

Journal of the European Ceramic Society 24 (2004) 1787–1790

www.elsevier.com/locate/jeurceramsoc

Effects of composition on low temperature sinterable Ba–Nd–Sm–Ti–O microwave dielectric materials

Chung-Chin Cheng^{a,*}, Tsung-Eong Hsieh^a, I-Nan Lin^b

^aDepartment of Materials Science and Engineering, National Chiao-Tung University, Hsinchu, Taiwan, 300 ^bMaterials Science Center, National Tsing-Hua University, Hsinchu, Taiwan, 300

Abstract

This work investigated the effects of MgO and ZnO additives on the microwave properties of BRT₁₁₄ = [(BaO·R₂· O₃·4TiO₂)·0.06(2Bi₂O₃·3TiO₂)] materials. Incorporation of small amount of ZnO (\leq 1 wt.%) markedly lowered the temperature coefficient of resonant frequency (τ_f), to around $\tau_f = 1$ ppm/°C, slightly increased the density and dielectric constant (ε_r) of the materials, but degraded the $Q \times f$ factor . Doping 2.5 mol% of MgO, in addition to ZnO, further improved the τ_f -value for the BRT₁₁₄ materials. The dielectric constant and the $Q \times f$ factor of the materials degrade pronouncedly when doped with too abundant ZnO. Microstructure and EDX analyses indicated that the main factor for degrading the microwave properties is the induction on formation of secondary phases. Moreover, sol–gel and fused Ba–B–Si glass reacted with BRT₁₁₄ in quite a different way. Fused glass wets BRT₁₁₄ materials more easily than the sol–gel derived glass, resulting in composite materials with higher density and larger dielectric constant. Precalcining the glass-dielectrics mixture, greatly improved the wetting ability of the glass and markedly increased the microwave properties of the glass/dielectric composite, i.e. LTCC materials.

more difficult.9-11

Keywords: Fused glass; Glass/dielectric composite; LTCC materials; Sol-gel derived glass

1. Introduction

BaO-R₂O₃-TiO₂ series materials, where R is the rare earth element, possess superior microwave dielectric properties, such as high dielectric constant and high quality factor and low temperature coefficient of resonant frequency. 1-5 These materials have great potential for microwave device applications and have been extensively investigated. Processing of BaO-Nd₂O₃-TiO₂ series materials is very complicated due to the complex crystal structure of the materials, which easily induces the formation of intermediate phase. Iso-valent ions incorporation such as Sm₂O₃,which form solid solution with the BaO-R₂O₃-TiO₂ materials, was observed to markedly modify the microwave dielectric properties of the materials.³⁻⁵ The alivalent ions addition, such as Bi₂O₃, can also pronouncedly alter the material's properties.^{6–8} The explanation on the corresponding mechanism is, however, still quite controversial. The investigation on the effect of additives, which modify the microstructure of the BaO-R2O3-TiO2 series materials, is thus even

On the other hand, the trends for miniaturization of

the microwave devices requires the development of low

temperature cofirable ceramic (LTCC) materials. To

lower the sintering temperature of the microwave

dielectric materials to a level cofirable with Ag electrode

materials, glass materials with low softening tempera-

ture were usually mixed with the microwave dielectric materials to form glass-ceramics composites. 12,13

In this paper we develop a LTCC material consisting

of BaO-R₂O₃-TiO₂ microwave dielectric materials and

glass additives to result in high dielectric constant

glass-ceramic composite materials. For the first, we

dielectric properties of other series of dielectric materi-

E-mail address: roycheng87@yahoo.com.tw (C.-C. Cheng).

improved the microwave dielectric properties of the $BaO \cdot (R_2O_3)_{1.08} \cdot (TiO_2)_{4.24} \cdot 0.06 (2Bi_2O_3 \cdot 3TiO_2)$ with $R = Nd_{0.72}Sm_{0.28}$, which were reported to possess the best microwave dielectric properties, $^{3-7}$ through the addition of MgO or ZnO species, among the $BaO - R_2O_3 - TiO_2$ series materials. The MgO and ZnO additives were chosen because these dopants markedly improved the

als. ^{14,15} Then we used the BaO–B₂O₃–SiO₂ glass to reduce the sintering temperature necessary for densifying the materials.

^{*} Corresponding author.

