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A b s t r a c t .  We extend Velling's approach and prove that the second variation 
of the spherical areas of a family of domains defines a Hermitian metric on the 
universal Teichmiiller curve, whose pull-back to Diff +(S 1)/S 1 coincides with 
the Kirillov metric. We call this Hermitian metric the Velling-Kirillov metric. 
We show that the vertical integration of the square of the symplectic form of 
the Velling-Kirillov metric on the universal Teichmiiller curve is the symplectic 
form that defines the Weil-Petersson metric on the universal Teichrliiller space. 
Restricted to a finite dimensional Teichmiiller space, the vertical integration of 
the corresponding form on the Teichmiiller curve is also the symplectic form that 
defines the Weil-Petersson metric on the Teichmiiller space. 

1 I n t r o d u c t i o n  

Let T(1) be the universal Teichmtiller space and T(1) be the corresponding 

universal Teichmiiller curve. T(1) and T(1) have the natural structure of  infinite 

dimensional complex manifolds, and the natural projection p : 7"(1) --+ T(1) is a 

holomorphic fibration. In [Vel], J. Velling introduced a metric on T(1) by using 

spherical areas. Namely, consider the Bers embedding of T(1) into the Banach 

space 

Aoo(A) = ~r holomorphic on A:  sup [r -[z12)2[ < c~ ~,  
k zEA ) 

For every Q E Am(A) and t small, the solution to the where A is the unit disc. 

equation 

(1.1) S ( f  tQ) = tQ, 

where S( f )  is the Schwarzian derivative of the function f ,  defines a family of 

domains fit = f tQ(A).  Here ftQ is normalized so that ftQ(O) = O, f~Q(o) = 1 

271 
JOURNAL D'ANALYSE MATH~MATIQUE, Vol. 93 (2004) 



2 7 2  L.P. TEO 

and f t~(0)  = 0. Veiling proved that the spherical area As(~ t )  of  the domain f~t 

satisfies 

~2t2As(f~t)lt= o >_ O. 

This defines a Hermitian metric on the tangent space to T(1) at the origin, identified 

Our first result, Theorem 3.4, is the following explicit formula for with Am(A). 

this metric: 

1 d 2 oo 
11 Q N2s - 27r "d-~ As(f~)[~=o = ~ nlant2' 

n = 2  

c ~  3 where Q(z) = ~ n = : ( n  -- n)anz n-~. The series converges for  all Q �9 Am(A).  

However, since the spherical area of  the domain f tQ(A)  is not independent o f  the 

choice of  the function f Q  that satisfies (1.1), II �9 tls does not naturally define a 

metric on T(1) by right group translations. 1 Nevertheless, Vclling's approach can 

be generalized to define a metric on the universal Teichmiiller curve T(1).  This is 

achieved by a natural identification of  T(1)  with the space Homeoqs (S 1)/S 1 - -  the 

subgroup o f  orientation preserving quasisymmetric homeomorphisms of  the unit 

circle that fix the point 1, and with the space 

79 = { f  : A ---+ ~ a univalent function : f (0)  = 0, i f(0)  = 1, 

f has a quasiconformal extension to ~:}, 

which we prove in Section 2. This endows T(1)  with a group structure. 2 Following 

Velling's approach to T(1), given a one-parameter  family o f  univalent functions 

f t  : A ~ C �9 ~ ,  ftlt=o = id, which defines a tangent vector v corresponding to 

dft]t=O at the origin, we define a metric on the tangent space to T(1) at the origin 

by 

IIv II ~= ~~-~As(ft(A))tt=o 
and extend it to every point of  T(1) by right translations. This metric is Hermitian 

and K~ihler. More  remarkably, its pull-back via the embedding Diff+(S1)/S 1 
Homeoqs(S1)/S 1 ~ T(1)  is precisely the metric 

oo 

II v 112= ~ nlc=l 2 
r t=l  

on Diff+(S1)/S 1 introduced by Kirillov [Kir87, KY87] via the coadjoint orbit 

method. Here v = ~ n  CneinO0/00' C-n = ~nn is a vector field on S 1. We call this 

1The metric on T(1) defined as a pull-back of the Hermitian metric on Aoo(A) given by II " IIs is 
not natural. It does not induce a metric on finite dimensional Teichrniiller spaces embedded in T(1) 
since these embeddings are base-point dependent. 

2It is well-known (see, e.g., [Nag93, Leh87]) that T(1) is not a topological group. 
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K~fihler metric on T(1) the Velling-Kirillov metric and prove that it is the unique 

fight invariant K~Jhler metric on T(1). 

Let n be the symplectic form of the Velling-Kirillov metric on T(1). We 

consider the (1, 1) form w on T(1), which is the vertical integration of the (2, 2) form 

a/X~ on T(1), i.e., integration of ~/x~ over the fibers of the fibrationp : T(1) -~ T(1). 

We show that this is equivalent to Velling's suggestion of averaging the Hermitian 

form ]l " Ils along the fibers of T(1) over T(1). Our second result, which we prove 

in Theorems 4.2 and 4.3, is that w is the symplectic form of the Weil-Petersson 

metric on T(1), defined only on tangent vectors which correspond to H 3/2 vector 

fields on S 1 . 

When F is a cofinite Fuchsian group, the Teichmiiller space T(F) of F embeds 

holomorphically in T(1). The Bers fiber space/3)v(r) is the inverse image of 

T(F) under the projection map T(1) --+ T(1), and the Teichmtiller curve Y'(F) is a 

quotient space of BY'(F). The symplectic form n is well-defined when restricted 

to bt'(F). We prove in Theorems 4.9 and 4.10 that the vertical integration of t~/x 

via the map 5r(F) --r T(F) is the symplectic form that defines the Weil-Petersson 

metric on F. 

In the Appendix, we consider an analogue of the Bers embedding for T(1). We 

prove that T(1) embeds into the Banach space 

Aoo(A) = ( ~  holomorphic on A:  sup ]r -[z[2)[ < o c t ,  
l zEA ) 

and its image contains an open ball about the origin of Aoo (A). We also verify that 

,400 (A) and Aoo (A) @ C induce the same complex structure on T(1). These results 

are not used in the main text. 

The content of this paper is the following. In Section 2, we review different 

models for the universal Teichmfiller space and the universal Teichmiiller curve 

and study their relations with the homogeneous spaces of Homeoqs(S1). In Sec- 

tion 3, we review Velling's approach and define a metric on the universal Te- 

ichmtiller curve. We prove that its pull-back to Dif f+(S1)/S  1 coincides with the 

Kirillov metric. In Section 4, we prove that the vertical integration of the square 

of the symplectic form of the Velling-Kirillov metric is the symplectic form that 

defines the Weil-Petersson metric on Teichmtiller spaces. In the Appendix, we 

consider an embedding of T(1). 

A c k n o w l e d g e m e n t s .  This work is an extension of a part of my Ph.D. thesis. 

I am especially grateful to my advisor, Leon A. Takhtajan, for the stimulating 

discussions and useful suggestions. I would also like to thank him for bringing this 

subject to my attention. J. Velling kindly made his unpublished manuscript [Vel] 
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available, which has been a great stimulation for the present work. The author has 

quoted or reproduced some of his results for the convenience of the reader. 

2 U n i v e r s a l  Te i chmi i l l e r  s p a c e  a n d  the  u n i v e r s a l  
Te i chmi i l l e r  c u r v e  

2.1 Teiehmii l le r  theory .  Here we collect basic facts from Teichmtiller 

theory. For details, see [Nag88, Ah187, Leh87]. 

Let T(1) be the universal Teichmtiller space. There are two classical models of 

this space. 

Let A be the open unit disc and A* = ~ \ N = {z E C U {oo} I Izl > 1} the 

exterior of the unit disc. Let L ~ (A*) (resp., L ~~ (A)) be the complex Banach space 

of bounded Beltrami differentials on A* (resp., A) and let L ~176 (A*)~ be the unit ball 

of L ~ (A*). For any # E L ~ (A*)1, we consider the following two constructions. 

(I) Model A: w~, theory. 

We extend # by reflection to A, i.e., 

(2.1) #(z) = # 2-~, z E A. 

There is a unique quasiconformal map w~, fixing - 1 , - i  and 1, which solves the 

Beltrami equation 

It satisfies 

(2.2) 

by the reflection symmetry 
A*. 

(II) Model B: w i' theory. 

(w~,)~ = ~ ( w . ) z .  

1 ( 1 )  

w.(z) ~" 

(2.1). As a result, w,  fixes the unit circle S 1, A and 

We extend # to be zero outside A*. There is a unique quasiconformal map w ~', 

holomorphic on the unit disc, which solves the Beltrami equation 

~ = , ~ ,  

and is normalized such that f = w~'lzx satisfies f(0) = 0, f'(0) = 1 and f"(0) = 0. 

The universal Teichm(iller space T(1) is defined as a set of equivalence classes 

of normalized quasiconformal maps 

T(1) = L~176 
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where lz " u if and only if wv = w~ on the unit circle, or equivalently, w ~' = w" on 

the unit disc. 

