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Abstract Several process capability indices, includingCp,
Cpk, and Cpm, have been proposed to provide numerical
measures on manufacturing potential and actual perfor-
mance. Combining the advantages of those indices, a
more advanced index Cpmk is proposed, taking the pro-
cess variation, centre of the specification tolerance, and
the proximity to the target value into account, which has
been shown to be a useful capability index for manufac-
turing processes with two-sided specification limits. In
this paper, we consider the estimation of Cpmk, and we
develop an efficient algorithm to compute the lower
confidence bounds on Cpmk based on the estimation,
which presents ameasure on theminimummanufacturing
capability of the process based on the sample data. We
also provide tables for practitioners to use in measuring
their processes. A real-world example of current trans-
mitters taken from a microelectronics device manufac-
turing process is investigated to illustrate the applicability
of the proposed approach. Our implementation of the
existing statistical theory for manufacturing capability
assessment bridges the gap between the theoretical
development and the in-plant applications.

Keywords Process capability index Æ Lower confidence
bound

1 Introduction

Process capability indices, including Cp, Cpk, and Cpm

[1, 4], have been proposed in the manufacturing industry
to provide numerical measures on whether a process is
capable of reproducing items meeting the manufacturing

quality requirement preset in the factory. Combining the
advantages of those indices, Pearn et al. [5] proposed a
more advanced capability index called Cpmk, which has
been shown to be a useful capability index for processes
with two-sided specification limits. These indices are
defined as:

Cp ¼
USL� LSL

6r
;

Cpk ¼ min
USL� l

3r
;
l� LSL

3r

�
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�
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USL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðl� T Þ2

q ;

Cpmk ¼ min
USL � l

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðl� T Þ2

q ;
l� LSL

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðl� T Þ2

q
9>=
>;

8><
>:

where USL is the upper specification limit, LSL is the
lower specification limit, l is the process mean, r is the
process standard deviation, and T is the target value
predetermined by the product designer or the manu-
facturing engineer.

Criteria that have been considered for measuring
manufacturing capability include: process variation
(product quality consistency), process departure, process
yield, and process loss. The index Cp considers the
overall process variability relative to the manufacturing
tolerance; therefore, it only reflects the consistency of the
product quality characteristic. The index Cpk takes the
process mean into consideration but it can fail to dis-
tinguish between on-target processes and off-target
processes. It is a yield-based index providing lower
bounds on process yield. The index Cpm takes the
proximity of process mean from the target value into
account and is more sensitive to process departure than
Cpk. Since the design of Cpm is based on the average
process loss relative to the manufacturing tolerance, the
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index Cpm provides an upper bound on the average
process loss; Cpm has alternatively been called the
Taguchi index. The index Cpmk is constructed from
combining the modifications to Cp that produced Cpk

and Cpm, inheriting the merits of both indices. The
ranking of the four basic indices in terms of sensitivity to
the departure of process mean from the target value,
from the most sensitive one to the least sensitive, are (1)
Cpmk, (2) Cpm, (3) Cpk, and (4) Cp. For semiconductor
manufacturing, the index is appropriate for capability
measures due to high standards and stringent require-
ments on product quality and reliability.

We note that a manufacturing process satisfying the
capability requirement ‘‘Cpk ‡ c0’’ may not satisfy the
capability condition ‘‘Cpm ‡ c0’’. On the other hand, a
process satisfying the capability requirement ‘‘Cpm ‡ c0’’
may not satisfy the capability requirement ‘‘Cpk ‡ c0’’
either. But, a manufacturing process does satisfy both
capability requirements ‘‘Cpk ‡ c0’’ and ‘‘Cpm ‡ c0’’ if the
process satisfies the capability requirement ‘‘Cpmk ‡ c0’’
since Cpmk £ Cpk and Cpmk £ Cpm. Thus, the index
Cpmkdoes provide more capability assurance with respect
to process yield and process loss to the customers than
the other two indices Cpk and Cpm. This is a desired
property according to today’s modern quality improve-
ment theory, as reduction of process loss (variation from
the target) is just as important as increasing the process
yield (meeting the specifications). While Cpk is still the
more popular and widely used index, the index Cpmk is
considered to be the most useful index to date for pro-
cesses with two-sided manufacturing specifications. Chen
and Hsu [2] investigated the asymptotic sampling distri-
bution of the estimated Cpmk. Wright [14] derived an
explicit but rather complicated expression for the prob-
ability density function of the estimated Cpmk. Pearn
et al. [7] considered an extension of Cpmk for handling
process with asymmetric tolerances. Jessenberger and
Weihs [3] studied the behaviour of Cpmk, looking for
processes with asymmetric tolerances. Pearn et al. [8]
obtained an alternative, simpler form of the probability
density function of the estimated Cpmk and considered
capability testing based on Cpmk. Pearn et al. [9] inves-
tigated the statistical properties of the estimated Cpmk.
Pearn and Lin [10] focused on a Bayesian-like estimator
of Cpmk under a different manufacturing condition, in
which the probability p(l>m) is available. Pearn and Lin
[11] developed efficient SAS/Maple computer programs
to calculate the critical values and the p-value for testing
manufacturing capability based on Cpmk.

