thus, the proposed
MLFLC simplifies the MIMO FLC design procedures.

IV. STABILITY ANALYSIS

This section is devoted to discussing Problem
1.  Note that although a three-link biped robot is a 3-
inputs and 6-outputs system, the discussion of this
section focuses on m-inputs and n-output systems,
general MIMO systems.

Consider the nonlinear system described in Fig.
5 to be

   Y = F ( Y ) + G ( Y ) T (18)

where    Y ∈ Rn describes the system state,   F ( Y ) ∈ Rn,
  G ( Y )∈ Rn×m, and    T ∈ Rm are the control inputs.  That

is, the nonlinear system has m inputs and n outputs.
For controlling the nonlinear system, the MLFLC
needs the inputs to get the nonlinear system’s out-
puts   Y  minus the desired outputs    Yd .  Thus, the
MLFLC is designed to have n inputs, the same num-
ber  as  the  outputs  of  the  nonl inear  sys tem.
Furthermore, the outputs of the MLFLC are used to
control the nonlinear system for following the desired
behavior.  According to the number of the nonlinear
system inputs, the outputs of the MLFLC are designed
into m dimensions.  Therefore, the MLFLC has an n-
inputs and m outputs structure.

Let Yd,i be the ith desired output, and Yi be the
ith actual output of the nonlinear system.  Then, xi,
the input variable of the MLFLC, satisfies

xi=Yi−Yd,i, for i=1, ..., n.

Note that, after multiplied by the scaling factor Gl,i,
xi is connected to one FSC in the first layer.

In (18), we assume that every element of
    C 0

T F ( Y )  is bounded over the range of operation

conditions   Y  and is known, and that the matrix
   C 0
T G ( Y ) is upper and lower bounded by

    g φ 2 ≤ φ T C 0
T G ( Y ) φ≤ gu φ 2

(19)

where  g =λmin{     C 0
T G ( Y )}, gu=λmax{    C 0

T G ( Y )},
and an arbitrary vector  φ ∈ Rn.

Lemma 3: With the controller Eq. (17), the dynami-
cal system Eq. (18) is asymptotically stable if the fol-
lowing conditions are satisfied:

  
Gl, u >

Fl

g
,  for l=1, ..., m (20)

where Gl,u is the de-normalized scaling factor,  g =λmin

{     C 0
T G ( Y )}, Fl is the lth element of    C 0

T F ( Y ) .

Proof: Consider a Lyapunov function candidate,

   V = 1
2 S T S > 0

where  S  is the switching manifold.
Then,

    V = S T S (21)

After some manipulation in (3) and substitution into
(21) yields

    V = S T[ C 0
T F ( Y ) + C 0

TG( Y ) T ] (22)

substituting (17) into (22) leads to

   V = S T[ C 0
T F ( Y ) – C 0

TG( Y )[T1 T2 Tm]T]

     = S ( Fl – g Gl, u + δl)Σ
l = 1

m

    ≤ S ( Fl – g Gl, u)Σ
l = 1

m
(23)

If (20) is satisfied, then we have

V<0.

Therefore, the system is asymptotically stable.
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Remark 1: Lemma 3 solves Problem 1.  In addition,
it shows that the de-normalized scaling factors in the
MLFLC can be used to stabilize the MIMO systems.

V. DESIGN OF NORMALIZED SCALING
FACTORS VIA POLE ASSIGNMENT

The MLFLC design simplifies MIMO FLC into
only a choice of de-normalized and normalized scal-
ing factors.  It has been shown that the de-normal-
ized scaling factor is related to the system stability
condition.  In this section, emphasis will be on the
normalized scaling factors.