Using model B, we can identify T(1) with the space 

79 = {f  : A --r C univalent : f(0) = 0, if(0) = 1, f"(0) = 0; 

f has a quasiconformal extension to C}. 

Let S(f) be the Schwarzian derivative of  the function f ,  which is given by 

s ( f )  = \ T ] ,  - -~ ~ , T ]  

Let Aoo(A) be the Banach space 

 z2, 3 
= A 2 \ T ]  " 

A~176 ={  e h~176176 ~ A : sup <oo). 

The Bets embedding T(1) ~ Aoo(A), which maps [#] - -  the equivalence class o f #  

to S(w~'ih), endows T(1) with a unique structure of a complex Banach manifold 

such that the projection map 

0 :  L~176 -+ T(1) 

is a holomorphic submersion. In particular, L~(A*)I  and Aoo (A) induce the same 

complex structure on T(1). 

The derivative of  the map r at the origin 

Do~I , : L~176 *) ~, ToT(1) 

is a complex linear surjection, with kernel ~'(A*) - -  the space of  infinitesimally 

trivial Beltrami differentials. Explicitly, 

~(A*)= {'eL~176 ff vr VOeAI(A')} 
where A I (A*) is the Banach space of  L t (with respect to Lebesgue measure on A*) 

holomorphic functions on &*. 

Define 

~r holomorphic on A ' :  sup ]r -[zl2)21 < c ~  Aoo(A*) 
[ zEA* ) 

and its complex anti-linear isomorphic space 

= ~#(z) = (1 - t z ] 2 ) 2 5 i z ) : ,  E Aoo(A*)}, n - l , l ( A  *) 
k J 
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the space of harmonic Beltrami differentials on A *. There is a canonical splitting 

L~(A *) = N'(A*) @ a - l ' l ( ~ * ) ,  

which identifies the tangent space at the origin of T(1) with f~-l,1 (A*). Moreover, 

the Bers embedding induces the isomorphism f~-l, 1 (A*) -7+ Aoo (A) given by 

(2.3) tt ~ r = - ~  (~--_ z)4 . 
A* 

L~(A*)I has a group structure induced by the composition of quasiconformal 
maps, 

A * # = V ,  

Explicitly, it is given by 

V ----- 

where w u  = w x  o w u.  

/~ + (h  o~,, "~ (~_z_~ ~*J (w~)~ 

1 + g ( A o w  ~ kv.eb. UJ (w~,), 

This group structure descends to T(1). Moreover, the right group translation by 

[#], R M : T(1) --+ T(1), [A] ~ [A �9 #] is biholomorphic. However, the left group 

translation is not even a continuous map on T(1) (see, e.g., [Nag88, Leh87]). 

R e m a r k  2.1. Conventionally, the model of the universal Teichmiiller space is 

the complex conjugate of the one we define above. Consider the natural complex 
anti-linear isomorphism 

L~176 -+ L ~ 1 7 6  

# ~+ # = t z  2-- ~, z ~  A. 

Setting/~ to be zero outside A, we obtain a unique solution of the Beltrami equation 

w~ = ~w~, 

which is holomorphic on A* and normalized such that g = w~lA. has Laurent 

expansion at c~ given by 
[ a2 a3 \ 

(2.4) g ( z )  = z~l + ~ + )-g + - . - ) .  

Thus T(1) is identified with the space 

D* = {g : A* ~ ~ univalent : g has Laurent expansion at oo given by (2.4) 

and has quasiconformal extension to C}. 
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The universal Teichmiiller curve T(1) is a fiber space over T(1). The fiber over 
each point [#] is the quasidisc wU(A *) E C with the complex structure induced 
from ~, 

7-(1) = {([ , ] ,z)  : [,] e T(1), z e (2.5) 

It is a Banach manifold modeled on A~,(A) @ (2. We have a real analytic isomor- 
phism between T(1) x A* and 7-(1) given by 

([u],z) ([u],w"(z)).  

2,2 H o m o g e n e o u s  spaces of  HomeOqs(S 1). Let HomeOqs(S 1) be the 
group of orientation preserving quasisymmetric homeomorphisms of the unit 
circle S 1. It contains the subgroup of orientation preserving diffeomorphisms 
- -  Diff+ (S 1). We denote by MSb(S 1) the subgroup of MSbius transformations and, 
abusing notation, denote by S 1 the subgroup of rotations. 

Consider the model A of the universal Teichmiiller space T(1) given above. 
Clearly, the map T(1) 3 [#] ~ wulsl E Homeoqs(S 1) is well-defined and one-to- 
one. The Ahlfors-Beurling extension theorem implies that its image consists of all 
normalized orientation preserving quasisymmetric homeomorphisms of the unit 
circle (see, e.g., [Ber72, Nag88, Leh87]); in other words, 

T(1) ~ Homeoqs(SX)/MSb(S1). 

Let # E f~-l'l(A*) be a tangent vector at the origin of T(1). It generates the 
one-parameter flow wtu; and the corresponding vector field is given by ~buO/Oz, 
where 

27ri (~ - z)(r + 1)(r + i)(~ - 1) de 
C 

and/2 is the extension o f #  by reflection to C. Restricted to S 1, we have ~bu(z) = 
izu(z), where u(eW)0/08 is the vector field on S 1. 

It was proved by Reimann (see [Rei76, GS92, Nag93]) that the tangent space 
to Homeoqs (S 1) at the origin is the Zygmund space 

A(S1)={u(ei~ and 

(ii) F u ( x ) = ~ ( x  2 + l ) u  ~ is in A(II~) , 
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where 

f 
A(R) = t F  : R ~ I1~ : ( i )F is continuous, and 

(ii) [F(z + t) + F ( z  - t) - 2F(z)[ < B It[ for some B, Vz, t 6 ~}. 
By imposing extra normalization conditions, we can characterize the tangent space 

at the origin of  Homeoqs(S' ) / S  l and norneoqs(S t ) / M r b ( S  1 ) in a similar way. 

R e m a r k  2.2. It is not known how to characterize the Zygmund space A(S ' )  

using Fourier coefficients on S ~. 

In [Kir87], Kirillov considered the Lie group Diff+(S 1) and proved that there 

is a natural bijection between the space/C of  smooth contours of  conformal radius 

1 which contain 0 in their interior and the space Diff+(SX)/S 1. We generalize this 

bijection in the following theorem. 

T h e o r e m  2.3. There is a natural bijection between the space Homeoqs (S l ) / S l 

and the space ICqe o f  all quasicircles, i.e. images o f  the unit circle under quasi- 

conformal maps o f  conformal radius 1 which contain 0 in their interior. Moreover, 

for  every 7 E Homeoqs(S1)/S 1, there exists two univalent functions f : A ~ C and 

9 : A" ~ C determined by the fol lowing properties: 

1. f and 9 admit quasiconformal extensions to quasiconformal mappings o f t ;  

2. 7 = 9 - 1 ~  f l s '  modS1 ;  

3. f (0)  : 0, f ' (0)  = 1; 

4. g ( ~ )  = ~ ,  g ' ( ~ )  > O. 

P r o o f .  By the Ahlfors-Beurl ing extension theorem, an orientation preserving 

quasisymmetric homeomorphism 3' of  the unit circle can be extended to a quasi- 

conformal map w of  C satisfying the reflection property (2.2). Let/z be the Beltrami 

differential of  the map WIA-. Up to a linear fractional transformation, w agrees 

with w u as defined in Section 2.1, i.e., w = al  o w u for some al E PSU(1,1).  

The corresponding map w u (Section 2.1) is holomorphic inside the unit disc A. 

Define g = a2 o wu o w -1, where a2 E PSL(2, C) is uniquely determined by the 

requirement that f = a2 o wU satisfy f(0)  = 0, if(O) = 1 and g satisfy g(oo) = oo. 

The maps flA and glA" are holomorphic. They do not depend on the extension of  

7, and we have 7 = g-1 o f l s , .  The image of  S 1 under f ,  which is the same as 
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the image of S 1 under g, is by definition a quasicircle C with conformal radius 1. 

By post-composing w with a rotation, we can arrange for the map 9 also to satisfy 

g ' (~)  > 0. 

Conversely, by definition, a quasicircle C is the image of  S 1 under a quasicon- 

formal map h : C -+ C. Let #1 be the Beltrami differential of  hl~, extended to A* 

by reflection. Let wul be a solution of  the corresponding Beltrami equation. Then 

f = h o wu~l is a quasiconformal map which is holomorphic inside A. When 0 is in 

the interior of C, there is a unique way to normalize wul by post-composition with a 

PSU(1, 1) transformation such that f(0) = 0 and if(0) > 0. The image of S 1 under 

f is the quasicircle C. In fact, by the Riemann mapping theorem, f[ r, is uniquely 

determined by C and the normalization conditions f(0) = 0, if(0) > 0. That C 

has conformal radius 1 implies that if(0) = 1. Let # be the Beltrami differential 

of  flA*, extended to A by reflection. Let w u be a solution of the corresponding 

Beltrami equation. Define g = f o w ;  1 o a, where a E PSU(1, 1) is uniquely de- 

termined so that 9(c~) = oe and g'(er > 0. The map ~/= 9 -1 o f l s l  is then an 

orientation-preserving quasisymmetric homeomorphism of the unit circle. [] 

The decomposition "r = 9 -1 o f is known as conformal welding. Using the 

fact that the correspondence between f and the quasicircle C is one-to-one, we can 

identify Homeoqs(S1)/S 1 with the space of  univalent functions 

/b = {f  : A > (2 a univalent function : f(0) = 0, if(O) = 1, 

f has a quasiconformal extension to C}. 

