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To allow embedded operating systems to update their components on-the-fly, dy-

namic update mechanism is required for operating systems to be patched or added extra 
functionalities in without the need of rebooting the machines. However, embedded en-
vironments are usually resource-limited in terms of memory size, processing power, 
power consumption, and network bandwidth. Thus, dynamic update for embedded oper-
ating systems should be designed to make the best use of limited resources. In this paper, 
a server-side pre-linking mechanism is proposed to make dynamic updates of embedded 
operating system efficiently. Applying this mechanism can reduce not only memory us-
age and CPU processing time for dynamic update, but also data transmission size for 
updated components. Power consumption can be reduced as well. We have implemented 
this mechanism in LyraOS which is a component-based embedded operating system. 
Performance evaluation shows that the size of updated components applying the pro-
posed dynamic update mechanism can be 65-86% smaller than applying the approach of 
Linux loadable kernel modules. Especially, the overheads in embedded clients are mini-
mal since the component linking time in embedded clients is eliminated.  
 
Keywords: embedded system, operating system, dynamic update, modules, memory pro- 
tection 
 
 

1. INTRODUCTION 
 

Component-oriented development methodology has become very popular in em-
bedded operating system design since embedded applications and hardware devices are 
more and more versatile and complex. Through the support of component libraries, em-
bedded operating systems can be configured to meet the requirements of versatile hard-
ware devices and different application needs. In this way, operating system developers or 
researchers can focus on their interested components without understanding the whole 
operating systems. The development time of an embedded system can thus be decreased. 

Recently, providing dynamic component update is a critical design trend in compo-
nent-based operating systems. Dynamic component update allows operating systems to 
update their components on-the-fly without rebooting the whole systems or stopping any 
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system services. This opens up a wide range of opportunities: fixing bugs, upgrading 
services, improving algorithms, adding extra functionalities, runtime optimization, etc. 
Although many operating systems have already supported different kinds of mechanisms 
to extend their kernels, they usually do not aim at resource-limited environments. For 
instance, Linux uses a technique called loadable kernel modules (LKMs) [1]. By using 
this technique, Linux can load modules, such as device drivers, file systems, or system 
call to extend the kernel at run time. However, LKMs may take lots of overheads in em-
bedded environments.  

Since embedded systems are usually resource limited, in order to keep the added 
overheads minimal while providing dynamic update in an embedded operating system, 
we propose the server-side pre-linking mechanism which is a client-server model. Under 
this mechanism, components are pre-linked and stored in the server hosts. Embedded 
clients that request components do not need to perform dynamic component linking 
when new components are added into kernel, which saves the linking overhead in em-
bedded clients. Component linking is actually performed on the server before the com-
ponents are requested by clients, which saves the processing time on server hosts when 
the components are requested by clients. Applying this server-side pre-linking mecha-
nism, the size of the components on server hosts can be reduced since they are pre-linked 
and do not need symbol table information for relocation and linking. Therefore, memory 
usage and data transmission size for updated components can be also reduced. Besides, 
CPU processing time for dynamic update and power consumption can be decreased as 
well.  

To demonstrate the feasibility of the proposed dynamic component update and com-
ponent protection mechanisms, we have designed and implemented them in LyraOS [2-4] 
operating system. LyraOS is a research operating system designed for embedded systems, 
which uses component-oriented design in the system development. However, just like 
many embedded operating systems such as eCos [5] and MicroC/OS-II [6], originally, 
LyraOS can only be statically configured at source-code level and the system cannot be 
updated or extended on-the-fly. Performance evaluations show that the sizes of the com-
ponents applying the proposed dynamic update mechanism can be 65-86% smaller than 
the ones applying the approach of Linux loadable kernel modules. The size of the loader 
responsible for loading downloaded components into embedded kernel in LyraOS is only 
about 1% and 7% as compared with that of the loader for Linux loadable kernel module 
of Linux 2.4 and Linux 2.6. The component loading time also takes only a few millisec-
onds since embedded clients do not need to perform dynamic component linking. The 
component invocation time also adds only a few overheads caused by providing dynamic 
component exported interface and memory protection for un-trusted components. 