The design of normalized scaling factors will
be started by constructing a switching manifold.  This
is because after this is constructed, normalized scal-
ing factors can be determined from Eq. (15).  A
switching manifold is an important design issue for a
system under sliding mode control.  When a system
enters the sliding mode, its states go toward the ori-
gin along the switching manifold, and its dynamic be-
havior can then be approached through the switching
manifold.  The sliding mode control can be viewed
as controlling a system dynamics to approach a
switching manifold.  In our previous paper (Lee et
al., 1997), it was shown that the slope of the switch-
ing line could be used to achieve a faster rise time.
Such ideas can also be implemented by pole locations
if the switching line is viewed as the characteristic
function of a control system.  Reconsidering Eq. (8).
If

x1=x, and

  x2 = dx
dt ,

then Eq. (8) becomes

  G1x + G2
dx
dt = 0 (24)

After the Lapace transformation, Eq. (24) can be re-
written as

(G1+G2ϑ )X(ϑ )=0 (25)

The pole of the above equation is −G1/G2.  Usually,
G1>0 and G2>0 are such that the pole locates at the
left-half complex domain to ensure system stability.
Besides, the pole will result in a fast time response
as its location is far away from the origin, while the
pole will result in a slow time response as it becomes
nearer to the origin.  As a result, the pole location
derived from a switching line can be used to pursue
the system time response requirement.  Thus, the char-
acteristic function, which is formed by the assigned
pole locations, can be used to design a switching line.

Similarly, a switching manifold in a MLFLC can be
designed by assigning pole locations.  The details are
shown below.

The n-inputs m-outputs MLFLC must contain m
MISO systems’ MLFLC Γ l, for l=1, ..., m.  Γ l has a
switching surface Sl.  Thus, m switching surfaces form
a switching manifold.  In addition, because the
MLFLC has n inputs, the lth switching surface Sl,
viewed as characteristic function ℑ l, is a polynomial
of degree n−1.  Thus, n−1 poles exist in ℑ  for Sl.  Let

    ℑ l = (ϑ + γl, i)Π
i = 1

n – 1
(26)

where γl,i (for i=1, ..., (n−1)) is the pole of the char-
acteristic function.  Eq. (26) can be rewritten as

    ℑ l = ( – 1)kak(γl, 1, , γl, n – 1)ϑn – 1 – kΣ
k = 0

n – 1
(27)

where a0=1 and

ak(γl,1, ..., γl,n−1)≡    γl, i jΠ
j = 1

k

Σ
1 ≤ i1 < < ik ≤ (n – 1)

   (28)

for k=1, ..., n−1, is the sum of all k-fold   n – 1
k  prod-

ucts of distinct items from γl,1, ..., γl,n−1.  For example:

a1(γl,1, ..., γl,n−1)=γl,1+γl,2+...+γl,n−1

..

an−1(γl,1, ..., γl,n−1)=γl,1γl,2
...γl,n−1

In summary, γl,i (for i=1, ..., (n−1)) are used to con-
struct the switching surface Sl.  All switching sur-
faces (Sl for l=1, ..., m) are constructed to consist of
the switching manifold in the MLFLC.

After constructing the switching manifold, nor-
malized scaling factors are determined from Eq. (15).
In other words, normalized scaling factors are de-
signed such that an MLFLC has the desired switch-
ing manifold.  In order to let a switching manifold
have one switching surface Sl as shown in Eq. (15),
ak (γl,1, ..., γl,n−1), for k=1, ..., n−1, are the base of
design of normalized scaling factors.  The detail will
be described in the next section.

VI. MLFLC DESIGN FOR THE THREE-LINK
BIPED ROBOT

Assigning pole locations for selecting normal-
ized scaling factors is illustrated by the MLFLC con-
trol system design for a three-link biped robot.  The
illustration is divided into two parts.  The first part is
used to illustrate how to design the MLFLC for
achieving faster time response and smaller PI.  The
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second part reveals the MLFLC can control the biped
walking at varying speed.  Note that these two parts
are used to solve Problem 2 and Problem 3,
respectively.