7) is a complex subspace of  the complex space of  sequences {an} (Fourier 

coefficients of  the holomorphic function f).  This induces a complex structure 
on Homeoqs (S 1 ) /S  1. 

R e m a r k  2.4. Observe that if "y = wt, lsl up to post-composition with a 

PSU(1, 1) transformation, then the corresponding f is equal to w ~ up to post- 

composition with a PSL(2, C) transformation. 

We identify Homeoqs(SX)/S I as the subgroup of Homeoqs(S 1) consisting 

of  quasisymmetric homeomorphisms that fix the point 1. Consider 

Homeoq~ (S 1) /MSb(S 1) as the subspace of Homeoqs (S 1)/S 1 corresponding to the 

natural inclusion T(1) ~_ D ,-+ D ~_ Homeoqs(S1)/S 1. Analogous to the 

isomorphism T(1) "~ Homeoqs(S1)/MSb(S1), we have 

T h e o r e m  2.5. There is an isomorphism between T(1) and Homeo q~ ( S1) / S 1 

79. Moreover, the complex structure o f  T(1) induced from A~(A)  @ C coincides 

with the complex structure induced from 79. 
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Proof .  The fiber of  Homeoqs( S1) / S 1 over7 E Homeoqs( S1) / MSb( S 1) consists 

of  all quasisymmetric homeomorphisms of the form a o 7 mod S 1, where a E 
PSU(1, 1) mod S 1 are parametrized by w E A* ~ PSU(1, 1) /S  1, i.e., 

1 - z ~  
o (z) - 

Z - - W  

f~,, gw) be the univalent functions corresponding to 7 (resp., 7~, = 

(2.6) 

Let f ,  g (resp. 

aw o 7), i.e., 

7 = 9  -1 o f ,  

Using Remark 2.4, we have 

aw O T = g~l o .fw. 

f~, = ,~w O f ,  

for some Aw E PSL(2, C). 
imply that 

z 
(2.7) Aw(z) -  - - - - - ] ,  

CwZ + 

The condition g~(cc) = c~ implies that 

(2.8) cw = - 

and hence gw = Aw o g o a~ 1 

The normalization conditions on fw E 7) and f E D 

1 .f"(o) 
where cw = - -  

2 

1 

g(w)" 

Let [#] be the equivalence class which corresponds to 7 under the isomorphism 

T(1) ~_ Homeoqs(S1) /Mtb(S1) .  For w E A*, the point g(w) lies in f(A*) = 

w~'(A*), since f(A*) = g(A*). Hence the natural correspondence between 
Homeoqs (S  1) /S  1 (_~ 7)) and T(1), given by 

a~, o 7 E Homeoqs(S1)/S 1 (fw = Aw o f E 7)), 

(2.9) a~o o 7 (f~, = A~o o f )  ~ ([#], g(w)),  

is an isomorphism. 
In the identification above, T(1) is the natural subspace {([#], oo) : [#] E T(1)} 

of T(1). The embedding ([/~], oo) ~ f of  T(1) into 7) is the pre-Bers embedding. 
Hence the complex structure of T(1) ~ Aoo(A) agrees with the complex structure 

induced from 7). From (2.9), (2.7), (2.8), we see that if we fix [#] in ([#], z) E T(1), 

and change z holomorphically, the corresponding f E /3 associated to ([#], z) 

changes by post-composition with A = ( ~ 0 ) E PSL(2, C), where the coefficient c 
depends holomorphically on z. This implies that the complex structure of T(1) 

induced from the embedding T(1) ~ Am(A)~C agrees with the complex structure 
of 7) induced from the isomorphism (2.9). [] 
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We can identify each point in T(1) as an equivalence class of quasiconformal 

mappings as in the proof of the theorem above. This immediately implies that 

T(1) also has a group structure coming from composition of quasiconformal maps, 

which is an extension of the group structure on T(1). According to the definition 

and the identification given in the proof of Theorem 2.5, the group multiplication 

in terms of coordinates (2.5) is given by 

(2.10) 

where 

(2.11) 

(N,z)  .([u],z0) = (M,z'), 

u = --" and z '  = w v o w -1 o ( w ~ ) - l ( z ) .  
l + ~ ( A o w )  ~ 

~ O z  

Here w is the quasiconformal map corresponding to the point ([#], z0) E T(1) 

H o m e o q , ( S 1 ) / S  1. The right group translation by ([#],z0), R(M,zo) : T(1) ~ T(1) 
is biholomorphic (see [BerT3]). Thus we can identify the tangent space at ([#], z0) 

with the tangent space at (0, ~ )  - -  the origin of T(1) - -  via the inverse of the 

derivative of the map R([u],z0) at the origin, i.e., via the map (D(o ,oo)R(M,zo)) -1 .  

Moreover, this identification and the group structure give rise to a splitting of the 

tangent space at each point of T(1) into horizontal and vertical directions. At 

the origin (0, co), the vertical direction is spanned by {0} @ C and the horizontal 

direction is spanned by ft - m  (A*) (D {0}. A horizontal vector (u, 0), v E f~-1,1 (A*), 

at the origin (0, co) has a unique horizontal lift to each point (0, z) on the fiber at 

(0, co). Namely, let ([tu], z~), z6 = z be a curve that defines the horizontal lift of 

(v, 0) at the point (0, z). For t small, z~ is determined by the equation 

([)~(t)], c~) * (O,z)  = ([tu],z~), A(t)  e L ~ 1 7 6  

The point (0, z) corresponds to the map az defined by (2.6) (the subscript z does 

not indicate a derivative). Using the formulas (2.10), (2.11), taking the derivative 

with respect to t and setting t = 0 (which we denote by �9 ), we have 

(2.12) ,~ = (v  a'z~ o a~ -t and ~' = wU(z) .  a ' ]  

Hence the horizontal tangent vector (v, 0) at (0, c~) is lifted to the vector (v, w"(z)) 

at (0, z), and the latter is identified with the horizontal tangent vector (A, 0) at the 
l 

g 

origin (0, oo) of T(1). 

2.3 Ident i f icat ion  o f  tangent  spaces .  Here we want to identify the tan- 

gent spaces of the different models of the universal Teichmtiller curve and universal 

Teichmtiller space. We need the following two lemmas. 
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oo 3 L e m m a  2.6.  Let Q(z) = ~ n = 2 ( n  - n)anz n-2 E Aoo(A). Then the series 

~ n ~ 2  n2"la,~l 2 is convergent for  all real s < 1. 

P r o o f .  Since 

Q E Aoo(A) = {r holomorphic on A : sup Ir - 1z12)21 < ~}, 
zEA 

we have for any o~ < 1, 

dzdy N )212 < 

A 

where  z = x + iy. This integral is equal to 

c o  

7r - n) r i4  + n - c01) la,~12" 
r t : 2  

Stirling's formula for the gamma function F implies that 

lim r ( n -  1)(n z - n) 2 = 1. 
n ~  F ( 4 + n -  a )n  l+a 

By the comparison test, the series 

o o  

Z nl+~ 2 
r t : 2  

is convergent for all a < 1, which implies the assertion. [] 

R e m a r k  2.7.  We have used an idea o f  Veiling [Vel] in the proof  of  this 

theorem. 

L e m m a  2.8 gZyg881) .  I f  the function f ( z )  = ao + alz + . . .  + a,~z ~ + , . .  is 

holomorphic on A and continuous on AtJS 1, and the series ~ n  n[an[ 2 is convergent, 

then the series 

~0 q" r ia + " '"  q- an elnO -k . . "  

converges uniformly to f ( e  ~~ on 0 < 0 < 2~r. 

First, we look at the isomorphism between the universal Teichmtiller curve 

W : H o m e o q s ( S 1 ) / S  1 ~ ~, 
" r ~  f .  

It establishes the relation between the real analytic (through Homeoqs(S1)/SX)) 

and complex analytic (through Z)) descriptions of  T(1). Infinitesimally, it takes the 

following explicit form. 
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T h e o r e m  2.9. The derivative o f  W at the origin is the linear mapping 

DoW : To Homeoqs(S1)/S 1 ~ ToT) given by 

oo 
~n+l  ECneinO r--). i E c n ~  . 

n:r n = l  

Proof .  Consider the smooth one parameter flow 7 t = (gt)- i  o ft]s~ , 7tit=0 _~ 

id. It is known (see, e.g., [Leh87]) that 7 t, f t  and gt can be extended to quasi- 

conformal mappings of  C, real analytic on C \ S 1 . The corresponding vector fields 

d t d f t  and d t 
-di "Y ' dt -~g 

are continuous on C, real analytic on C \ S 1. 