Although the proposed dynamic component update and component protection me-  
chanisms are implemented in LyraOS operating system, these experiences can serve as 
the reference for other component-based embedded operating systems that require an 
efficient and safe mechanism to dynamically update their components. 

The rest of this paper is organized as follows. Section 2 introduces the LyraOS op-
erating system. Section 3 details the design and implementation of the proposed dynamic 
update mechanism. Section 4 shows performance evaluation results. Section 5 introduces 
the related work and section 6 concludes this paper. 
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2. LYRAOS 

LyraOS [2-4] is a component-based operating system which aims at serving as a re-
search vehicle for operating systems and providing a set of well-designed and clear-in-  
terface system software components that are ready for Internet PC, hand-held PC, em-
bedded systems, etc. It was implemented mostly in C++ and few assembly codes. It is 
designed to abstract the hardware resources of computer systems such that low-level 
machine dependent layer is clearly cut from higher-level system semantics. Thus, it can 
be easily ported to different hardware architectures [4]. 

Fig. 1 shows system architecture of LyraOS. Each system component is completely 
separate, self-contained, and highly modular. Components in LyraOS can be statically 
configured at source-code level. In addition to being light-weight system software, it is a 
time-sharing multi-threaded microkernel. Threads can be dynamically created and de-
leted, and thread priorities can be dynamically adjusted. Besides, it provides a preemp-
tive prioritized scheduling and supports various mechanisms for passing signals, sema-
phores, and messages between threads. However, just like many embedded operating 
systems such as eCos [5] and MicroC/OS-II [6], it is a single-address-space operating 
system and runs only in kernel mode without memory protection. 
 

 
Fig. 1. LyraOS system architecture. 

 
On top of the microkernel, a micro window component with Windows OS look and 

feel is provided [2]. Besides, the LyraFILE component [7], a light-weight VFAT-based 
file system, supports both RAM-based and disk-based storages. Especially, LyraOS pro-
vides the Linux device driver emulation environment [8, 9] to make use of Linux device 
drivers. Under this emulation environment, Linux device driver codes can be integrated 
into LyraOS without modification. Furthermore, the LyraNET [10] component, a TCP/IP 
protocol stack derived from Linux TCP/IP codes [11], is provided. For adapting into 
embedded systems, LyraNET is implemented with the zero-copy mechanism for reduc-
ing protocol processing overhead and memory usage. 
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3. DESIGN AND IMPLEMENTATION 

This section presents the proposed dynamic component update mechanism in Lyra- 
OS in details. It includes the implementation of server-side pre-linking and dynamic up-
date in embedded clients.  

 
3.1 Architecture Overview  
 

According to the implementation of the component-based LyraOS operating system, 
an updatable unit may be a set of functions and global variables or an encapsulation of 
data members and methods. In both cases, software developers usually need to define a 
clear interface to the unit or make the unit inherit the interface from a virtual base class. 
Originally, other components should invoke the unit only through the static interface. 

In this research, the proposed dynamic component update mechanism is imple-
mented in LyraOS. Components are executable and linkable format (ELF) [12] files, and 
they can be a set of functions, global variables, or C++ classes. They do not have to use 
static interface. The only thing that updatable components need to do is to register their 
exported methods to the component manager. Then, the external components will invoke 
these methods through the component manager. 

 

 
Fig. 2. Trusted and un-trusted components. 

 

Additionally, to save system overhead while making LyraOS system more flexible 
and safe, all of the updatable components are separated into trusted components and 
un-trusted components as well. In order to avoid downloading un-trusted components to 
cause system crash, the original LyraOS is divided from single mode into user and kernel 
modes like Fig. 2. Trusted components are located in kernel mode and can invoke system 
services directly. Un-trusted ones are located in user mode and run in different protection 
domains enforced by hardware memory protection. Components permit system services 
invocation and communicate with other ones only through the system call invocation 
when they are un-trusted. 