1. Design for Better Performance Requirement

The key design point of an MLFLC is to choose
suitable normalized and de-normalized scaling fac-
tors for respectively satisfying performance require-
ments and stability of the biped system.  As pointed
out in section IV and section V, the de-normalized
scaling factors are chosen to satisfy the system sta-
bility conditions and the normalized scaling factors
are the switching manifold parameters, determined by
pole locations in the biped system.  As shown in Eqs
(20) and (23), the system stability conditions are ex-
pressed in  terms of  the  swi tching manifold
parameters, the normalized scaling factors.  Thus, the
MLFLC design will begin with the choice of normal-
ized scaling factors.

For a three-link biped system, the MLFLC re-
quires three outputs to control its links.  Thus, there
are three switching surfaces, S1, S2 and S3 to form a
switching manifold.  In addition, the three-link biped
robot is a six-order system.  Therefore, five poles are
need for the switching surface design in the MLFLC.
Let the five poles be -0.2, -5+5i, -5-5i, 4.8+5i, and
4.8-5i.  Then, the characteristic function is

ϑ 5+0.6ϑ 4+2.1ϑ 3+0.8ϑ 2+2402.1ϑ+480.4=0

(29)

where ϑ  is the variable resulting from the Laplace
transform.  After being multiplied by 1/62.8, Eq. (29)
becomes

  1
62.8ϑ5 + 0.6

62.8ϑ4 + 2.1
62.8ϑ3 + 0.8

62.8ϑ2 + 2402.1
62.8 ϑ

  + 480.4
62.8 = 0 (30)

The coefficients of Eq. (30) are used to choose the
proper parameters for the switching surfaces, the scal-
ing factors Gi,1, Gi,2, Gi,3, Gi,4, Gi,5, and Gi,6, for i=1,
..., 3.  Note that Eq. (30) multiplied by 1/62.8 will
form the boundary distance between one switching
surface and the boundary layer.  The detailed descrip-
tion of the boundary distance can be found in Lee et
al. (1997).

It is unknown which coefficients in Eq. (30) will
be assigned to which normalized scaling factors to
form a switching surface.  This question can be solved
by considering the action of the scaling factors to the
FLC.  In general, a larger scaling factor enlarges the
action of its input on the FLC, while a smaller one

reduces its action.  Because the switching surface S1,

G1,1x1+G1,2  x1+G1,3x2+G1,4  x2+G1,5  x3+G1,6  x3=0,

is used to produce the controller output for T1, x1 and

 x1
 are the main variables of the controller input.

Hence, the larger coefficients  480.4
62.8  and  2402.1

62.8  re-

spectively are assigned to G1,1 and G1,2 for enlarging
the action of x1 and  x1

 on T1.  For the rest,

  G1, 3 = 0.8
62.8 , G1, 4 = 2.1

62.8 , G1, 5 = 0.6
62.8 ,  and

  G1, 6 = 1.0
62.8 .

For simplicity, the three switching surfaces of the
switching manifold are formed by S1.  That is, Eq.
(30) is also used to determine the parameters of the
switching surfaces S2 and S3.  Similarly, for S2,

  G2, 1 = 0.6
62.8 , G2, 2 = 1.0

62.8 , G2, 3 = 480.4
62.8 ,

  G2, 4 = 2402.1
62.8 , G2, 5 = 0.8

62.8 , G2, 3 = 2.1
62.8 ,

and for S3,

  G3, 1 = 0.8
62.8 , G3, 2 = 2.1

62.8 , G3, 3 = 0.6
62.8 ,

  G3, 4 = 1
62.8 , G3, 5 = 480.4

62.8 , G3, 6 = 2402.1
62.8 ,

After the normalized scaling factors are chosen, the
de-normalized scaling factors can be selected by
G1,u=1500, G2,u=1000 and G3,u=1500 to satisfy Eq.
(20).  In Fig. 6, the dash-dot line is the simulation

Fig. 6 The comparison of the time responses among the different
switching surfaces
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result of the time response during biped walking from
the left-leg support phase to the double support phase.
Note that, for simplicity, let Q and R of Eq. (4) be
identity matrices I6×6 and I3×3, respectively.  Then the
defined performance index PI is equal to 0.0027.