We write the perturbative expansion 

f t ( z )  = z + tu + O(t 2) = z + t z (a lz  + a2z 2 + . . . )  + O(t2), 

for z E A, and 

gt(z) = z + tv + O(t 2) = z + tz(bo + blz -1 + b2z -2 + . . .  ) + O(t2), 

forz  E A*. 

We denote 

d t d t 
3 ' = ~ ' / '  t=0' ] = d f t t = o  and g = ~ g l t = 0 '  

so that .fl~ = u and glzx- = v. 

Under the Bers embedding, S(ft]~x) belongs to a bounded subspace of A~(A);  

and the corresponding tangent vector to T(1) at the origin is 

d e Aoo(A). U z ~  = S ( f l A )  t=0 

Since u = ~n~__l a,,z n+l is holomorphic on A and continuous on C, Lemma 2.6 

(with s = �89 and Lemma 2.8 imply that the series 

oo 

E anei(n+l) 
n---1 

converges uniformly to the continuous function ulsl (e i~ on the unit circle S 1. 

Similar arguments imply that the series 

oo 

E bnei(1-n) 
n=0  
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converges uniformly to the continuous function vl s~ (ei~ on S 1. 

Taking the derivative with respect to t of the relation 7 t = (gt)-i o f t  and setting 

t = 0, we have 

(2.13) '~ = - g  + ].  

This shows that the series 
o o  (X) 

Z anei(n+l)O -- Z bnei(1-n)O 
r ~ i  r~,..~-O 

converges uniformly to the function all sl.  In particular, it is the Fourier series of 

a/Is1. Let u(ei~ be the corresponding vector field, so that x/= izu(z) on S 1. 

We have proved that the Fourier series of u(e io) 

inO cue , e-n = Cn 
nEZ 

converges uniformly to u(e i~ . Moreover, 

cx) 

i ~ Cne i(n+l)O ..~. Z anei(n+l)O -- Z bnei(l-n)~ 
nEZ n=l  n=O 

Comparing coefficients, we have 

an=iCn, b n = - i c - n ,  n > l .  

Moreover, we have the relation 

an = bn. [3 

By imposing extra normalization conditions, we can pass from the models for 

T(1) to the models for T(1). 

R e m a r k  2.10. In [Nag93], Nag proved a result similar to Theorem 2.9 for 

T(1) by using explicit formulas for "~ and ] from the theory of  quasiconformal 

mappings. Here we use a slightly different approach. 

For the second isomorphism between the universal Teichmiiller space, we 

combine the Ahlfors-Beurling extension theorem and the Bers embedding and get 

the map 

B: Homeoqs(SX)/MSb(S 1) --~ (L~(A*),/ , .o) ~ noo(A), 

[t,l s(w"lA), 

where 7 = wt, Is'- Our argument in the proof of Theorem 2.9 gives immediately 
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T h e o r e m  2.11.  The derivative of  the map 13 at the origin is the linear mapping 
Do13: To (Homeoqs( S1) / MSb( S1) ) -~ A~(A) given by 

o 0  

nr n=2 

R e m a r k  2.12. Lemmas 2.6, 2.8 and Theorem 2.9 imply that the tangent 

vectors at the origin of Homeoqs(S1)/S 1 have Fourier series v" - _i,~o z.,n cn~ which 
converge absolutely and uniformly and belong to the Sobolev class H * for all 

s < 1. Here the Sobolev space H*(S 1) is defined as 

Hs(S1)= {u(ei~ ~ anei'~~ : ~[nl2"[a,d2 < oo}. 
nEZ nEZ 

anz '~+1 ToO is In light of  Theorem 2.9, we say that a tangent vector u = ~ n = i  E 

in H s if it is the image of a H s vector ~,~ e,~e i'~~ under the map DoW. 

2.3.1 M o r e  on complex  s t r uc tu r e s .  The almost complex structure J at 

the origins of Diff+(S1)/S 1 and Diff+(S1)/M6b(S 1) is defined by the linear map 

J : To --4 To given by 

�9 ~ v ' ,  ino 0 (2.14) av = i Z sgn(n)cne~nOou' where v = L c,~e -~. 
n n 

See references in [NV90]. (Note that we differ from the definition in [NV901 by 

a negative sign.) By Remark 2.12, J extends to almost complex structures on 

Home%, (S1)/S 1 and Horne%s ($1)/M6b(S1). 
In [NV90], Nag and Verjoysky proved that the almost complex structure J 

on Diff+(S1)/MSb(S 1) is integrable and the corresponding complex structure is 

the pull-back of the complex structure on T(1), induced by the complex structure 

of L~(A)I .  Adapting their proof to our convention, we immediately see that 

the complex structure J on Homeoq, (S 1)/S 1 coincides with the complex structure 

induced from T(1). 
Under this convention, the holomorphic tangent vectors are of the form 

v - iJv . w=  ~ - ~ cne 'n~ 
n>0 

and the antiholomorphic tangent vectors are of the form 

~ v = ~ = v  + i Jr  Z enein~ 
n<0 
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2.4 Met r i c s .  We are interested in homogeneous Hermitian metrics, i.e., 

Hermitian metrics which are invariant under the right group action on the homoge- 

neous spaces of Horneoq~ ($1), In [Kir87] and [KY87], Kirillov and Yuriev studied 

K~ihler metrics on Diff+ (S 1)/S 1 . It is known that the homogeneous K~ihler metrics 

o n  Diff+(S1)/S 1 must be of the form 

~(a ,~  b,~)lc.l ~, (2.15) II-II~,b = + 
n>0 

where v = ~,~ezc,~e~n~ E To Dif f+(S1)/S 1. The metric 11 �9 11o,1 is called the 
Kirillov metric. 

On the other hand, since the vector fields e-i~ 0/00, ei~ generate the 

PSU(1, i) action on S ' ,  (2.15) defines a metric on Diff+(S1)/MSb(S 1) if and only 

i f  an 3 + bn = 0 for n = -1 ,0 ,1 .  This implies that, up to a constant, there is a 

unique homogeneous Kahler metric on Diff+ (S 1)/MSb(S 1) given by 

(2.16) I1" II 5= ~ ( n  3 - n)lc-I ~- 
n>0 

Let F be a Fuchsian group realized as a subgroup of PSU(1, 1) acting on A *. 

Let L ~176 (A* F) be the space of Beltrami differentials for F, i.e., 

L~(A ' ,F )  = #ELeC(A *) : # o v - - ; = p ,  VVei? . 

The Teichmtiller space T(F) of  F is the subspace of the universal Teichmiiller space 

where 

T(I?) = LCC(A *, F)I/,-% 

L~176 = L~176 A L~(A*,F),  

and ,-, is the same equivalence relation we use to define T(1). The tangent space 

at the origin ofT(i?) is identified with the space of harmonic Beltrami differentials 

of  F 

f~-l'l(A*, F) = f / - l ' l  (A*) n L~176 *, F). 

When I? is a cofinite Fuchsian group, i.e., when the quotient Riemann surface 

F\A* has finite hyperbolic area, there is a canonical Hermitian metric on T(I?) 

given by 

v> = [[ ~p, ~, v e f~-~,x(A,, I?), <,, 
P\A, 
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where p is the area form of the hyperbolic metric on A*. This metric is called 

the Weil-Petersson metric. The notation T(1) for the universal TeichmiJller space 

indicates that it corresponds to the case F = {id}. This suggests defining the 

Weil-Petersson metric on T(1) by 

A* 

However, this integral does not converge for all #, v E Ft-I'I(A*). In particular, 

it diverges when both #, v are Beltrami differentials of  a Fuchsian group which 

contains infinitely many elements. However, it was proved by Nag and Verjoysky 

in [NV90] that the integral is convergent on Sobolev class H a/~ vector fields, which 

contains the C 2 class vector fields. More precisely, they proved that the pull-back 

of  the Weil-Petersson metric on T(1) to Diff+(S1)/MSb(S 1) coincides with the 
unique homogeneous KShler metric (2.16) on Diff+ S 1 / MSb(S 1) (up to a factor 4). 

Henceforth, when we say the Weil-Petersson metric on T(1), we understand that 

it is only defined on tangent vectors in the Sobolev class H 3/2. 

Under the Bers embedding, the Weil-Petersson metric on T(1) induces a metric 

on Am(A). It is given by 

T h e o r e m  2.13. For Q = Uz=z E Am (A), identified as a tangent vector to T(1) 
O0 at the origin such that u = ~n=I  anzn+l E H 3/2, the Weil-Petersson metric has 

the form 

~r )--~(n a _ n)lanl 2 = 4 iQ(z)t2( 1 _ izl2)Zdxdy" 11 Q II~vP = 
n=2  A 

P r o o f .  The first equality follows immediately from the identification of  tan- 

gent spaces given by Theorem 2.11. The second equality is an explicit computation 

of  the integral. [] 

R e m a r k  2.14. The derivative of  the map 7) ~ Am(A) at the origin, ] ~ ]zzz 

can be viewed as a linear mapping sending vector fields to quadratic differentials. 