2 Manufacturing capability of a current transmitter
process

In practice, a manufacturing process is said to be
inadequate if Cpmk<1.00; this indicates that the
process is not adequate with respect to the manu-
facturing tolerances, and the process variation r2 needs
to be reduced (often by changing the design of the

experiments). The fraction of nonconformities for such
a process exceeds 2700 ppm (parts per million). A
manufacturing process is said to be marginally capable
if 1.00 £ Cpmk<1.33; this indicates that caution needs
to be taken regarding the process consistency and some
process control is required (usually using R or S con-
trol charts). The fraction of nonconformities for such a
process is within 66–2700 ppm. A manufacturing pro-
cess is said to be satisfactory if 1.33 £ Cpmk<1.67; this
indicates that process consistency is satisfactory, ma-
terial substitution may be allowed, and no stringent
precision control is required. The fraction of non-
conformities for such a process is within 0.54–66 ppm.
A manufacturing process is said to be excellent if
1.67 £ Cpmk<2.00; this indicates that process precision
exceeds satisfactory. The fraction of nonconformities
for such a process is within 0.002–0.54 ppm. Finally, a
manufacturing process is said to be super if
Cpmk ‡ 2.00. The fraction of nonconformities for such a
process is less than 0.002 ppm.

Table 1 summarizes the above five capability require-
ments and the corresponding Cpmk values. Some mini-
mum capability requirements have been recommended in
the manufacturing industry [15] for specific process types,
which must run under more designated stringent quality
conditions. For existing manufacturing processes, the
capability must be no less than 1.33, and for new manu-
facturing processes, the capability must be no less than
1.50. For existing manufacturing processes on safety,
strength, or critical parameters (such as manufacturing
soft drinks or chemical solutions bottled with glass con-
tainers), the capability must be no less than 1.50, and for
new manufacturing processes on safety, strength, or crit-
ical parameters, the capability must be no less than 1.67.

We consider the following case taken from a
microelectronic manufacturing factory making various
types of microelectronic devices. There is one pro-
duction line, controlled and monitored in the factory,
that makes current transmitters. The process investi-
gated is the making of a monolithic 4–20 mA, two-
wire current transmitter integrated circuit (2WCT IC)
designed for bridge input signals. This device provides
complete bridge excitation, instrumentation amplifier,
linearization, and the current output circuitry neces-
sary for high impedance strain gage sensors. The
instrumentation amplifier can be used over a wide
range of gain, accommodating a variety of input sig-
nals and sensors. Linearization circuitry consists of a

Table 1 Some commonly used capability requirement and the
corresponding precision conditions

Precision Condition Cpmk values

Inadequate Cpmk < 1.00
Marginally capable 1.00 £ Cpmk <1.33
Satisfactory 1.33 £ Cpmk <1.67
Excellent 1.67 £ Cpmk <2.00
Super 2.00 £ Cpmk
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second, fully independent instrumentation amplifier
that controls the bridge excitation voltage. It provides
the second-order correction to the transfer function,
typically achieving a 20:1 improvement in nonlinearity,
even with low cost transducers. Total unadjusted error
of the complete current transmitter, including the lin-
earized bridge, is low enough to permit use without
adjustment in many applications such as industrial
process control, factory automation, SCADA remote
data acquisition, weighting systems, and accelerome-
ters. This 2WCT IC product is available in 16-pin
plastic DIP and SOL-16 surface-mount packages, as
depicted in Fig. 1.

The total unadjusted error of the 2WCT IC is an
essential product characteristic, which has significant
impact on product quality. Because the total unadjusted
error is a two-sided specification, the upper specification
limit, USL, is set to 5 lA, and the lower specification
limit, LSL, is set to )5 lA,; therefore, the factory engi-
neers recommend using Cpmk for determining whether
products meet specifications and taking action to
improve the process if necessary. In practice, we never
know the true values of l and r2 nor Cpmk. Hence, these
parameters need to be estimated and sampling error
needs to be considered.

For a normally distributed process that is demon-
strably stable (under statistical control), Pearn et al. [5]
considered the maximum likelihood estimator (MLE) of
Cpmk as defined below:

Ĉpmk ¼ min
USL� X

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where �X ¼
Pn

i¼1 Xi=n and S2
n ¼

Pn
i¼1 ðXi � �X Þ2=n are

the MLEs of l and r2, respectively. We note that
S2

n þ �X � Tð Þ2 ¼
Pn

i¼1 ðXi � T Þ2=n, which is in the
denominator of Ĉpmk, is the uniformly minimum variance
unbiased estimator (UMVUE) of r2 þ l� Tð Þ2 ¼
E
�

X � Tð Þ2
�
in the denominator of Cpmk.