2. Experimental methods

The $BaO \cdot (R_2O_3)_{1.08} \cdot (TiO_2)_{4.24} \cdot 0.06(2Bi_2O_3 \cdot 3TiO_2)$ with $R = Nd_{0.72}Sm_{0.28}$, designated as $(BRT)_{114}$, were prepared by conventional mixed oxide process. High purity materials, including BaCO₃ (Kali, 99.8%), TiO₂ (rutile, Bayor, 99.7%), Nd₂(CO₃)₃ (Rhodia, 99%), and Sm₂O₃ (Rhodia, 99.5%), with the nominal composition $BaO \cdot (R_2O_3)_{1.08} \cdot (TiO_2)_{4.24} \cdot 0.06(2Bi_2O_3 \cdot 3TiO_2)$ where $R = Nd_{(0.72)}Sm_{(0.28)}$ were mixed and then calcined at 1170C for 2 h, followed by pulverization, pressing, and then sintering at 1330 °C for 2.5 h. In the first series of (BRT)₁₁₄, only ZnO with 0-3 wt.% was added. Whereas in the second series of (BRT)₁₁₄, 2.5 mol% MgO was doped in addition to the ZnO of the same proportion. In the preparation of LTCC materials, BRT₁₁₄ (with median particle size of 1.0 μm) was mixed with sol-gel derived or fused BaO-B₂O₃-SiO₂ (51:45:4 wt.%) glass with median particle size of $1.5\sim2$ µm with different proportion (9– 37.5wt.%). The glass-ceramic mixture were granulated, pelletized (500 kg/cm²), and then sintered at 850-1000 °C for 2.5 h. These samples are designated as onestep processed ones. To facilitate the comparison, some of the glass-ceramic mixture was calcined at 700 °C for 2 h, followed by pulverization, granulation, pelletization and sintering process (designated as two-step process). The density of the sintered BRT₁₁₄ materials was measured by the Archimedes method. The crystal structure and microstructure of the samples were examined using X-ray diffraction method (XRD, Simens D5000 diffractometer) and scanning electron microscopy (SEM, Hitach 2500-S with Kevex EDX). The microwave dielectric properties of the materials were measured by a cavity method using a HP 8722ES network analyzer.

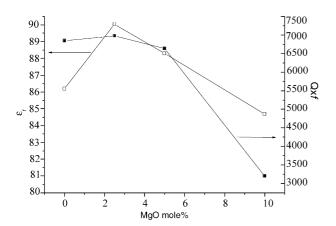


Fig. 1. Dielectric constant (ϵ_r) and Q×f versus MgO doping content for $(Ba_{1-x}Mg_x)O\cdot 1.08(Nd_{0.72}Sm_{0.28})_2O_3\cdot 4.24TiO_2\cdot 0.6(Bi_2O_3\cdot _3TiO_2),$ BRT114 materials.

3. Results and discussion

3.1. BRT_{114} dielectric ceramics

Incorporation of 2.5 mol% MgO into BRT₁₁₄ materials markedly improved the sinterability of the materials, the sintered density increased from 92% T.D.(5.52 g/cm³) to 96.5% T.D. (5.75 g/cm³), when sintered at 1330 °C for 2.5 h [Fig. 2(a)]. SEM microstructure is not markedly changed due to the incorporation of a small proportion of MgO, but the number of pores seems greatly be depressed. (not shown). Addition of MgO beyond 2.5 mol% induced the formation of secondary phases, which monotonically degraded both the $\varepsilon_{\rm r}$ - and $Q \times f$ -values (Fig. 1). Presumably, the Mg²+-species can form solid solution when their concentration is smaller than 2.5 mol%.

For the BRT₁₁₄ specimens including only ZnO additives [solid squares in Fig. 2(a)], the density of the samples increased markedly from 92% T.D. (5.52 g/cm³) to 97% T.D (5.8 g/cm³), when doped with 1 wt.% ZnO. The density decreased monotonously with further

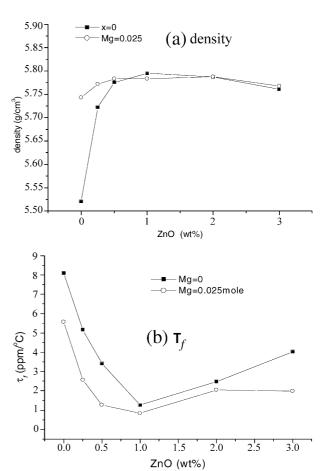


Fig. 2. The variation of microwave properties with amount of ZnO added into BRT₁₁₄: (a) density, and (b) temperature coefficient of resonant frequency, τ_f .

increase in ZnO-dopants larger than 1 *wt.*%. Similar behavior was observed for samples containing 2.5 mol% MgO [open circles, in Fig. 2(a)], that is, the density of MgO-doped BRT₁₁₄ first increases with the ZnO content, reaches a maximum value of 96.8%T.D. (5.78 g/cm³), and then decreases with further increase of ZnO addition.