The theorem states that the Weil-Petersson metric on A~(A)  given by the Bers 

embedding T(1) ,--+ Am(A) is the usual Weil-Petersson metric defined on the 

space of  quadratic differentials. This can also be proved directly by using the 

isomorphism (2.3). In particular, we have 

II Q o-r(7') ~ II~vP=ll Q II~vP, for all 7 E PSU(1,1). 

R e m a r k  2.15. Analogues of Theorems 2.9, 2.11 and 2.13 hold for finite 

dimensional Teichmfiller spaces T(F) embedded in the universal Teichmiiller space 

T(1). 
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According to Remark 2.12, the Kirillov metric on Diff+(S1)/S 1 extends to 

T(1). Namely, at the origin, it is of the form 

(2.17) II- II 5-- ~-~nlcnl 2, 
n>0  

where v = ~ n  cnei'~~ is the corresponding tangent vector. The series (2.17) is 

convergent. Using the right translations, we define a homogeneous K~ihler metric 

on T(1). 
Since every homogeneous Kahler metric on Diff+(S1)/S 1 can be written as a 

linear combination of  the metric (2.17) and the Weil-Petersson metric, and only 

the former is convergent for all the tangent vectors of  7-(1), we have 

T h e o r e m  2.16. Every homogeneous Kgihler metric on T(1) is a multiple of 
the metric (2.17). 

3 Velling's Hermi t ian  form and the Vel l ing-Kir i l lov  
metric  

3.1 Spher i ca l  area  t h e o r e m .  The spherical area of  a domain fi in C is 

/ 4dxdy 
As(f~) = "(1 + Iz12) ~" 

f] 

It is invariant under rotation, i.e., As (f~) = As (e w (f~) ). 
Following Veiling [Vel], for Q E A~(A)  and t small, we consider the one- 

parameter family of functions ftQ E 79 satisfying S ( f  tQ) = tQ and the spherical 

areas of  the domains f~t = ftQ(A), 

f f  4dxdy As(fit) = (1 + [z[2) 2 
f~t 

ff  IdftQI2 
= 4 (1 + If*QI2) 2" 

A 

Velling's spherical area theorem is the following. 

T h e o r e m  3.1 (Veiling [Vel]). For Q E A~(A) ,  we have 

d As(ftQ(/X))lt=o = O, 

f-~As(ftO(m))lt=o >_ O, 

with equality if and only if Q = O. 
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This follows from another result, proved by applying the classical area theorem. 

T h e o r e m  3.2 (Felling [Fell). Let f : A --+ C be a univalent function 
(perhaps meromorphic) with Taylor expansion f(z)  = z(1 + a2z 2 + a 3 z  3 q- " . .  ) at 

the origin. Then the spherical area A s ( f  (A)) satisfies 

As(f  (A)) >> 2~r, 

with equality if and only if f = id. 

The second inequality in Velling's spherical area theorem implies that 

~tAs(ftQ(A))lt=o is a Hermitian form on A~(A).  Our goal is to compute this 

form explicitly. 

The following lemma is very useful for computations. 

L e m m a  3.3 ( [ Z y g 8 8 ] ) .  Let  f ( z )  oo n = ~n=O anz be an analytic function on A 
and r an integrable function on [0, 1). Then 

g ~01 r = 2~rRe (a0) r  
A 

/ /  -_ ,oo,  /o 
& n=0 

3.2 Vel l ing 's  I - lermit ian fo rm.  Now we compute Velling's Hermitian 

form ~ t A s  (ftQ (A))It=0- For t small, we write the perturbative expansions 

I~Q(z) = z + t~(z) + t2v(z) + o(t3) ,  

( 3 . 1 )  u(z) = z(a2 z2 -4- a3 z3 + ' "  ) = ~ an zn+l, 
rt=2 

v(z) = z(b2z 2 + b3 z3 + . . . )  = Z bnzn+l" 
rt=-2 

Taking the t derivative of the equation 3 ( f Q )  = tQ and setting t = 0, we get the 

relation 

0 3 
Oz3 u(z) = O,(z), 

Using the expansion 

IftQI 2 
(1 + lYtQI2) = 

i.e., Q(z)  = ~ ( n  ~ - n )a , z  "-~. 
n=2 

[I + tuz + t2Vz[ 2 
(1 + ]z + tu + t2v[2) 2 + O(t3)' 
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we obtain 

f/X(z)dxdy 
As(f (a))J  o = S dt = (1 + Iz{2) 2' 

A 

1+  lz[ 2 +5(1+1zl2)  2" 

Using the series expansion (3.1) and v(0) = v'(0) = 0, we see that v drops out 
from the integration. Applying Lemma 3.3, we get 

oo 
d2 A tQ A 

(3.2) dt 2 s( f  ( ))lt=o = 167r E entail2' 
n = 2  

where 

f01 ( 6r 2n+4 (4n+6)r2n+2 (n+1 )2 r2 '~  
cn = [(]-~r-~) 4 (1 + r2) a + (1 + r2) 2 ] rdr. 

We compute cn by repeatedly using integration by parts: 

1 ~ 1 (  6r n+2 (4n+6) r  n+l (n+ l)2r n) 
C n = ~  ( I + r )  4 ( l + r )  3 + ( l + r )  2 dr, 

f l  rn+2 2n2 + 7n + 7 n(n + l)(n T 2) jfol rn-1 
]o (1 + r dr = 24 + 6 l ~ r  dr' 

fo 1 r n+l 2 n + 3  n(n+i) jfolrn-~ 
(1 + r) "-----~ dr = 8 + 2 l '~r  dr' 

fo i r a  1 fo l rn -1  

When we substitute into c~, all the terms with integrals cancel; and we are left with 

c .  = n / S .  

Therefore, we have 

T h e o r e m  3.4. Let Q E A~(A).  Then 

As(fQ(A))  t=o = 2~ ~ n[ant 2. 
r~=2 

Remark 2.I2 implies that the series is convergent for all Q E A~(A).  Hence, 
~,e can define a Hermitian form on A~(A) by 

[} O []~= l d~As(f'Q(A))],-o = E n]an[2' 
zu dt 

n = 2  
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where 
o o  

Q(z) = E ( n  3 - n)anz~-2; 
n = 2  

we call this Velling's Hermitian form. 

R e m a r k  3.5.  The first half of  the computation above is reproduced from 

Velling's unpublished manuscript [Vel]. Veiling gave the result in terms of  (3.2). 

Our observation is that cn can be computed explicitly. 

Note that in evaluating the Hermitian form, we have chosen a particular nor- 

malized solution ftQ to the equation S( f  tQ) = tQ. Any other choice will differ 

from this one by post-composition with a PSL(2, C) transformation. However, the 

spherical area of  a domain A s ( f  (A)) is not invariant if f is post-composed with 

a PSL(2, C) transformation. If  we choose different normalization conditions to 

identify T(1) as a subgroup of  T(1),  we get a different right invariant metric on 

T(1). Hence the Hermitian form [I �9 Ils does not naturally define a right invariant 

metric on T(1). 

On the other hand, since the correspondence between 3' C Homeoqs(S1)/S 1 
and f ~ ~3 is canonical, we can use the same approach to define a metric on 

T(1)  = Homeoqs(S1)/S 1. Namely, given the tangent vector v = ~ n e 0  c,~ein~ 
at the origin with the associated one-parameter flow 3, t = (gt)-~ o ftlsl , we define 

a Hermitian form by 

1 c~ it=oAs(ft(A)). II v II 2 -  2~r at 2 

The proof  above holds with an extra term n = 1 (notice that we only need the 

fact there are no constant terms and terms linear in z in the first and second order 

perturbations), and we get 

1 d 2 oo 

II v ll2= 2-----~ dt----~lt=oAs(ft(A)) = E n]an[ 2 = E nlcn[2' 
n----I n = l  

which coincides with the metric (2.17) at the origin. It is quite remarkable that 

this metric, introduced by Veiling using classical function theory, coincides with 

the metric introduced by Kirillov using the orbit method. Henceforth,  we call this 

metric on T(1) the Velling-Kiril lov metric. 

4 M e t r i c s  o n  T e i c h m i i l l e r  s p a c e s  

4.1 Un iversa l  Te ichmi i l l er  space .  Let ~ be the symplectic form of  the 

Velling-Kiril lov metric on T(1) ~ Z3. We want to define a metric on T(1) by 
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vertical integration of the (2, 2) form ~ An. Namely, let 

fiber 

and define a Hermitian metric on T(t) such that w is the corresponding symplectic 

form. 3 Since ~; defines a right invariant metric, w also defines a right invariant 

metric. Hence we only have to compute the form w at the origin of T(1). We 

identi fythetangentspaceofT(1)attheoriginwithAoo(A)@C. The vertical tangent 

space is spanned by O/Ow and 0/0~-, where w is the coordinate on C. Observe 

that the horizontal and vertical tangent spaces are orthogonal with respect to the 

Velling-Kirillov metric. Hence, given a holomorphic tangent vector Q E Aoo (A), 

we have 

A* 

where O is the horizontal lift of  (O, 0) to every point on the fiber. Using the fight 

invariance of the Velling-Kirillov metric, we see at once that ~(8/8w, 8 /8~ )dwAd~  
is the area form of a fight invariant metric on A *. Hence, up to a constant, it is the 

hyperbolic area form dAu.  Checking at the origin, we find that 

dw ^ (i - Iw12) 2 ~ ]  a ~ =  - -  = dAH, w = x + i y .  