3 Sampling distribution of Cpmk

For symmetric manufacturing tolerance (T=m), Pearn
et al. [5] expressed the natural estimator Ĉpmk, alterna-
tively, as the following:

Ĉpmk ¼
d � �X � mj j

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

n þ ð�X � T Þ2
q

and showed that the distribution of the natural estima-
tor Ĉpmk is a mixture of the chi-square distribution and
the non-central chi-square distribution, as expressed in
the following:

Ĉpmk~
d
ffiffi
n
p

r � v01ðkÞ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2n�1 þ v02n�1ðkÞ

q

where v2n�1 is the chi-square distribution with n–1 de-
grees of freedom, v01ðkÞ is the non-central chi-square
distribution with one degree of freedom and non-cen-
trality parameter k, and v02n�1ðkÞ is the non-central chi-
square distribution with n–1 degrees of freedom and
non-centrality parameter k, where k ¼ nðl� T Þ2=r2.
The cumulative distribution of Ĉpmk, therefore, can be
found as the following [7, 8, 9]:

Fig. 1 A current transmitter
with bridge excitation and
linearization

FCpmk
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where b ¼ D= 1þ 3xð Þ½ �2, D ¼ n1=2 d=rð Þ, K ¼ nS2
n=r

2, FK

is the cumulative distribution function of K, and the
probability density function (PDF) is:

fCpmk
xð Þ ¼

B
P1
j¼0

pjBj
R1
0 Ij x; zð Þ dz


 �
; � 1

3\x\0;

B
P1
j¼0

pjBj
R 1=x
0 Ijðx; zÞ dz

n o
; x > 0;

0; otherwise;
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where pj ¼ ðk=2Þje�k=2=j!; B ¼ 12ðn1=2dÞn=


ð18r2Þn=2C

�½ðn� 1Þ=2�
�
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:

Using variable transformation and integration tech-
nique, for x>0, the cumulative distribution function
(CDF) of the estimated Cpmk may be alternatively ex-
pressed as the following, which can be used for calcu-
lating the critical values c0, the p-values, and the lower
confidence bounds C on Cpmk.

FĈpmk
ðxÞ ¼ 1�

Z b
ffiffi
n
p

=ð1þ3xÞ

0

G
ðb ffiffiffi

n
p � tÞ2

9x2
� t2

 !

� /ðt þ n
ffiffiffi
n
p
Þ þ /ðt � n

ffiffiffi
n
p
Þ

� �
dt;

where b ¼ d=r; n ¼ l� Tð Þ=r; G �ð Þ is the cumulative
distribution function of the chi-square distribution
v2n�1, and /(.) is the probability density function of the

standard normal distribution N(0,1). Note that for
l>USL or l<LSL, the capability Cpmk<0.0, and for
l=USL or l=LSL, the capability Cpmk=0.0. The
requirement of LSL <l<USL is a minimum cap-
ability requirement applying to most start-up
engineering applications or new processes. Figure 2a, b
displays the PDF plots of the MLE estimator Ĉpmk

with n=0.5 and 1, b=3, d=2, and n=10, 20, 50.
Figure 2c, d displays the CDF plots of the natural
estimator Ĉpmk with n=0.5 and 1, b=3, d=2, and
n=10, 20, 50.

4 Calculating manufacturing capability

Critical values are used for making decisions in man-
ufacturing capability testing with designated type-I
error a, which is the risk of misjudging an incapable
process (H0: Cpmk £ c0) as a capable one (H1:
Cpmk>c0). The p-values are used for making decisions
in manufacturing capability testing, which presents the
actual risk of misjudging an incapable process (H0:
Cpmk £ c0) as a capable one (H1: Cpmk>c0). Thus, if
p<a, we reject the null hypothesis and conclude that
the process is capable with actual type-I error p (rather
than a). Both approaches, the critical values and the
p-values, do not convey any information regarding the
minimal value of the actual manufacturing capability
(lower confidence bound). The development of the
lower confidence bound on the actual manufacturing
capability is essential. The lower confidence bound not

Fig. 2 a PDF plots of Ĉpmk

with n=1, b=3, d=2, and
n=10, 20, 50 (bottom to top).
b PDF plots of Ĉpmk with
n=0.5, b=3, d=2, and n=10,
20, 50 (bottom to top). c CDF
plots of Ĉpmk with n=1, b=3,
d=2, and n=10, 20, 50 (bottom
to top). d CDF plots of Ĉpmk

with n=0.5, b=3, d=2, and
n=10, 20, 50 (bottom to top)
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only gives us a clue about the minimal level of the
actual manufacturing performance, which is closely
related to the fraction of nonconforming units (defec-
tives), but is also useful in making decisions for
manufacturing capability testing. For processes with a
target value set to the mid-point of the manufacturing
specifications (T=m), the index Cpmk may be rewritten
as the following. When Cpmk=C, b=d/r can be

expressed as b ¼ 3C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
þ nj j.

Cpmk ¼ Cpmk ¼
d � l� Tj j

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l� Tð Þ2

q ¼ d=r� nj j
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p ;

where n ¼ l� Tð Þ=r.
Hence, given the sample of size n, the confidence level

c, the estimated value, Ĉpmk, and the parameter n, the
lower confidence bounds C can be obtained using the
numerical integration technique with iterations to solve
the following equation. In practice, the parameter
n=(l–T)/r is unknown, but it can be calculated from
the sample data as n̂ ¼ �X � Tð Þ=Sn. It should be noted
that the equation is an even function of n. Thus, for both
n=n0 and n=)n0 we have the same lower confidence
bounds.
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4.1 Algorithm for the LCB

Using Eq. 1, we may compute the lower confidence
bounds, C, and a Matlab algorithm called the LCB is
developed. Three auxiliary functions for evaluating C
are included here: (a) the cumulative distribution func-
tion of the chi-square v2n�1, G(Æ), (b) the probability
density function of the standard normal distribution
N(0,1), /(Æ), and (c) the function of numerical evaluate
integration using the recursive adaptive Simpson
quardrature – ‘‘quad’’. The algorithm used commonly is
known as the direct search.