When the five poles are changed into -1, -5+5i,
-5-5i, 4.8+5i, and 4.8-5i, Eq. (30) becomes

  1
62.8ϑ5 + 1.6

62.8ϑ4 + 2.5
62.8ϑ3 + 2.8

62.8ϑ2 + 2402.5
62.8 ϑ

  + 2882.4
62.8 = 0 (31)

Thus, the normalized scaling factors can be

  G1, 1 = 2882.4
62.8 , G1, 2 = 2402.5

62.8 , G1, 3 = 2.5
62.8 ,

  G1, 4 = 2.8
62.8 , G1, 5 = 1.6

62.8 , G2, 3 = 1
62.8 ,

  G2, 1 = 1.6
62.8 , G2, 2 = 1

62.8 , G2, 3 = 2882.4
62.8 ,

  G2, 4 = 2402.5
62.8 , G2, 5 = 2.5

62.8 , G2, 3 = 2.8
62.8 ,

and

  G3, 1 = 2.5
62.8 , G3, 2 = 2.8

62.8 , G3, 3 = 1.6
62.8 ,

  G3, 4 = 1
62.8 , G3, 5 = 2882.4

62.8 , G3, 6 = 2402.5
62.8 .

In Fig. 6, the solid line shows the time response of
the biped walking from the left-leg support phase to
the double support phase.  In addition, PI=0.0024.

Remark 2: The above two cases show the results of
one different pole changed from -0.2 to -1.0.  Simu-
lation results are compared in Table 2.

Table 2 reveals that the when pole location is
changed from -0.2 to -1.0, the biped system achieves
faster time response and smaller PI.  This fact solves
Problem 2.

2. Design for Biped Walking at Varying Speeds

The study is under the assumption that the bi-
ped robot walks only in single-support phase.  Thus,

in the simulation of biped walking, one single-sup-
port phase ends after the swing leg touches on the
ground.  And then the biped robot begins with the
other single-support phase.

The biped robot is controlled to follow a desired
walking pattern for walk.  In this research, Eqs. (5) −
(7) are the desired walking pattern.  When the five
poles are chosen as -0.1794, -3+5i, -3-5i, 3+5i, and
3-5i, Eq. (30) becomes

  1
62.8ϑ 5 + 0.2

62.8ϑ 4 + 32
62.8ϑ 3 + 5.7

62.8ϑ 2 + 1156
62.8 ϑ

 + 207.4
62.8 = 0

Thus, the normalized scaling factors are selected as

  G1, 1 = 207.4
62.8 , G1, 2 = 1156

62.8 , G1, 3 = 5.7
62.8 ,

  G1, 4 = 32
62.8 , G1, 5 = 0.2

62.8 , G2, 3 = 1
62.8 ,

  G2, 1 = 0.2
62.8 , G2, 2 = 1

62.8 , G2, 3 = 207.4
62.8 ,

  G2, 4 = 1156
62.8 , G2, 5 = 5.7

62.8 , G2, 3 = 3.2
62.8 ,

and

  G3, 1 = 5.7
62.8 , G3, 2 = 32

62.8 , G3, 3 = 0.2
62.8 ,

  G3, 4 = 1
62.8 , G3, 5 = 207.4

62.8 , G3, 6 = 1156
62.8 .

Figure 7 shows the simulation result for every
joint to track its desired trajectory with large error.
The stick diagram of the biped walking is shown in
Fig. 8.  It is obvious that the biped cannot perform
every single-support phase completely because the
swing leg touches on the ground too early.  This is
bad or inefficient walking.