Via the identification (2.12) and the isomorphism (2.3), Q at (0,w) is identified 

with Q o a~ i ((a~ 1)')2 at the origin. Hence 

i Q o a - i  a - 1 , 2  = II , ,  ( (  , ,  ) ) II . 

Under the change of  variable w ~ 1/w, a~ i is changed to 7,,, where modulo S i, 

z + w  

7,,(z) = 1 + z~" 

Since pre-composing Q with a rotation does not change the Hermitian form [I Q II ~, 

we finally get 

w(Q, Q) = -~ II Q,, tl2s dAH, O,, = Q o 7,, (7~,) 2. 
A 

3Since the fiber is not compact,  it is not a priori clear that we get a well-defined symplectic form on 
T(1). 
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Thus our approach to defining a Hermitian metric on T(1) coincides with Velling's 

suggestion [Veil of  averaging the Hermitian form [[ �9 II ~ along the fiber to define 

Hermitian metric on T(1), i.e., 

1 f/ 4dxdy (4.1) il Q [l~: = -2iw(Q,O) = ~ II Q~ tl~ ( l : ~ - ~ ) e .  

R e m a r k  4.1. I am grateful to my advisor L. Takhtajan for his suggestion of  

using vertical integration to obtain a metric on T(1). 

Since the Hermitian form tl Q II~ is expressed in terms of  the norm square of  the 

corresponding coefficients lanl 2, to compute (4.1) it is sufficient to average ta~t 2 
for n > 2. 

We set 
oO 

Q ~ ( z )  = Q o . r~(~ ' )~(~)  = ~ ( n  3 - ~ a ~ z  ~ , ~ ( z )  = l + 
n=2  

Then 

1 (Q o 7to (7")2)(n-2) (0), 
(4.2) anW = (n 3 - n) (n - 2)! 

and 

n ~ - 2  

P r o o f .  Using (4.2), we set 

1 (Q ~ 7"(%)~)(J-2) (0) = caw) 
a~' = (j3 _ j )  ( j  - 2)! 

and introduce the generating function for the cj (w)'s, 

oo  

f ( u , ~ )  : ~ ~j(w)~,J -~  
j=2 

~ ,  (Q o .y~(./)2)(j-2) 
(0)u j-~ 

= O o-y~(~)(-y'(~))t 

(j3 _ j ) ,  

T h e o r e m  4.2. Let u(z) oo Ha~2 Then = ~n=l a,  z~+l 6 and Q = u~z~. 

4dxdy _ 2 f f  [Q(w)[~( I _ lwl~)2dxdy I f  laTl~ (a  - I~,l~)~ 3(2 3 - j )  
A 

OO 

3(J3 - J) n=2 
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Writing u = pe'% we have 

1 f02" Icr = 2---~ If(Pei~' w)12da 
j = 2  

and 

f f  =1  f~ f f  ~d~ , icj(w)12 dxdy p2~-4 if(pei~,w)[ e 
(1 -Iw12) 2 2~r Jo JJ (1 -q-w-i-2) 2aa  

j = 2  A A 

= 2--~ IQ o 7~(pe~")(7~(pei"))212 (1 -~-~2)2 aa. 
A 

Denoting this integral by 77, substituting the series expansion of  Q and using polar 

coordinates w = re i~ we get 

(4.3) 
1 2. 1 2~ (1 - r 2) 2 

Z=2-~o  ~0 fo dOrdrdOl(l+-'r~i-~--~ 4 

~ ( n 3 - n ) a n \ l + r p e , ( . _ o  ) ~ (m3 - m)a-~ \ i - ~ - r r p ~  
n = 2  m = 2  

r a - 2  

We do some "juggling", 

pei. + redo .-~ ( pe_i. + re_iO ~ m-2 
GTF,~)) \ ~u / 

- ( 1 + rpei(a-~ ,] \ 1 + rpe-i(a-~ ] 
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and make a change of  variable a ~ (c~ + 0) to get 

I 
n,rn~2 

) l  \ 1 + rpe -icx (1 + rpeiC~) 4 

L2~Llrdrd~ 

s n)21anl2 (_p~a_+__r'~ n-: pe-ia +r  ~ n-2 ( 1 - r  2) 12 
n:2 \1 +rp<'=] (1--+-~rp~'~J 1(1 +rpei=) ' 

L2. L i  rdrd~ 

oo ( p + rei~ , t 
( n3 i ~ ) 2 I a~ 12 t f ~ ] 

n=2  

A = ( n 3  - n)21a"12 \ l + p w )  \ 1  + p ~ )  I ( l ;  p-~ 4 

where we have done more  juggling to get the second to last equality. Observe that 

p + w  _ 7p(W),  

1 +pw 
1 __ 7~(w) 2 

( l + p w )  4 (1 _p2)2" 

Hence we have 

S / (  "+ w ~o_2(. + ~ ~o_21_ lwi ~ 2 
A 

, 2" (1 -Iw12) ~ 
= i S  ((~"-~) o ~.(~;)~1 (~)((z~-~) o ~.(~p )(~) T i -  p--~ e~e~ 

A 

dJ t i - P  ) 
A 
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using PSU(1, 1)-invariance of the Weil-Petersson metric. This gives 

o o  

z = f f  Z ( n  3 - n~2rajl n,12wn-2~ ( 1 ~  ~f-_-p-~)4- lw12)2 dxdy 
A n : 2  

_ 1 f / i Q ( w ) l Z (  1 _ iw?)2dxdy (1 _p2)4 
A 

= ~ j3_.__~_ jo2j_4 H" l!  [ Q(w)12(1 - I wl2)2dxdy" 
j : 2  A 

Comparing coefficients, we get 

= ~ 3 _ j  fflo(w)12(l_l l ) axa  ' (1 -}wl2) 2 6 
A 

(1 - {wp) ~ = 3(j 3"- j) ]Q(w)l~(1 - lwl2)2dxdy' 
A A 

which finishes the proof. [] 

T h e o r e m  4.3. Let Q = Uzzz E Aoo (A) be a tangent vector to T(1) at the origin 
such that u E H 3/~. Then 

A A 

which is the Weil-Petersson metric. 

Pr o o f .  

/ l l  O w II~ 
& 

This is just a simple sum of the telescoping series: 

2dxdy c~ f / 2dxdy 
(1 - [ w l 2 )  2 : ~ J  la~]2 (1 -Iw[2) 2 

= A 

ff = ~ 3(j - 1)(j + 1) IQ(w)[2(1 -lwl2)Zdxdy 
j = 2  A 

= ~ g ]O(w),~(1- [w[2)2dxdy. 
A 

[3 

4.2 F i n i t e - d i m e n s i o n a l  T e i e h m i i l l e r s p a c e s .  Let F be a 

Fuchsian group. The tangent space to T(F) at the origin is identified with 

Aoo(A, r) = {Q e Ace(A): Q o 7(7') 2 = Q,V-y e F},  

cofinite 
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and the Weit-Petersson metric is given by 

I f f  
(4.4) I1Q ll~'P = " ~ ] ]  IQ(w)12( 1 - lwl2)2dxdy. 

r\A 

The inverse image of T(F) under the projection map T(1) ~ T(F) is the Bers 

fiber space B,T(F). The quasi-Fuchsian group F ~' = w ~' oFo (w,) - I  acts on the fiber 

w" (A*) at the point [#] E T(F). The quotient space of each fiber is a corresponding 

Riemann surface. They glue together to form the fiber space 5(F)  over T(F), 

which is called the TeichmtiUer curve of P. First we have 

L e m m a  4.4. Let F be a Fuchsian group. The symplectic form ~ on 7-(1) 

restricted to BSc(F) is equivariant with respect to the group action on each fiber 

Proof .  We only need to check this statement on the fiber at the origin. The 

form ~; restricted to the vertical direction is clearly equivariant. We are left to verify 

that if w E A*,-~ E F andQ e A~(A,P) ,  then 

^ - % -  ~ "%-" I a(O, Q)(w) = a(O, Q)(w ), 

where w' = "/(w). Note that the PSU(1, 1) transformation aw, o O' o a~ 1 fixes oc, 

hence is a rotation. Using the fact that the Hermitian form II Q 112 is invariant if Q 

is pre-composed with a rotation, we have 

I[ Q o a ; ,  ~ ((cry1)'): 112 =tl (Q o 7(7') 2) o a ;  ~ ( ( o ' w l ) ' )  2 112 

=ll Q o O'~ 1 ( (O 'wl ) ' )  2 II 2 . []  

The lemma implies that ~; descends to a well-defined symplectic form on 5r(F). 

We vertically integrate the (2, 2)-form a A ~ on ~(F) to define the Hermitian metric 

on T(F). Using the same reasoning as in Section 4.1, we get 

if/ (4.5) 11Q II~ "= ~ II Qw 112 dAn,  Q e A~(ax, r) .  

r\Lx 

We want to compute this integral using a regularization technique suggested by J, 

Veiling [Veil. 