In LyraOS system using the proposed server-side pre-linking mechanism, all the 
dynamically updatable components are located on the server host and are pre-linked. A 
component server running on the server-side is responsible for responding to clients’ 
requests and then loading and transmitting these pre-linked components to the embedded 
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clients. A dynamic loader called LyraLD within the operating system kernel on the em-
bedded client is responsible for downloading and installing pre-linked components. A 
component manager manages all of the components on the client-side and provides an 
interface for client-side applications to add, remove, or invoke them. For example, if an 
embedded client wants to add a new functionality, it will send a request through the 
component manager interface to the LyraLD. LyraLD will then send a request to a re-
mote component server to download a new component. The component server will re-
spond with a pre-linked component which provides the functionality requested. Finally, 
the LyraLD will download and install this component directly without the need of linking 
or relocation. 

 
3.2 Server-side Pre-linking 
 

Since embedded environments are usually resource-limited, the server-side compo-
nent pre-linking mechanism is proposed and implemented to keep the imposed overheads 
minimal while providing dynamic component update in an embedded operating system. 

As mentioned in section 3.1, components in our design and implementation have 
been linked on the server host before they are requested by embedded clients. These 
components are linked according to their types (i.e., trusted or un-trusted) and symbol 
tables of embedded clients. The trusted component will be linked with the kernel symbol 
of the embedded client while the un-trusted one will be linked with the user library sym-
bol table of the client. Especially, we do not need to know where the component will 
reside in the embedded client’s memory (i.e., the starting address of the component). All 
of the updatable components will be linked at the same starting virtual address through 
the linker script we have defined. Then the components will be relocated by embedded 
client’s relocation hardware that will be described later. Because the updatable compo-
nents can be linked in a prior time instead of on demand, the component processing time 
on the server host can be saved when they are requested by clients. 

Fig. 3 shows the proposed server-side pre-linking architecture. The component 
server located on the server host receives requests from the embedded client kernels and 
performs tasks as follows. If a pre-linked component is found in the pre-linked compo-
nent storage, the component server will send the pre-linked component to the embedded 
clients immediately. Otherwise, the component server will link the components on de-
mand. 

 

 
Fig. 3. Server-side pre-linking architecture. 
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The merits of the proposed approach can be summarized as follows. This server-  
side component pre-linking mechanism can save not only the memory and the disk stor-
age on embedded clients but also the component transmitting time. This is because the 
sizes of updatable components are reduced since components are pre-linked and do not 
need symbol table information for relocation and linking. Besides, it eliminates the need 
for clients to perform dynamic linking, which can reduce processing overhead for em-
bedded clients. The power consumption of embedded devices can thus be decreased. 

 
3.3 Client-side Loading 
 

A dynamic component loader called LyraLD and a component manager are devel-
oped in LyraOS to perform dynamic component loading and component management. 
Both the LyraLD and the component manager reside in the kernel level. Currently, the 
LyraLD uses the trivial file transfer protocol (TFTP) [13] to download pre-linked com-
ponents from the component server.  

 

 
Fig. 4. Client-side loading. 

 

Fig. 4 shows the steps of client-side component loading and installing. First, the 
component manager receives an invocation request to load a new component. Second, 
the component manager checks whether the component exists or not. If the component is 
not found in the client side, the component manager will call LyraLD to send a request to 
the remote component server to download this component. Third, the LyraLD downloads 
a pre-linked component image returned from the remote component server to the cli-
ent-side memory. Fourth, after the LyraLD reads the pre-linked component image’s 
header from the memory address where the image is located, the LyraLD will verify the 
pre-linked component image, initialize component environments, and move each section 
of the image to the virtual address that the ELF header specified. Finally, the LyraLD 
will jump to the entry address of the component image to execute the component’s ini-
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tialization function that registers the component exported methods to the component 
manager. 