When the five poles are changed into -0.1794,
-6+5i, -6-5i, 6+5i, and 6-5i, Eq. (30) becomes

   1
62.8ϑ 5 + 0.2

62.8ϑ 4 – 22
62.8ϑ 3 – 3.9

62.8ϑ 2 + 3721
62.8 ϑ

 + 667.5
62.8 = 0

Table 2  Comparison of the simulation results due to different poles

One different pole PI Rise time of θ1 Rise time of θ2 Rise time of θ3

-0.2 0.0027 0.575 0.21 0.21
-1.0 0.0024 0.575 0.115 0.13
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Thus, the normalized scaling factors can be assigned
as

  G1, 1 = 667.5
62.8 , G1, 2 = 3721

62.8 , G1, 3 = – 3.9
62.8 ,

  G1, 4 = – 22
62.8 , G1, 5 = 0.2

62.8 , G2, 3 = 1
62.8 ,

  G2, 1 = 0.2
62.8 , G2, 2 = 1

62.8 , G2, 3 = 667.5
62.8 ,

  G2, 4 = 3721
62.8 , G2, 5 = – 3.9

62.8 , G2, 3 = – 22
62.8 ,

and

  G3, 1 = – 3.9
62.8 , G3, 2 = – 22

62.8 , G3, 3 = 0.2
62.8 ,

  G3, 4 = 1
62.8 , G3, 5 = 667.5

62.8 , G3, 6 = 3721
62.8 .

Fig. 9 shows both the actual and the desired trajecto-
ries of the biped robot.  Fig. 10 shows the stick dia-
gram of the biped robot, and shows it repeating the
walking cycle.  The biped robot is under control and
performs walks perfectly.  Figs. 7 − 10 show that the
pole locations can be designed to vary the normal-
ized scaling factors to achieve better biped walking
performance.

When a biped robot is walking, its controller
must overcome the impact effects, the reactive force
from the ground.  To demonstrate the robustness of
the proposed MLFLC, Figs. 11 and 12 show that the
biped walking can tolerate a reactive force of 3 kg

Fig. 7 The joint trajectories of the biped robot controlled for
tracking the desired trajectories: the case of a large track-
ing error (the dotted line is desired and the solid line is
actual)

Fig. 8  The height of the biped robot is descending gradually

Fig. 9 The joint trajectories of the biped robot controlled for
tracking the desired trajectories: the case of a small track-
ing error (the dotted line is desired and solid line is actual)

Fig. 10 The stick diagram: the biped robot controlled to maintain
the same height between walking cycles
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due to its sole touching the ground.
Finally, this MLFLC is used to control the bi-

ped for varying speeds.  The controlled trajectories
are shown in Fig. 13.  The gait speed of the biped
walking is θm=35° and Tm=1.0, but is changed θm=15°
and Tm=0.5 during the time between 4 and 6 seconds.
Fig. 14 shows a corresponding stick diagram of the
biped walking.  Fig. 13 and Fig. 14 show that the
MLFLC can control the biped walking system at vary-
ing speeds.

VII. CONCLUSIONS

This paper addresses the application of a Multi-
Layer Fuzzy Logic Control (MLFLC) for controlling
a three-link biped robot at varying walking speeds.
It is shown that closed-loop pole locations, and hence
characteristic equations, are related to normalized

scaling factors.  Due to different pole locations, the
normalized scaling factors can be adjusted to achieve
a satisfactory time response and to control a biped
walking robot at varying speeds.  When a biped ro-
bot needs to change its walking speed, the MLFLC
provides for stable control during change.  In addition,
the de-normalized scaling factors of the MLFLC can
be designed for ensuring the system stability.  The
proposed MLFLC is able to reduce the design proce-
dure of the MIMO FLCs into selecting only the nor-
malized and de-normalized scaling factors.  Thus, the
MLFLC simplifies the MIMO FLC design for better
performance.
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NOMENCLATURE

ak the parameters of the characteristic func-
tion

  Ai, Bi fuzzy sets
   C T the vector of normalized scaling factors,

i.e., [G1 G2 ... Gn]
Ee, Ec the normalized scaling factors of a FLC

   f ( θ , θ ) the centripetal, coriolis and gravitational
effect in dynamical equation of a three-
link biped robot