1. Read the sample data (X1, X2, ..., Xn), LSL, USL, T,
and c.

2. Calculate �X , Sn, n̂, and Ĉpmk.
3. Compute an initial guess for C.
4. Find the lower confidence bound C on Cpmk.
5. Output the conclusive message, ‘‘The true value of

the manufacturing capability Cpmk is no less than the
C with 100c% level of confidence.’’

We implement the algorithm and develop the fol-
lowing Matlab computer program to compute the min-
imal manufacturing capability.

4.2 Matlab program for LCB

%-----------------------------------------------------------------------
% Input the sample data (X1, X2,..., Xn),

LSL, USL, T, and c.
%--------------------------------------------------------------------
[n1 usl lsl T r1]=read(‘Enter values of

sample size, lower specification limit,
upper specification limit, target value,

confidence level:’);
global b n epsilon ecpmk
n=n1;r=r1;
[data(1:n,1)]=
textread (‘eeprom.dat’,‘%f’,n);
%-------------------------------------------------------------------
% Compute X, Sn, n, and Cpmk.
%------------------------------------------------------------------
mdata=mean(data);

stddata=std(data)*sqrt((n-1)/n);
epsilon=(mdata-T)/stddata;
ecpmk=(min(usl-mdata,mdata-lsl))/

(3*sqrt(stddata^2+(mdata-T)^2));
fprintf(‘The Sample Mean is %g.\n’,

mdata);
fprintf(‘The Sample Standard Deviation

is %g.\n’,stddata)
fprintf(‘The Epsilon is %g.\n‘,epsilon)
fprintf(‘The Estimate of Cpmk is

%g.\n’,ecpmk)
%

-------------------------------------------------------------------------
% Compute a good initial value of C.
%

-------------------------------------------------------------------------
c=0.2:0.025:3;
for i=1:1:113
b=0;d=0;y=0;b=3*c(i)*sqrt(1+epsilon^2)
+abs(epsilon);
d=b*sqrt(n)/(1+3*ecpmk);
y=quad(‘cpmk’,0,d);
if (y-(1-r))>0 break
end; end
%-------------------------------------------------------------------
%Evaluate the lower confidence bound C on

Cpmk.
%-------------------------------------------------------------------
c=0.2+0.025*(i-1):-0.001:0.2;
for k=1:(0.025*(i-1)*1000)+1
b=0;d=0;y=0;b=3*c(k)*sqrt(1+epsilon^2)
+abs(epsilon);
d=b*sqrt(n)/(1+3*ecpmk);
y=quad(‘cpmk’,0,d);
if ((1-r)-y)>0.0001 break
end; end
%-------------------------------------------------------------------
% Output the conclusive message, ‘‘The

true value of the process
% capability Cpmk is no less than C with

100c% level of confidence.’’
%-------------------------------------------------------------------
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fprintf(‘The true value of the
manufacturing capability Cpmk is no

less than %g’, c(k))
fprintf(‘with %g’,r)
fprintf(‘level of confidence.’)
%-------------------------------------------------------------------
%Two function files included�read.m and

cpmk.m
%-------------------------------------------------------------------
function Q1=cpmk(t)
global n b epsilon ecpmk
Q1=chi2cdf(((((b*sqrt(n)-t).^2)./

(9*ecpmk^2))-t.^2),n-1).*…
(normpdf((t+epsilon*sqrt(n)))

+normpdf((t-epsilon*sqrt(n))));
function [a1, a2, a3, a4, a5]=read(labl)
if nargin==0, labl=‘?’; end
n=nargout;str=input(labl,‘s’);

str=[‘[’,str,‘]’];v=eval(str);
L=length(v);

if L>=n, v=v(1:n);
else, v=[v,zeros(1,n-L)]; end
for j=1:nargout
eval([‘a’, int2str(j),‘=v(j);’]); end
%-------------------------------------------------------------------
%The End
%-------------------------------------------------------------------

5 Manufacturing capability and process parameter n

Since the process parameters l and r are unknown, the
process characteristic parameter n=(l–T)/r is also un-
known. Thus, it has to be estimated further in real
applications, normally by substituting l and r with its
sample mean and sample standard deviation. Such an
approach certainly would make our approach less reli-
able as the level of the confidence c cannot be ensured. To
eliminate the need to further estimate the parameter n, we
examine the behaviour of the lower confidence bounds C
as the function of the process characteristic n.