Table 1 shows our component manager API. Components can be added, removed, 
updated, and invoked through these APIs. In order to provide dynamic component ex-
ported interface, the register method can register the component exported methods to the 
component method vector table when a component is loaded. As a component is down-  
loaded and loaded into memory, the LyraLD will get the entry point address from the 
header of the component and then jump to this address to perform the registration of 
component’s methods. 

Table 1. Component manager API. 

Methods Descriptions 

CM::Add(name, ver) 
The CM::Add() method adds a new component name with 
version ver from a remote component server and returns 
component’s ID. 

CM::GetCID(name, ver) The CM::GetCID() method returns component ID of com-
ponent name (version ver). 

CM::Invoke(cid, mid, arg) 
The CM::Invoke() method invokes a method mid of a com-
ponent cid and passes arguments arg through the component 
manager. 

CM::Register (mid, fptr) The CM::Register() method registers method’s ID mid and 
its method address fptr to the component manager. 

CM::Remove(cid) The CM::Remove() method removes component whose ID 
is cid. 

CM::Update(old, new) The CM::Update() method updates a component from com-
ponent ID old to component ID new. 

 
Fig. 5 shows our component interface. This function would be implemented by de-

velopers and will be linked as the entry point of updatable components during server-side 
pre-linking. Every updatable component has to implement this interface to register its 
methods and transfer its states. As the component jumps to the entry point, the compo-
nent will invoke the register method to register its exported methods to the component 
manager. Therefore, other components can invoke these methods through the component 
manager without using static component interface. When a component is to be removed, 
all of the component’s information including current states and function pointers of the 
component exported methods should be removed, too. 

 
function entry(Opt, Addr) 
 
switch(Opt) 
begin 
 
case REGISTER: 
CM::Register(1, functionA); 
CM::Register(2, functionB); 
// ...... 
break; 
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case IMPORT: 
// convert and import 
// component states from Addr 
break; 
 

case EXPORT: 
// export states of this component 
// return address of export states 
break; 
 
end 
 
end function 

Fig. 5. Component interface. 

 

Methods in Table 1 provide the component communication interface. Components 
must communicate with each other through the component manager. This is because we 
provide dynamic component exported interface and these interfaces of components are 
managed by the component manager. When invoking other components’ methods, it is 
necessary to pass a component ID, a method ID, and arguments to the component com-
munication interface. 

 
3.4 Component Relocation 
 

The component relocation in our system implementation takes advantage of the 
ARM fast context switch extension (FCSE) mechanism [14, 15]. The FCSE is an exten-
sion in the ARM MMU. It modifies the behavior of an ARM memory translation. By 
taking advantage of this feature, we make each component have its own address space 
and relocate in the first 32MB of memory. As shown in Fig. 6, there is only one page 
table in our system. The 4GB virtual address space is divided into 128 blocks, each of 
size 32MB. Each block can contain a component which has been compiled to use the 
address ranging from 0x00000000 to 0x01FFFFFF. Each block is identified with a PID 
(Process ID) register. PID is a 7-bit number that identifies which block the current com-
ponent is loaded into. Through the FCSE mechanism, we can switch between compo-
nents’ address spaces by changing the PID register and do not have to flush caches and 
TLBs. The same functionality can be achieved by other architectures which provide pag-
ing and an address space identifier (ASID) found on many RISC processors such as Al-
pha, MIPS, PA-RISC, and SPARC. 

However, there is a critical problem about communication among components. 
Since every component has its own address space, a component cannot pass a pointer-  
type argument that is pointed to another address space. Due to this reason, a shared 
memory mechanism is used to solve this problem. A memory region which is greater 
than 32MB is reserved to store data that the argument points to. This is due to the fact 
that if an address is greater than 32MB, it will not be modified by FCSE. This means that 
the address space of components from 32MB to 4GB is shared. This also allows compo-
nents to directly access the kernel core or user libraries which are out of the first 32MB 
without changing PID or page tables. 
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Fig. 6. Relocation by FCSE mechanism. 