Fig. 2(b) indicates the beneficial effect of MgO or ZnO addition on lowering the temperature coefficient of resonance frequency (τ_f) of BRT₁₁₄ materials, a

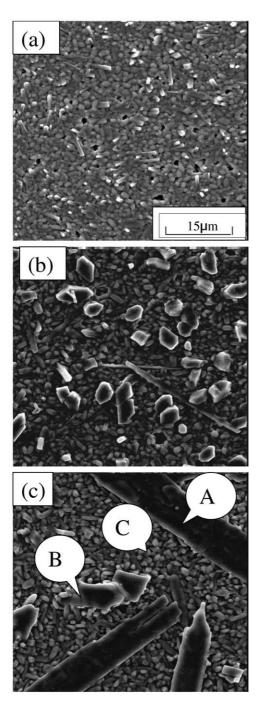


Fig. 3. The SEM micrographs for BRT₁₁₄ with (a) 0.25 wt%, (b) 1 wt%, (c) 2 wt%, of ZnO additives.

characteristic of concerned for the microwave device applications. For the materials containing no MgO additives, the value of τ_f reduces monotonously from 8 to 1.2 ppm/°C when the content of ZnO increases from 0 to 1.0 wt.% [solid squares in Fig. 2(b)]. The effect of ZnO addition on improving τ_f characteristic of BRT₁₁₄ is even more pronounced when the specimen contains 2.5 mol% of MgO [open circles, in Fig. 2(b)]. A τ_{τ} value smaller than 0.8 ppm/°C was reached for the BRT₁₁₄ co-doped with 2.5 mol% MgO, and 1 wt.% of ZnO. The τ_f -value increased again for materials containing more than 1 wt.% ZnO, regardless of whether the samples contain MgO species or not. Incorporation of a small proportion of ZnO ($\leq 1 \text{ wt.}\%$) to BRT₁₁₄ materials, insignificantly alters their dielectric constant ($\varepsilon_r = 86$ to 89), but moderately reduces the $Q \times f$ -value of the materials from $Q \times f = 7000$ to $Q \times f = 5000$ (not shown).

To understand how the addition of dopants affects the related microwave dielectric properties of BRT₁₁₄ materials, the SEM microstruture was examined and is shown in Fig. 3, which reveals the secondary phases of equi-axis geometry emerged for the samples containing more than 1 wt.% of ZnO [Fig. 3(a) and (b)]. The other kind of secondary phase, stripe-shaped, emerged for those containing 2 wt.% of ZnO [Fig. 3(c)]. The EDX analyses reveal that the equi-axised phases contain low Sm Nd and are rich in Ti, but deficient in Zn element, whereas the stripe-shaped phase [cf. Fig. 3(c)] is a ZnO-rich intermediate compound. Apparently, the presence of these secondary phases is the main factor degrading the dielectric constant and $Q \times f$ -value of the over-doped materials.

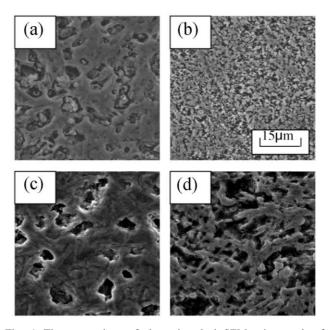


Fig. 4. The comparison of thermal etched SEM micrograph of samples, added with 33wt%, prepared by one-step process with (a) fused glass and (b) sol–gel derived glass; and by two-step process with (c) fused glass and (d) sol–gel derived glass.

3.2. Low temperature cofirable composite

To study the feasibility of using the composite of Ba–B–Si glass and BRT₁₁₄ dielectrics as LTCC materials, pellets of these composite materials were prepared and their characteristic were investigated. It is observed that the nature of glass, sol–gel derived or fused, and the processing route for composite materials markedly influences the microwave properties and density of the materials even for materials containing same composition of glass and dielectrics.

Generally, sol–gel derived glass possesses much more inferior reactivity than the fused-glass, such that the corresponding composites show a markedly lower density and lower dielectric constant. Fig. 4(a) and (b) reveals that the feature size is smaller in sol-gel glass/ dielectrics composite materials, inferring that the wettability of sol-gel derived glass is inferior to that of fused glass. Precalcining the glass/dielectric mixture profoundly improved the sinterability of the composite materials. The two-step processing increased the sintered density of fused glass/BRT₁₁₄ Composite materials from 3.76 to 4.04 g/cm³, when sintered at 950 °C, resulting in higher dielectric constant, ε_r increases from 12.4 to 13.4. In contrast, for the composite materials prepared from sol-gel derived glass, the precalcination insignificantly improved the characteristics of the samples. SEM micrographs shown in Fig. 4(c) and (d) indicate that the two-step process method increases the wettability of the glass pronouncedly, no matter whether the glass are fused or sol-gel derived.