We perform extensive computations to calculate the
lower confidence bounds C for n=0(0.05) 3.00,
Ĉpmk ¼ 0:7ð0:1Þ3:0; and n=5(5)200. We note that
n=(l–T)/r=0(0.05)3.00 covers a wide range of appli-
cations with process capability Cpmk ‡ 0. The result
indicates that the lower confidence bound C obtains its
minimum either at n=0.50 (for most cases), or at 0.45
(in a few cases), and the difference between the two
lower confidence bounds is less than 5·10)4 (possibly
due to computational precision errors). In fact, the
lower confidence bound value C first decreases as n
increases, obtains its minimum value at n=0.45 or 0.5,
then increases again within the range of n2[0.5, 3.0].
Hence, for practical purposes we may solve Eq. 1 for
n=0.50 to obtain the required lower confidence bounds
for a given Ĉpmk, n and c, without having to further

estimate the parameter n. Thus, the level of confidence
c can be ensured, and the decisions made based on
such approach must be reliable.

We note the above result is almost impossible to
prove mathematically. It is important to recognize that
the lower confidence bounds obtained from solving
Eq. 1 with n=0.50 takes the minimal value among all
possible C values, and therefore the capability estima-
tion is conservative. But, given that the process param-
eter n is always unknown in real applications (as the
process mean l and the process variation r are
unknown), C must be the maximum value for which the
confidence level c can be assured. Any other value of C¢
that is greater than the minimal value C (C¢>C) would
certainly result in a confidence level c¢ less than the
preset c (c¢<c). Therefore, our approach provides the
most accurate solution among other existing estimations
for the manufacturing capability.

Figure 3a–d plots the curves of the lower confidence
bound, C, versus the parameter n for Ĉpmk=0.7, 1.2, 2.0,
3.0, respectively, with c=0.95. For bottom curve 1,
sample size n=30. For bottom curve 2, sample size
n=50; for bottom curve 3, sample size n=70; for top
curve 2, sample size n=100; for top curve 1, sample size
n=200. We note that for all Ĉpmk values we investigated,
as n increases the discrepancy between those C values
with different n values decreases. Tables 2 and 3 tabulate
the lower confidence bound, C, for Ĉpmk=0.7(0.1)3.0,
n=5(5)200, and c=0.95 with the process parameter n set
to n=0.50. For example, if Ĉpmk=1.4, then with n=100
we find the lower confidence bound C=1.208, and so the
minimal manufacturing capability is no less than 1.297,

Fig. 3 a Plots of C versus |n| for Ĉpmk=0.7, c=0.95, n=30, 50, 70,
100, 200 (bottom to top). b Plots of C versus |n| for Ĉpmk=1.2,
c=0.95, n= 30, 50, 70, 100, 200 (bottom to top). c Plots of C versus
|n| for Ĉpmk=2.0, c=0.95, n= 30, 50, 70, 100, 200 (bottom to top).
d Plots of C versus |n| for Ĉpmk=3.0, c=0.95, n= 30, 50, 70, 100,
200 (bottom to top)
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i.e. Cpmk>1.208. Consequently, the manufacturing yield
is no less than 99.97% and the fraction of nonconfo-
rmities is no greater than 290.08 ppm.

6 Data analysis and manufacturing capability
computation

We collected sample data of the total unadjusted error
from 150 current transmitters (displayed in Table 4).
Figures 4 and 5 display the histogram and normal
probability plot of the 150 observations. The sample
data appears to be normal. The Shapiro-Wilk test is also
used to check whether the sample data is normal. The
statistic W is found to be 0.9934 with p-value 0.7283.
Thus, we conclude that the sample data can be regarded
as taken from a normal process.

In order to measure manufacturing capability of the
current transmitter process, we execute the Matlab

program to obtain the lower confidence bound on Cpmk

(with process characteristic set to n=(l)T)/r=0.5).
The program reads the sample data file, and the input
of sample size n=150, LSL=)5, USL=5, target value
T=0, and confidence level c=0.95, then outputs with
the sample mean, X�=0.187, the sample standard devi-
ation Sn=1.081, the estimator Ĉpmk=1.463, and the
lower confidence bound C=1.299. The actual program
execution output is listed below. We therefore conclude
that the true value of the process capability Cpmk is no
less than 1.299 with a 95% level of confidence. The
2WCT manufacturing process is capable of reproduc-
ing products with a yield no less than 99.9902% and
the fraction of nonconformities is no greater than
97.39ppm. We note that the conclusions made here
have used the particular value of n=0.5 in finding the
lower confidence bound; thus, the confidence level is
ensured to be no less than 0.95 (or the Type I error is
no greater than 0.05).

Table 2 Lower confidence bounds C of Cpmk for Ĉpmk=0.7(0.1)1.8, n=5(5)200, c=0.95