T h e o r e m  4.S. Let F be a cofinite Fuchsian group and h E L~(A)  be F- 

automorphic. Then 

f f  Areatt(F\A) f f A  , h(w)dAH 
h(w)dAH = lim 

r,-~l- ffAo, dAn 
r\A 
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where AreaH(F\A) is the hyperbolic area o f  the quotient Riemann surface F\A 

a n d A r ,  = {z: [zl < r'}. 

Proof .  We use the fact that for any z C A, the number of elements 7 E F such 

that 7(z) is in the disc Ar,, is given asymptotically in terms of r '  by 

If (1 (4.6) AreaH(F\A) dAH + o(1)), as r '  
A i 

where the o(1) term is uniform for all z in a compact set (see [Pat75]). 

Let F be a fundamental domain of F. Given E C F, let E '  = [,J-~cr 7(E). Let 
XA be the characteristic function of the set A. Since F is cofinite, using (4.6), we 

have 

f f  AreaH(F\A) f fa~, XE, dAH 
xEdAH = ffA , dAH 

F 

+o(1). 

Here the o(1) term is uniform for all the sets E C F. Since 

sup Ih(w)[ < oo, 
w E A  

standard approximations of h by bounded step functions give our assertion. [] 

C o r o l l a r y  4.6. 

II Q II~ve = lim 
r l - - -+l-  

AreaH(F\A) f l A .  IQ(w)[ 20-1~12)2dxdy 

ffA.., dAH 

Proof .  Take h(w) = IQ(w)(1- Iwt2)212. Since Q e Aoo(A), h is in 
L~(A).  [] 

L e m m a  4.7. Let Q E A~ (A). Then 

sup II Qw [l~< oo. 
w E A  

Proof .  Let (Q o 7~(7~) 2) (z) Qw(z) E~=2 ~o . - 2  = = a n z . The proof of Lemma 
2.6 with a = 0 implies that 

oo 

II Q~ ][~-- ~-~n[a~l 2 < C / /  IQw(z)(1 -Jzl2)2[2dxdy, 
n = 2  A 

z = x + iy, 
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where C is a constant independent of  Q E Aoo(A). After the change of variable 

z ~ 7~ ! (z), the integral on the right hand side becomes 

f f  lQ(z)O -Iz?)=l = = d dy 
A 

Since Q 
[Kra72]) 

C Ao~(A), ]Q(z)(1 -Izl2)21= is bounded on A; thus the formula (see 

/ /  ](.y~l),(z)[2 dxdy = f f  (1_ -Iwl2)2dxdy [1 - z~t 4 = 27r 
A A 

concludes the proof of  the lemma. [] 

Theorem 4.5 and Lemma 4.7 imply that our approach to defining a Hermitian 

metric on T(F) agrees with J. Velling's original suggestion of  using regularized 

integrals. Namely, one has from Theorem 4.5 and Lemma 4.7 

Coro l lary  4.8.  

1 lim 
II Q II~,-- ~ r ' - + l -  

Areag(F\A)  ff, x~, II Q~ I1~ dAg 
flA., dAH 

Now we start to compute II Q I1~. First we have 

T h e o r e m  4.9. Let F be a cofinite Fuchsian group, Q E A ~ ( A ,  F). Then 

Areau(F\A)  ffA , laTI2dAH 8 
lim = II Q 11,2~ 

~'--'~- ffA, dAH 3(j 3 - j )  "*'P " 

P roo f .  The proof is almost the same as that of  Theorem 4.2. We have 

~~2 / /  dxdy t~2j_4 
Z = Icj(w)12 (1 - Iwt2) 2"  

= ~-~(n3 -n)21a"12 \ l + p w ]  
A, n=2 

( p + ~ , ~ n - 2  1 - l w l  2 2dxdy" 

Now observe that if  7 E PSU(1,1) and Q E Aoo(A,F), then Q o 7(7') 2 

E Aoo(A,7-~FT), and 

(ll Q II~p)T(r) (ll Q 7(7 ' )  2 
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In particular, for any u = pem E A, 

AreaH(r\a) f fa I(Q o - M q ) 2 ) ( w ) l  +- !s --!~,12~: dxdy 
II Q t l~vr  , =  lim "' 

,'-,1- f l a .  d A H  ' 

since Area• ( r \A)  = Arean(v~-iFT,,\A). It follows that 

11 Q ll~,P = lim i..s ..+ 1 -- 

a r e a H ( r \ A ) ~  Jo 2" f l a .  I (Q ~ ~ c~+, ~,~(w~! '-> ('-,t'<'li?dxd.,da I l l ,  f l u #  I t  It 4 "9~ 

ffA , dAtt 

But  

'])ff 2.  I(Q ~ ~(g)2)(w)l~(1 - w2)2 dxdyda 
4 

A r t  

' ]:': s fo" I (1-'.)('- r ' =2-7 do.~.d. 7(i-~m-~7+1 
( Pem +re+ 0 )~-'2 

Z (na - n)an \ 1" ~ rp~+(-O__o) 
n ' ~ 2  

pe_ia + re_iO . m-2 
F_, ( m~ - , , , ) ~  \ : i 7 ~ 7 - ~  ) 

m = 2  

This is similar to the integral (4.3) with the role of  0 and a interchanged, so it is 

equal to 

(1-P2)4 f f ~ (P+W ~n-2 ( p+w ~ "-2 1-,wl2 12 ~1" ('13 --'~)21anl'2 \ ~ j l  k ~ )  I ( l + p w ) 4  dxdy 

(1 - p2)4 

4 

Hence 

oO 

Z lim 
r ~ -+ l  - j=2 

A r e a H ( F \ a )  fla. IcJ(w)I ~ { l - l w l 2 )  ~ p 2 j - 4  : 4 

fla., dAH (1 - p~)* It Q I I ~ ' p  �9 

Comparing coefficients, we have 

lim 
r ' - + l -  

AreaH(r \A)  ff~., I c j ( w ) 1 2 ~  2(js _ j )  

ffA , dAH 3 - -  II Q ll~vp 

and 

AreaH(F\A) fla., la~l 2dAH S 
lim 

r'-+I-  fla., dAtl 3(j3 _ j )  I1 Q tl~'P �9 [] 
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As in the case of  Theorem 4.3, this immediately implies 

T h e o r e m  4 .10 .  Let F be a cofinite Fuchsian group and Q E A ~ ( A ,  F) a 

tangent vector to T(F) at the origin. Then 

II Q I1~=11 Q II~vp �9 

For a general Fuchsian group F and Q E A ~ ( A ,  P), we can define 

[1Q I1~= lim f fa, ,nF(r) dAB f f~ ,  II Qw I1~ dAH 

r'-~:- flat, dAn ' 

whenever the limit is finite. Here F(F)  is a fundamental domain o f f  on A. When F 

is the trivial group, this reduces to integrating over the whole disc, which coincides 

with our original definition. 

Appendix A Embedding of T(1) 

Consider the Banach space 

A ~ ( A )  = ( r  holomorphic on A :  sup 1r -Izl~)l  < ~ 
l zEA ) 

Analogous to the Bers embedding T(1) ~_ 79 ~-~ Ao~(A) (defined in Section 2.1), 

which is achieved by the mapping f E 79 ~ S ( f )  E A ~ ( A ) ,  we prove that there 

is an embedding T(1) _ 7) r A ~ ( A ) ,  achieved by the mapping f E 7) ~ O(f), 

where 
d .Lz 

o(f) = ~ log A = A " 

By the classical distortion theorem (see, e.g., [Ah173]), f E 79 implies that 

fzz 2~ I 4 
A (: --]zl 2) , -< : - I z l  - - - - - -z"  

Hence O(f) E A ~ ( A ) ,  and the map 0 : 7) --+ A ~ ( A )  is well-defined. We claim that 

this map is an embedding, and the image contains an open ball. 

L e m m a  A.1.  The map 0 is injective. 

P r o o f .  If  f ,  9 E 79 are such that O(f) = 0(9), then 

d log f z = d log 9~. 

This implies that f = clg + c2 for some constants ca and c2. The normalization 

conditions f(0)  = 9(0) = 0, f ' (0)  = 9'(0) = 1 (from the definition of  f , 9  E 9 )  

imply that c: = 1, c2 = 0. Hence f = g. {:] 
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We use the following notation for the sup-norms of  Aoo(A) and A~(A) :  

II ~0 It~,~= sup I~(z)(1 - Iz12)l, r c A ~ ( A ) ;  
zEA 

II r 11~,2-- sup Ir - Iz12)=l, r ~ A ~ ( A ) .  
zEA 

Notice that S(f )  = a(f)= - �89 2. For r E A ~ ( A ) ,  we define 

We claim that this is a map from .A~(A) to A~(A) .  First, we have the following 

continuity theorem. 

T h e o r e m  Ao2. For any E > O, there exists 5 > 0 such that if ~p E .A~( A ) 
satisfies II ~ II~,l< 5, then tt,(~) E A ~ ( A )  and II ,I,(r I1~,~< ~. 