4. Conclusions

This work investigated the effects of MgO and ZnO additives on the microwave properties and microstructure of BRT₁₁₄ = [(BaO·Re₂O₃·4TiO₂)·0.06(2Bi₂O₃·3TiO₂)]. Incorporation of small amount of ZnO pronouncedly improved the temperature coefficient of resonant frequency (τ_f) , markedly increased the density and dielectric constant (ε_r) , but degraded the $Q \times f$ factor for the BRT₁₁₄ materials, no matter whether the materials contain MgO or not. Microstructure and EDX analyses indicated that the secondary phases, equi-axis or striplike shape, were induced for materials containing too high concentration of ZnO.

Moreover, sol-gel derived and fused Ba-B-Si glass react with BRT₁₁₄ in a different way, which results in marked characteristics for LTCC materials consisting of Ba-B-Si glass and BRT₁₁₄ microwave dielectrics.

References

- Azough, F., Freer, R. and Tang, C. C., Determination of the structures of Ba-Ln-Ti-O microwave dielectric ceramics using synchrotron high resolution X-ray diffration. *Br. Ceram. Proc.*, 1996, 57, 111–117.
- Suvorov, D., Valant, M., Rawn, C. J. and Kolar, D., High permittivity microwave ceramics-correlation between structure, processing parameters and electrical properties. *Ceram. Trans.*, 1997. 88, 195–213.
- Chen, X. M. and Li, Y., A and B site cosubstituded B_{6-3x}Sm_{8+2x}Ti₁₈O₅₄ microwave dielectric ceramics. *J. Am. Ceram. Soc.*, 2002, 85, 3 579-584.
- Satheesh, V., Synthesis and role of Nd and Sm on the microwave dielectric properties of BaNd_{2(1-x)}Sm_{2x}Ti₅O₁₄ dielectric resonator. *Mater. Sci. Eng.*, 1997, B48, 202–204.
- Nishigaki, S., Kato, H., Yano, S. and Kamimura, R., Microwave dielectric properties of (Ba,Sr)O-Sm₂O₃-TiO₂ ceramics. *Ceram. Bull.*, 1987, 66(9), 1405–1410.
- Kolar, D., Gaberscek, S., Stadler, Z. and Suvorov, D., High stability, low loss dielectrics in system BaO-Nd₂O₃-TiO₂-Bi₂O₃. Ferroelectrics, 1980, 27, 260–272.
- Durand, J. M., Microwave characteristics of BaO-Bi₂O₃-Nd₂O₃-TiO₂ dielectric resonators. *J. Mater. Sci. Lett.*, 1987, 6, 134–136.
- Okawa, T., Imaeda, M. and Ohsato, H., Microwave dielectric properties of Bi-added Ba₄Nd_{9+1/3}Ti₁₈O₅₄ solid solutions. *Jpn. J. Appl. Phys.*, 2000, 39, 5645–5649.
- 9. Laffez, P., Desgardin, G. and Raveau, B., Microwave dielectric properties of doped $Ba_{6-x}(Sm_{1-y}Nd_y)8+(2x/3)Ti_{18}O_{54}$ oxides. J. Mater. Sci., 1995, **30**, 267–273.
- Yamada, A., Utsumi, Y. and Watarai, H., The effect of Mn addition on dielectric properties and microstructure of BaO-Nd₂O₃-TiO₂ ceramics. *Jpn. J. of Appl. Phys.*, 1991, 30(9B), 2350– 2353.
- Wakino, K., Minai, K. and Tamura, H., Microwave characteristic of (Zr,Sn)TiO₄ and BaO-PbO-Nd₂O₃-TiO₂ dielectric resonators. J. Am. Ceram. Soc., 1984, 67(4), 278–281.
- Wu, J. M. and Huang, H.-L., Microwave properties of zinc, barium and lead borosilicate glasses. *J. Non-Crystalline Solids*, 1999, 260, 116–124.
- Jantunen, H., Uusimaki, A., Rautioaho, R. and Leppavuori, S., Temperature coefficient of microwave resonancy of a LTCC system. J. Am. Ceram. Soc., 2002, 85(3), 697–699.
- Caballero, A. C., Fernandez, J. F., Moure, C. and Duran, P., ZnO-doped BaTiO3: microstructure and electrical properties. *J. Eur. Ceram. Soc.*, 1997, 17, 513–523.
- Nagai, T., Iijima, K., Hwang, H. J. and Sando, M., Effect of MgO doping on the phase transformations of BaTiO₃. J. Am. Ceram. Soc., 2000, 83(1), 107–112.