3.5 Component Protection 
 

The ARM architecture provides a domain mechanism [14, 15] to make different 
protection domains running with the same page table. We use this mechanism to make 
each un-trusted component have its own protection domain. A domain access control 
register (DACR) can be used to control the access permissions of components.  

Currently, each un-trusted component’s first descriptors of the page table are asso-
ciated with one of the sixteen domains and its own DACR status. The DACR describes 
the status of the current component with respect to each domain. Since trusted compo-
nents are the components that have been verified, they can use the same protection do-
main as kernel core and run in the kernel mode. However, although un-trusted compo-
nents run in the user mode, they may also have vicious codes to affect other un-trusted 
components. Therefore, they should be located in different protection domains and use 
the client access types. Thus, the current un-trusted components will not be affected as a 
new un-trusted component is loaded into the system.  

Although ARM only supports 16 domains which may be less than the number of un-  
trusted components concurrently in our system, other approaches such as domain recy-
cling [16, 17] can be applied to resolve this problem. 

4. PERFORMANCE 

This section presents the performance evaluation of the proposed dynamic compo-
nent update mechanism implemented in LyraOS operating system. The performance and 
space overheads of the proposed server-pre-linking mechanism are mainly evaluated. 
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Without server-side pre-linking mechanism, mechanisms like server-side linking [18] or 
client-side linking [1] must be applied for providing dynamic updates in embedded oper-
ating systems. In client-side linking, component linking should be done on client side 
when the component is requested. In contrast, in server-side linking, component linking 
can be done on server side when the component is requested. Differently, in the proposed 
server-side pre-linking, component linking can be done on server side in a prior time 
before the component is requested. Because embedded Linux is used popularly in em-
bedded devices, thus, our experiments use Linux loadable kernel modules as the repre-
sentative of client-side linking mechanism. The comparison of using client-side linking, 
server-side linking, and server-side pre-linking mechanisms is briefly listed in Table 2. 

 
Table 2. Comparison of component loading and linking under various mechanisms. 

 Client-side Linking 
Mechanism 

Server-side Linking 
Mechanism 

Server-side  
Pre-linking Mechanism 

Component 
linking 

Done on client on 
demand 

Done on server host 
on demand 

Done on server host in 
a prior time 

Component 
loading Done on client  Done on client Done on client 

 

 
Fig. 7. Experimental environment. 

4.1 Experimental Environment 
 

Fig. 7 shows our experimental environments. The experimental hardware consists of 
a client and a server host that are connected via a 100 Mbits/sec Ethernet. The server host 
is a Pentium 4 3.2GHz PC with 1GB RAM, running Linux 2.4.26. The client host is an 
ARM Integrator/CP920T development board with 128 MB RAM, running LyraOS 2.1.12. 
 
4.2 Comparison of Space Overheads 
 

Table 3 shows the loader sizes of the client kernel. The size of LyraLD is compared 
with the sizes of Linux LKMs linker/loader under kernel version both 2.4 and 2.6. The 
fundamental difference between Linux 2.4 and Linux 2.6 is the relocation and linking of 
kernel modules are done in the user level or kernel level. Loadable kernel modules in 
Linux are ELF object files which can be loaded by a user program called insmod. In 
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Linux 2.4, the insmod does all the work of linking Linux kernel module to the running 
kernel. While the linking is done, it generates a binary image and then passes it to the 
kernel. In Linux 2.6, the insmod is a trivial program that only passes ELF objects di-
rectly to the kernel, and then the kernel does the linking and relocation. 

In Table 3, the Linux 2.4 module linker/loader shows the static and dynamic size of 
the insmod program on Linux 2.4.26. The Linux 2.6 module linker and module loader 
show the object sizes of module linker and module loader which were measured from the 
object files of kernel/module.c and kernel/kmod.c in the Linux 2.6.19 source tree. All 
symbols in these programs and object files have already been stripped. The result shows 
that the size of LyraLD is less than 1% of the module linker/loader under Linux 2.4 and 
is about 7% of the module linker/loader under Linux 2.6. 