P r o o f .  Fix 5 > 0 and assume that r E .A~(A) satisfies II ~ I1~,~< 5. We use 

the Cauchy formula 

1 ~llw ~_~w) .dw, ~ ( z )  = 7~/ ,=r (w - z)~ Izl < r < 1, 

to estimate ~,~(z). Since sup~ea Ir - Iwlm)l < 5, 

Ir  _< 2:~(1-  r=) I--r I w -  zl 2" 

Elementary computation gives 

1 f Idwl r 

2S ~l~l=r t t J - z l  2 - r2 - I z l  e" 

Choosing r = (1 + Izl)/2, after some elementary computations, we obtain 4 

Ir - 1zt2)21 _< 85(1 + Izl) 3 < 645 for lzl _< 1. 
(Izl + 3)(1 + 31zl) - 3 

Hence 

~ ( z ) -  (r  2 (1 - < --5- + Y" 

Given e > 0, we can always find 5 > 0 such that 645/3 + 52/2 < e. This proves our 

assertion. [] 

4This is not the sharpest estimate. 
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Corol lary A.3.  ~, ~ ~(~/)) is a holomorphic map from .4~( A ) to Aoo( A ). 

P r o o f .  The map ~b ~ ~: is linear. From the proof o f  the theorem above, we 

see that it is a continuous map from .Aoo(A) to Aoo(A). The map ~/, ,--r -�89 is 

clearly a continuous map from .Ao~(A) to A~(A) .  Hence tI, is a continuous map 

from .A~(A) to A~(A) .  

To prove holomorphy, it is sufficient to note that for any ~/~,~p E .A~(A) and 

E C in a neighbourhood of  0, the Frechet derivative 

lim ~(~/) + ~) - ~(~b) 
~--~0 r 

= ~p. - ~/)~p 

exists in the l] " 11~,2 norm, since 

~,(r  + ~ )  - ~ ( r  l 1 2 1 

tends to 0 as e ~ 0. [] 

T h e o r e m  A.4 .  The image of  0 contains an open ball about the origin o f  
.4~( A ). 

P r o o f .  By Theorem A.2, there exists a such that if II ~b II ~ , ,  < a,  then ~b = tI, (g,) 

satisfies [i 0 [1~,2< 2. By the Ahlfors-Weill theorem, there exists a univalent 

function f l  : A ~ C such that S( f l )  = ~b and f l  has a quasiconformal extension 

to C. On the other hand, there exists a unique holomorphic function f : A ~ C 

which solves the ordinary differential equation 

d 
d--z log fz = r f (0)  = 0, if(0) = 1. 

Obviously, S( f )  = q(~b) = ~. Hence f and f~ agree up to post-composition 

with a PSL(2,C) transformation. This implies that f also has a quasiconformal 

extension to C and f E 7). Hence the image of  0 contains the open ball of  radius 
a. [] 

From Lemma A. 1 and Theorem A.4. it follows that there is an embedding of  79 

into .A~(A) whose image contains an open ball about the origin. This implies that 

/5 has a Banach manifold structure modeled on .A~(A). We want to compare  this 

structure with the structure induced from the embedding 7~ ~_ T(1)  ~ Aoo(A) �9 C. 

We define a map ~ : .Aoo(A) ~ A~(A)  ~ C by 
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T h e o r e m  A.5. The map ~P is holomorphic and one-to-one. 

Proof .  Holomorphy follows directly from Corollary A.3. To prove injectivity, 

suppose @(r = ~(r For j = 1, 2, let 

/o f j ( z )  = efg  '~(~')e'~dw. 

Then ~logf~  = Cj, fs(0) = 0, f~(0) = 1. This implies that ,-q(fx) = ~(r -- 

~(r = S(f2). Hence fl  = o- o f2 for some a E PSL(2, C). Now f3(0) = 0, f~(0) -- 
1, j = 1, 2 implies that a = ( ~ 0 ) for some c E C. We also have 

d (log a' o f2 + log f~) 
d 

log f~ = Tzz 

Setting z = 0 gives 

r (0) • --2C "[- r  (0). 

Thus ~(r = ~(r implies c = 0 and fl  = f2, r = r [] 

T h e o r e m  A.6. The Banach spaces Aoo( A ) and A~(  A ) ~ C induce the same 

Banach manifold structure on f). 

ProoL From our discussion in Section 2.2 (in particular (2.9), (2.8), (2.7)), 

we know that the embedding 79 ~ Aoo(A) @ C factors through the map ~, i.e., it 

is given by f ~ O(f) ~ (S(f),  10(f)(0)). Let U (resp., V) be the image of D in 

.A~(A) (resp., Ao~(A) ~ C). Bers proved that V is open in Ao~(A) @ C ([Ber73]) 

using a theorem of Ahlfors ([Ah163]) which says that the image of T(1) in A o~ (A) 

is open. The continuity of the map ~ implies that U is open in .A~ (A). Hence 

we have a holomorphic bijection ~]u : U ~ V. In order to conclude that this is 

a biholomorphic map between open subsets of Banach manifolds, by the inverse 

mapping theorem (see, e.g., [Lan95]), we only have to show that for any r E U, 

the derivative of ~ at r De ~, is a topological linear isomorphism between .Ao~ (A) 

and Aoo ( A )  @ C. 

From the proof of Corollary A.3, the linear map D r  : Aoo(A) --+ Ao~(A) @ C 
is given by 

D ~ ( ~ )  = (qoz - r 2~P(0) ) �9 

From the theory of ordinary differential equations, it is easy to prove that this 

map is injective. To prove surjectivity, let f E D be such that O(f) = r Given 

(r c) E Aoo (A) @ C, consider 

 lz =,lzl(/o z  lul. 2c) 
f - ~ a u  + . 
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It is straightforward to check that ~ is the unique holomorphic function on A that 

satisfies 1 

qOz - r = r and 2~P(0) = c. 

What remains to be proved is that ~ c Aoo (A). 

Let f~ = f (A)  and f~* = ~2 \ fl be the exterior of the domain fL Let ,~(w)ldw I be 
the Poincar6 metric on t ,  which is given by 

1 
A o f(z)l f ' (z)l  = (1 - iz l2)  " 

For w E t ,  let ~(w) denote the Euclidean distance from w to the boundary of fL 

The Koebe one-quarter theorem (see, e.g., [Nag88, Leh87]) implies that 

1 
(A.1) ~ < ~(w)~(w) < 1. 

1 2 Let r = r o f - l ( w )  ( f~ (w)) . Then 

f0 z r d w [ 
= ~o ~(v)av = ~(~), 1L 

where w = f (z) .  Since 

sup 1,X-e(w)~(w)l = sup I(1 - Izl2)er < cr 
wEf~ z~A 

by a theorem of  Bets ([Ber66]), there is a bounded harmonic Beltrami differential 

on f~*,/z : f~* ~ C, sup~e n. I~(w)l = ~ < ~ ,  such that 

6 

This implies that 

w E l L  

2 ~,(v) Cl, ff (v_ )31av d l+ 
f~* 

where C1 is a constant such that ~(0) = 0. Since every point v E f~* is of distance 

at least ~(w) away from w, we have the following estimate: 

,~(w), < f f  , v = ~  3'#(v)lldv2d-------~ 1 +C1 

l~-wl>_a(~) 

- T (w) -fi pdpdO + C1 

4~ 
= ~ - ~  + C1 < 16/3A(w) + C1. 
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Using (A. 1) and w = f (z ) ,  we also have 

1 1 - <  
4 - (1 - - lz l2) l f ' (z ) l  

~( f ( z ) )  <_ 1, 

,5(f(z)) 4~(f(z))  

1 - I ~ 1 '  

Hence 

I~(z)l ~ If '(z)l  Ir ( f ( z ) )  + C21 

< 16fl IA (f(z))l  If ' (z)l  + C 2 - -  

C 

- 1 - I z l  2 

4~(/(z))  

x -I~12 

Here C2 and C are constants. To get the last inequality, we have used the fact that 

~ ( f ( z ) )  is bo,mded for z E A. This concludes the proof  that ~ E Am(A).  [] 

R e m a r k  A.7 .  When F is a Fuchsian group, the embedding 0 : ~ _~ T(1) --+ 

A ~ ( A )  restricts to an embedding Bt ' (F)  ~ Aoo(A, F), where 

A ~ ( A , r )  = ~ e . a ~ ( ~ )  : r - ~ -  e A ~ ( a , r )  . 

In contrast to the description of  A ~ ( A , F )  as II " 11~,2 bounded holomorphic 

quadratic differentials of  the Riemann surface F \A ,  A ~ (A, F) does not have an in- 

trinsic characterization as a space of  differentials on F \A.  Rather, it is extrinsically 

defined as the space of  solutions to the Ricatti equation 

r162162 eEAoo(A,F) 
on the Riemann surface F\A. 
connections on F \A ,  i.e., 

A : --r holomorphic A C 

However, it contains the subspace of  affine 

} 
which is an affine space modeled on the space of  II �9 II~,l bounded holomorphic 

1-forms on F \A.  

[Ahl63] 
[Ahl73] 
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