FLC fuzzy logic controllers
gl the minimal eigenvalue of    C0

T G ( Y )
gu the maximal eigenvalue of    C0

T G ( Y )
Gj the normalized scaling factors of an

MLFLC
Gl, j the normalizing scaling factors of the lth

MISO system’s MLFLC
Gl, u the de-normalizing scaling factor of the

lth MISO system’s MLFLC
Gu the de-normalized scaling factor of a FLC
MIMO multi-input multi-output
MISO multi-input single-output
MLFLC a multi-layer fuzzy logic controller

   M ( θ ) the inertia or mass matrix in dynamical
equation of a three-link biped robot

  N the input matrix in dynamical equation of
a three-link biped robot

Pi, Dj the parameters of the planned trajectories
of the joint angles of the three-link biped
robot (for i=1, ..., 4, and j=1,2.)

Sl the switching surface formed by the lth
MISO system’s MLFLC

Tl the output of the lth MISO system’s
MLFLC

  T the input vector in dynamic equation of a
three-link biped robot

Tm the period of a single-support phase
Ui the control action of a FLC
xi the input variable of the MLFLC, i. e.,

the difference between Yi and Yd, i

  Y the system states of a nonlinear system
   Yd the desired states of a nonlinear system

γl, i the pole of the characteristic function
used to design a MLFLC

  θ1
*, θ2

*, θ3
* the planned trajectories of the joint angles

of the three-link biped robot
θm the maximal swing angle between the leg

and the vertical in the sagittal plane
     θθ the velocity vector of the joint angles of

a three-link biped robot
     θθ the acceleration vector of the joint angles

of a three-link biped robot
ℑ l the characteristic function used to design

a MLFLC
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APPENDIX A

In the sagittal plane, the dynamical equation for
the biped as shown in Fig. 1 is

       M ( θθ , θθ ) θθ = f ( θ , θ ) + NT (A1)

where        θθ = [θ1 θ2 θ3]T ,   T =[T1  T2  T3]T,   M (.) and
  N  are the matrices of 3×3, and  f (.) is the column

vector of 3×1.  The elements of   M (.) are

M11=1

M12=−α12cos(θ1+θ2)

M13=0

M21=α2cos(θ2−θ1)

M22=1

M23=0

M31=α3cos(θ3−θ1)

M32=0

M33=1

where

   α12 = m2 1 2/∆1

   α13 = m3 1 a3/∆1

   ∆1 = m1 a1
2 + I1s – 2m1 1 a1 + (m1 + m2 + m3) 1

2

   α2 = m2 1 2/∆2

   ∆2 = m1 2
2 + I2s

   α13 = m3 1 a3/∆3

   ∆3 = m1 a3
2 + I3s

The elements of the column vector  f (.) are

   f1 = α12θ1
2sin(θ1 – θ2) + α13θ3

2[cos(θ1 – θ2)

  + sin(θ1 – θ2)] + β 1sinθ1
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   f2 = – α2θ1
2sin(θ2 – θ1) + β 2sinθ2

   f3 = α3θ1
2sin(θ3 – θ1) – β 3sinθ3

where

β1=[(m1+m2+m3)g 1−m1g a1]/∆1

β2=m2 2g/∆2

β3=m3 a3g/∆3

The matrix   N  are

  γ1 – γ1 0
0 γ2 γ2
0 0 – γ3

where

γ1=1/∆1

γ2=1/∆2

γ3=1/∆3

Note that m1, m2 and m3 are the masses of the links,
respectively,  1 ,  2  and  3  are the lengths of the links,
respectively, I1s, I2s and I3s are the inertias of the links,
respectively, and  ai  is the distance between the cen-
ter of mass of link i (for i=1, 2, and 3) and the hip.

APPENDIX B

Definition 1: The membership functions in a term
set are of a complement type if the following condi-
tions hold

i) The space between two adjacent central values
Ai′  of fuzzy set  Ai is equal,

ii) The membership functions of all fuzzy sets are
the same form,

iii) Corresponding to one support value E1 in the lin-
guistic variable E, there are two membership
grades   µAi

 and    µAi + 1
 which satisfy

   µAi
(E1) = 1 – µAi + 1

(E1)
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