n 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

5 0.247 0.297 0.346 0.395 0.444 0.493 0.542 0.591 0.637 0.682 0.729 0.791
10 0.358 0.423 0.488 0.551 0.616 0.679 0.741 0.803 0.867 0.930 0.993 1.056
15 0.413 0.484 0.556 0.627 0.698 0.770 0.841 0.912 0.983 1.054 1.125 1.195
20 0.447 0.523 0.598 0.673 0.747 0.822 0.897 0.972 1.047 1.121 1.196 1.270
25 0.466 0.545 0.623 0.700 0.778 0.855 0.933 1.010 1.087 1.164 1.241 1.318
30 0.488 0.568 0.648 0.728 0.808 0.887 0.966 1.046 1.125 1.204 1.284 1.363
35 0.505 0.586 0.668 0.749 0.830 0.911 0.992 1.073 1.154 1.235 1.316 1.397
40 0.518 0.601 0.683 0.766 0.848 0.931 1.013 1.095 1.177 1.259 1.342 1.424
45 0.529 0.612 0.696 0.780 0.863 0.946 1.030 1.113 1.196 1.279 1.363 1.446
50 0.537 0.622 0.707 0.791 0.875 0.960 1044 1128 1.212 1.296 1.380 1.464
55 0.545 0.631 0.716 0.801 0.886 0.971 1.056 1.141 1.226 1.310 1.395 1.480
60 0.552 0.638 0.724 0.809 0.895 0.981 1.066 1.152 1.237 1.323 1.408 1.494
65 0.558 0.644 0.731 0.817 0.903 0.989 1.076 1.162 1.248 1.334 1.420 1.506
70 0.563 0.650 0.737 0.824 0.910 0.997 1.084 1.170 1.257 1.344 1.430 1.517
75 0.567 0.655 0.742 0.830 0.917 1.004 1.091 1.178 1.265 1.352 1.439 1.526
80 0.572 0.660 0.747 0.835 0.923 1.010 1.098 1.185 1.273 1.360 1.448 1.535
85 0.575 0.664 0.752 0.840 0.928 1.016 1.104 1.192 1.279 1.367 1.455 1.543
90 0.579 0.668 0.756 0.844 0.933 1.021 1.109 1.198 1.286 1.374 1.462 1.550
95 0.582 0.671 0.760 0.849 0.937 1.026 1.114 1.203 1.291 1.380 1.468 1.557
100 0.585 0.675 0.763 0.852 0.941 1.030 1.119 1.208 1.297 1.385 1.474 1.563
105 0.588 0.677 0.767 0.856 0.945 1.034 1.123 1.213 1.302 1.391 1.480 1.569
110 0.590 0.680 0.770 0.859 0.949 1.038 1.128 1.217 1.306 1.395 1.485 1.574
115 0.593 0.683 0.773 0.862 0.952 1.042 1.131 1.221 1.310 1.400 1.489 1.579
120 0.595 0.685 0.775 0.865 0.955 1.045 1.135 1.225 1.314 1.404 1.494 1.584
125 0.597 0.697 0.778 0.868 0.958 1.048 1.138 1.228 1.318 1.408 1.498 1.588
130 0.599 0.690 0.780 0.870 0.961 1.051 1.141 1.232 1.322 1.412 1.502 1.592
135 0.601 0.692 0.782 0.873 0.963 1.054 1.144 1.235 1.325 1.415 1.506 1.596
140 0.603 0.694 0.784 0.875 0.966 1.056 1.147 1.238 1.328 1.419 1.509 1.600
145 0.604 0.695 0.786 0.877 0.968 1.059 1.150 1.240 1.331 1.422 1.513 1.603
150 0.606 0.697 0.788 0.879 0.970 1.061 1.152 1.243 1.334 1.425 1.516 1.606
155 0.608 0.699 0.790 0.881 0.972 1.064 1.155 1.246 1.337 1.428 1.519 1.610
160 0.609 0.701 0.792 0.883 0.974 1.066 1.157 1.248 1.339 1.430 1.522 1.613
165 0.610 0.702 0.794 0.885 0.976 1.068 1.159 1.250 1.342 1.433 1.524 1.616
170 0.612 0.704 0.795 0.887 0.978 1.070 1.161 1.253 1.344 1.435 1.527 1.618
175 0.613 0.705 0.797 0.888 0.980 1.072 1.163 1.255 1.346 1.438 1.529 1.621
180 0.614 0.706 0.798 0.890 0.982 1.073 1.165 1.257 1.348 1.440 1.532 1.623
185 0.615 0.707 0.799 0.891 0.983 1.075 1.167 1.259 1.351 1.442 1.534 1.626
190 0.616 0.709 0.801 0.893 0.985 1.077 1.169 1.261 1.352 1.444 1.536 1.628
195 0.617 0.710 0.802 0.894 0.986 1.078 1.170 1.262 1.354 1.446 1.538 1.630
200 0.619 0.711 0.803 0.895 0.988 1.080 1.172 1.264 1.356 1.448 1.540 1.632
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Table 3 Lower confidence bounds C of Cpmk for Ĉpmk=1.9(0.1)3.0, n=5(5)200, c=0.95