 
Table 3. Sizes of loaders. 

Loader Object Code Size  

Linux 2.4 module linker/loader 618,712 bytes 
133,140 bytes 

(static linked) 
(dynamic linked) 

Linux 2.6 module linker 
Linux 2.6 module loader 

14,088 bytes 
2,060 bytes 

(kernel/module.o) 
(kernel/kmod.o) 

LyraLD (LyraOS loader) 1,140 bytes  
 

Table 4. Kernel and symbol sizes. 
Items Size 

Linux 2.6.19 kernel image (vmlinux) 
Linux 2.6.19 kernel image (zImage) 
Linux 2.6.19 symbol table 

1,219,296 bytes    
1,181,932 bytes    

505,487 bytes    
LyraOS kernel image 
LyraOS kernel symbol table 

35,752 bytes    
24,850 bytes    

 

In addition, to perform the dynamic linking, Linux also requires the kernel symbol 
table to be stored on the client host. The size of the symbol table is dependent on the cli-
ent-side kernel. Table 4 shows that the kernel symbol table of LyraOS is about 24 Kbytes. 
It occupies almost 70% of the LyraOS kernel size. The kernel symbol table of Linux 
2.6.19 is about 494 Kbytes. It occupies about 40% of the Linux kernel size. 

Table 5 shows the component space overheads of the task scheduler, the interrupt 
handler, the timer driver, the serial driver, the signal, and the semaphore components in 
LyraOS and Linux. In this table, the column of Linux shows the sizes of ELF object files 
of these components under the Linux LKMs approach. The column of LyraOS shows the 
size of pre-linked images of these components under the LyraOS server-side pre-linking 
approach. The numbers in parentheses are the ratios of component overheads under Ly-
raOS to those under the Linux LKMs.  

The result shows that the sizes of components under the LyraOS approach are only 
about 14-35% of the sizes under the Linux LKMs approach. This is because the LKMs 
mechanism contains more overheads for dynamic linking, such as symbol tables, string 
tables, relocation data, and other data structures. In contrast, components under the Lyra- 
OS server-side pre-linking approach are pre-linked and thus do not need symbol table 
information for component relocation and linking. 
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4.3 Component Loading/Pre-linking Time 
 

Table 6 shows the component client-side loading and server-side pre-linking time of 
those components described above. The component loading takes only a few millisec-
onds. Tables 5 and 6 show that the component loading time is not related to the sizes of 
the components. This is because the loader has to initialize some of the ELF sections. For 
example, BSS (Block Started by Symbol) is a memory section where uninitialized C/C++ 
variables are stored. If there is a BSS section in a component, it needs to clear the mem-
ory section to zero while the component is loaded into memory.  

Table 5. Component overheads. 

Components 
Under Linux LKMs 

approach  
(A) 

Under LyraOS server-side 
pre-linking approach  

(B) 

Ratio  
(B/A) 

Task scheduler 
Interrupt handler 

Timer driver 
Serial driver 

Signal 
Semaphore 

4280 bytes 
7544 bytes 
4424 bytes 
5640 bytes 
7768 bytes 
4116 bytes 

  604 bytes 
1612 bytes 

  992 bytes 
1324 bytes 
2736 bytes 

  632 bytes 

(14%) 
(21%) 
(22%) 
(23%) 
(35%) 
(15%) 

 

Table 6. Component loading and pre-linking time. 