n 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

5 0.870 0.916 0.961 0.1007 1.057 1.107 1.157 1.218 1.274 1.329 1.402 1.492
10 1.133 1.195 1.257 1.319 1.381 1.453 1.525 1.587 1.649 1.700 1.780 1.850
15 1.268 1.338 1.417 1.487 1.557 1.626 1.696 1.765 1.840 1.909 1.984 2.050
20 1.342 1.421 1.495 1.569 1.643 1.720 1.796 1.870 1.944 2.020 2.094 2.168
25 1.396 1.473 1.550 1.626 1.703 1.780 1.857 1.934 2.011 2.088 2.165 2.242
30 1.442 1.521 1.600 1.679 1.758 1.837 1.916 1.995 2.074 2.153 2.232 2.311
35 1.477 1.558 1.639 1.720 1.800 1.881 1.962 2.042 2.123 2.203 2.284 2.365
40 1.506 1.588 1.670 1.752 1.834 1.916 1.998 2.079 2.161 2.243 2.325 2.407
45 1.529 1.612 1.695 1.778 1.861 1.944 2.027 2.110 2.193 2.276 2.359 2.442
50 1.548 1.632 1.716 1.800 1.884 1.968 2.052 2.136 2.219 2.303 2.387 2.471
55 1.565 1.649 1.734 1.819 1.903 1.988 2.073 2.157 2.242 2.327 2.411 2.496
60 1.579 1.664 1.750 1.835 1.921 2.006 2.091 2.176 2.262 2.347 2.432 2.518
65 1.592 1.678 1.764 1.850 1.936 2.021 2.107 2.193 2.279 2.365 2.451 2.537
70 1.603 1.690 1.776 1.862 1.949 2.035 2.122 2.208 2.295 2.381 2.467 2.554
75 1.613 1.700 1.787 1.874 1.961 2.048 2.135 2.221 2.308 2.395 2.482 2.569
80 1.622 1.710 1.797 1.884 1.972 2.059 2.146 2.234 2.321 2.408 2.495 2.583
85 1.631 1.718 1.806 1.894 1.981 2.069 2.157 2.245 2.332 2.420 2.508 2.595
90 1.638 1.726 1.814 1.902 1.990 2.079 2.167 2.255 2.343 2.431 2.519 2.607
95 1.645 1.734 1.822 1.910 1.999 2.087 2.175 2.264 2.352 2.441 2.529 2.617
100 1.652 1.740 1.829 1.918 2.006 2.095 2.184 2.272 2.361 2.450 2.538 2.627
105 1.658 1.747 1.836 1.925 2.014 2.102 2.191 2.280 2.369 2.458 2.547 2.636
110 1.663 1.752 1.842 1.931 2.020 2.109 2.198 2.288 2.377 2.466 2.555 2.644
115 1.668 1.758 1.847 1.937 2.026 2.116 2.205 2.295 2.384 2.473 2.563 2.652
120 1.673 1.763 1.853 1.942 2.032 2.122 2.211 2.300 2.391 2.480 2.570 2.660
125 1.678 1.768 1.858 1.948 2.037 2.127 2.217 2.307 2.397 2.487 2.577 2.666
130 1.682 1.772 1.862 1.953 2.043 2.133 2.223 2.313 2.403 2.493 2.583 2.673
135 1.686 1.777 1.867 1.957 2.047 2.138 2.228 2.318 2.408 2.499 2.589 2.679
140 1.690 1.781 1.871 1.962 2.052 2.142 2.233 2.323 2.414 2.504 2.594 2.685
145 1.694 1.784 1.875 1.966 2.056 2.147 2.237 2.328 2.419 2.509 2.600 2.690
150 1.697 1.788 1.879 1.970 2.060 2.151 2.242 2.333 2.423 2.514 2.605 2.696
155 1.700 1.792 1.882 1.973 2.064 2.155 2.246 2.337 2.428 2.519 2.610 2.700
160 1.704 1.795 1.886 1.977 2.068 2.159 2.250 2.341 2.432 2.523 2.614 2.705
165 1.707 1.798 1.889 1.980 2.072 2.163 2.254 2.345 2.436 2.527 2.619 2.710
170 1.710 1.800 1.892 1.984 2.075 2.166 2.258 2.349 2.440 2.532 2.623 2.714
175 1.712 1.804 1.895 1.987 2.078 2.170 2.261 2.353 2.444 2.535 2.627 2.718
180 1.715 1.807 1.898 1.990 2.081 2.173 2.264 2.356 2.448 2.539 2.631 2.722
185 1.717 1.809 1.901 1.993 2.084 2.176 2.268 2.359 2.451 2.543 2.634 2.726
190 1.720 1.812 1.904 1.995 2.087 2.179 2.271 2.363 2.454 2.546 2.638 2.730
195 1.722 1.814 1.906 1.998 2.090 2.182 2.274 2.366 2.457 2.549 2.641 2.733
200 1.724 1.816 1.909 2.000 2.093 2.185 2.277 2.369 2.461 2.553 2.644 2.736

Table 4 The collected 150
sample observations (lA) 0.10 0.84 )0.28 )0.14 )0.46 )0.54 0.76 0.08 )0.90 0.58

0.16 0.01 0.64 )1.02 )2.33 0.24 0.22 )1.17 0.50 0.78
0.76 )2.03 1.03 0.00 )1.12 )0.63 )0.07 )1.60 )1.15 1.64
)0.43 0.38 2.55 1.54 1.39 0.88 1.63 )0.54 )0.15 )0.37
0.07 1.98 )1.26 )1.00 0.11 )0.05 2.28 0.54 )0.81 0.52
)0.25 1.35 )0.89 0.93 0.65 0.76 )0.34 )0.37 )1.06 0.22
0.14 )1.51 1.37 )0.43 1.27 0.97 0.34 )1.24 )0.89 )0.41
1.92 0.14 )0.20 0.84 )2.10 0.14 )0.66 1.41 )0.21 2.58
)0.44 )0.52 )1.29 )0.98 )0.48 1.21 0.98 )0.55 0.42 )0.05
)1.25 )0.90 0.58 0.32 )0.54 2.77 )2.37 0.22 0.10 )1.32
0.75 )1.13 1.94 )1.98 )0.89 0.81 1.32 0.23 1.40 2.18
)0.76 0.55 1.01 )0.31 0.03 0.22 0.47 )0.04 )0.04 0.59
0.27 )0.24 2.38 0.74 1.90 1.23 0.52 0.67 )1.44 )1.00
)0.46 0.29 0.79 )0.12 0.19 0.29 1.56 )0.06 0.24 0.91
0.82 )0.17 2.28 1.59 1.58 )0.99 3.07 )1.60 0.31 1.63
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6.1 Matlab execution input and output

——————————————————————————————

Input:
Enter values of sample size, lower

specification limit, upper specification
limit, target value, confidence level:
150,-5,5,0,0.95

Output:
The Sample Mean is 0.186589.
The Sample Standard Deviation is

1.08109.
The Epsilon 0.5.
The Estimate of Cpmk is 1.4625.
The true value of the manufacturing

capability Cpmk is no less than 1.299 with
0.95 level of confidence.

————————————————————————————

6.2 Multiple control chart samples application

Many of the existing 2WCT IC manufacturing facto-
ries have implemented a daily-based production control
plan for monitoring/controlling process stability. A
routine data collection procedure is executed to run
�X and S2 control charts (for moderate sample sizes).
The past ‘‘in control’’ data, consisting of multiple
samples of m groups with variable sample size
ni ¼ xi1; xi2; :::; xinið Þ), is then analysed to compute the
manufacturing capability. Thus, manufacturing infor-
mation regarding product quality characteristics is de-
rived from multiple samples rather than one single
sample. Under the assumption that these samples are
taken from the normal distribution N(l, r2), we
consider the following estimators of process mean and
process standard deviation:

�Xi ¼
Xni

j¼1
xij=ni

Si ¼ ðniÞ�1
Xni

j¼1
xij � �Xi
� �2" #1=2

for the ith sample mean and the sample standard devi-
ation, respectively. Then, ��X ¼

Pms
i¼1

�Xi=ms and S2
p ¼Pms

i¼1 niS2
i =
Pms

i¼1 ni are used for calculating the manu-
facturing capability Cpmk. For cases with multiple
samples the natural estimator of Cpmk can be expressed
as below. The derivations of the sampling distribution,
lower confidence bounds, and the manufacturing capa-
bility calculations for cases with multiple samples can be
performed using the same techniques for cases with one
single sample, although the derivations and calculations
may be more tedious and complicated.

Ĉpmk ¼ min
USL� �X

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

p þ ð�X � T Þ2
q ;

�X � LSL

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

p þ ð�X � T Þ2
q

8><
>:

9>=
>;:

6.3 MPPAC control chart application

For factories having a group of processes that need to be
monitored and controlled, it would be effective to use
the MPPAC (multi-process performance analysis chart).
The MPPAC can be used to illustrate and analyse the
manufacturing capability for multiple processes, which
conveys critical information regarding the departure
of the process mean from the target value, process
variability, and capability levels, and provides a guide-
line of directions for capability improvement. Singhal
[13] introduced the Cpk MPPAC for monitoring
multiple processes. Pearn and Chen [6] proposed a
modification to the Cpk MPPAC, adding the more

Fig. 4 Histogram of the sample data

Fig. 5 The normal probability plot
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advanced capability index Cpm to identify the problems
causing the processes to fail to centre around the target.
Pearn et al. [9] developed the MPPAC based on the
incapability index Cpp. Using the same technique, the
Cpmk MPPAC can be developed to monitor the capa-
bility for multiple 2WCT IC manufacturing processes.
Using the Cpmk MPPAC, practitioners or engineers can
simultaneously analyse the performance of multiple
processes based on one single chart. The Cpmk MPPAC
also prioritizes the order of the processes that the quality
improvement effort should focus on, either to move the
process mean closer to the target value or reduce the
process variation. The developed confidence lower
bounds can then be applied to the Cpmk MPPAC to
ensure the accuracy of the MPPAC for given sample
sizes.

7 Conclusions

Combining the merits of the two earlier indices, Cpk and
Cpm, the index Cpmk has been proposed to provide
numerical measures of process performance. The index
Cpmk takes into account the location of the process mean
between the two specification limits, the proximity to the
target value, and the process variation. It has been
shown to be a useful capability index for processes with
two-sided specification limits. Based on the complicated
probability density function of the natural estimator of
Cpmk, we developed an efficient algorithm to compute
the lower confidence bounds on Cpmk. The lower confi-
dence bound presents a measure of the minimum capa-
bility of the process based on the sample data. We
investigated the behaviour of the lower confidence
bound values versus the process characteristic parame-
ter, n=(l)T)/r, and concluded that the lower confi-
dence bound obtains its minimal value at n=0.5. The
proposed decision making procedure ensures that the
risk of making wrong decision will be no greater than
the preset Type I error 1)c. We also provided a Matlab
computer program for engineers or practitioners to use

in measuring their processes. A real-world example on
two-wire current transmitter integrated circuit (2WCT
IC) manufacturing process, taken from a microelec-
tronics device manufacturing factory, was investigated.
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