Components Client-side Component 
Loading Time 

Server-side Component 
Pre-linking Time 

Task scheduler 
Interrupt handler 

Timer driver 
Serial driver 

Signal 
Semaphore 

20.31ms 
31.17ms 
39.86ms 
30.44ms 
22.04ms 
20.32ms 

26ms 
25ms 
35ms 
32ms 
29ms 
28ms 

 

From the server-side pre-linking time we can also see that embedded clients can 
save lots of time when new components are loaded since the linking has been done pre-
viously on the server. In particular, the server host performing the server-side pre-linking 
runs on a Pentium4 3.2GHz machine whereas the frequency of embedded client’s 
ARM920T processor is only about 200MHz. If the component linking is performed on 
the embedded clients, it could cause large overheads for processing, storage, and power 
consumption.  

Table 7 compares the client-side component loading and processing time when 
components are requested by clients under server-side pre-linking mechanism and server-  
side linking mechanism. The component processing time under server-side pre-linking 
mechanism is only about 42-55% of the time under the server-side linking mechanism 
since components are linked in a prior time instead of on demand. This shows that com-
ponent pre-linking can greatly reduce lots of time when components are loaded and proc-
essed on embedded clients. Without server-side pre-linking, embedded clients need to 
spend 80-132% more time to wait for server-side component linking. If without server-  
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side pre-linking or server-side linking, embedded clients need to perform component 
loading and component linking all by themselves. This client-side linking would incur 
embedded clients lots of overheads in CPU processing and power consumption, space 
overhead for symbol tables in component linking is also needed.  

 

Table 7. Component loading and processing time. 

Components 
Using Server-side Prelinking 

Mechanism  
(A) 

Using Server-side 
Linking Mechanism 

(B) 

Ratio  
(A/B) 

Task scheduler 
Interrupt handler 

Timer driver 
Serial driver 

Signal 
Semaphore 

20.31ms 
31.17ms 
39.86ms 
30.44ms 
22.04ms 
20.32ms 

> 46.31ms 
> 56.17ms 
> 74.86ms 
> 62.44ms 
> 51.04ms 
> 48.32ms 

< 44% 
< 55% 
< 53% 
< 49% 
< 43% 
< 42% 
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Fig. 8. Component invocation time. 

 

4.4 Component Invocation Time 
 

Fig. 8 shows the component invocation time. We invoke a method of each compo-
nent described above. In Fig. 8, “Direct Invocation” measures the invocation time of the 
direct component invocation. That is, direct component invocation invokes methods di-
rectly without calling the component manager and system calls. “Trusted Component” 
measures the invocation time of the trusted component invocation through the compo-
nent manager. “Un-trusted Component” measures the invocation time of the un-trusted 
component invocation through the system call and the component manager. The result 
shows that it adds only a few overheads by providing dynamic component exported in-
terface and memory protection for un-trusted components. Besides, relocation by hard-
ware (i.e., FCSE) also keeps the overhead of switching between components’ address 
space minimal. 
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5. RELATED WORK 

There are many researches of dynamic update provided in operating systems. Linux 
Loadable Kernel Modules (LKMs) [1] are object files that contain codes to extend the 
running kernel. They are typically used to add support for new hardware, file systems, or 
for adding system calls. When the functionality provided by an LKM is no longer re-
quired, it can be unloaded. Linux uses this technology to extend its kernel at run time. 
However, Linux modules can be removed only when they are inactive. Another problem 
of LKMs is space overheads. It needs additional kernel symbol table in client site and 
additional symbol table in loadable modules due to dynamic symbol linking. Dynamic 
symbol linking also takes lots of time during module loading. In contrast, the proposed 
server-side pre-linking approach can eliminate these overheads and component sizes are 
smaller since symbol tables are not needed in client site and in loadable components 
since components have been per-linked. Besides, the LKMs require privilege permission 
to perform kernel modules loading. All of these modules are located in the kernel level 
and have the same permission as kernel. If a vicious module is loaded in the kernel, op-
erating system may crash. 

The operating system portal (OSP) [18] is a framework which adopts a client-server 
model to make an embedded kernel extensible while keeping the added overheads mini-
mal. In OSP framework, all the dynamically loadable modules are located on the server 
host. A user-level process is responsible for loading, linking, and transmitting these mod-
ules to the clients. A kernel-level module manager is installed on the client to make the 
client kernel extensible. The proposed server-side pre-linking mechanism is similar to the 
server-side linking mechanism proposed in OSP framework. Unlike the OSP framework, 
the proposed server-side pre-linking mechanism does not have to negotiate between cli-
ent and server to know the starting address of components on each client host because 
components will be relocated by client’ relocation hardware. Component linking can be 
performed on the server side previously before components are requested by clients. 
Thus, the components processing time on server hosts can also be saved since it does not 
need to link components for each request of clients. 

K42 [19-22] is an open-source research operating system developed for cache-co-   
herent 64-bit multiprocessor systems. It is implemented in C++ language and uses a 
modular object-oriented design. By using the hot-swapping mechanism, K42 allows an 
object instance to be transparently switched to another implementation while system is 
running. Dynamic update is an extension of hot-swapping, and supports changing every 
object of a specific class. However, the exported interfaces of updatable C++ classes are 
fixed. Besides, it does not aim for embedded environments and requires much more re-
sources. Although K42 provides a powerful dynamic update mechanism to switch C++ 
object instances transparently and change every object of a specific class on-the-fly, it 
may add much more overhead and result in the degradation of the system performance in 
embedded environments. 

Dynamic C++ class [23] is a class whose implementation can be dynamically 
changed during program execution. Operating systems can apply this mechanism to 
make C++ classes updatable. However, each implementation must have a static interface. 
It is not flexible enough for developers to implement components. Furthermore, the old 
versions of components and the new versions of components are coexistent. When an 



A SERVER-SIDE PRE-LINKING MECHANISM FOR UPDATING EMBEDDED OS 

 

53 

 

update occurs, it only loads components into systems. It is impossible to be applied in 
some of the critical operating system components since some of them (e.g., task sched-
uler) can not coexist in operating systems. 

SOS [24] is a dynamic operating system for mote-class sensor nodes. SOS uses dy-
namically loadable software modules to create a system supporting dynamic addition, 
modification, and removal of network services. The SOS kernel provides a set of system 
services that are accessible to the modules through a jump table in the program memory. 
Furthermore, modules can also invoke functions in another module. The SOS kernel pro-
vides a dynamic function registration service for modules. Modules can register func-
tions that they provide with the SOS kernel. The kernel stores information regarding the 
dynamic functions in a function control block (FCB) data structure. Processes can use a 
system call to subscribe a function. Although flexible enough for system developers, the 
SOS kernel has to support complex symbol linking at run time. The dynamic symbol 
linking may cause lots of overheads. Besides, SOS only supports the module insertion 
and removal. It can not transfer state between old modules and new modules. 

6. CONCLUSION 

In this paper, a server-side pre-linking mechanism is proposed to make an embed-
ded operating system more extensible while keeping the added overheads minimal. The 
embedded operating system can be updated dynamically without the need of dynamic 
linker and symbol table. Besides, the dynamic component exported interface can let de-
velopers change component exported interfaces easily. Furthermore, to save system over-
head while making LyraOS more flexible and safe, components are separated into trusted 
and un-trusted ones, which run in different protection domains enforced by hardware 
memory protection. 

After applying the proposed mechanisms in our target embedded operating system, 
LyraOS, the performance evaluations show that the loader size under LyraOS is only 
about 1% and 7% as compared with the Linux loadable kernel module of the Linux 2.4 
and the Linux 2.6. The component overhead under LyraOS is only about 14-35% of the 
Linux loadable kernel module. Besides, the component loading time takes only a few 
milliseconds. The component invocation time also adds a few overhead caused by provid-
ing dynamic component exported interface and memory protection for un-trusted com-  
ponents. 

In the future, we will address the component dependency problem and provide a 
demand loading mechanism. Such that, we need not download all dependent components, 
and these dependent components will be downloaded to the client host as they are 
needed. 
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