THE VELLING—KIRILLOV METRIC
ON THE UNIVERSAL TEICHMULLER CURVE

By

LEE-PENG TEO

Abstract. We extend Velling’s approach and prove that the second variation
of the spherical areas of a family of domains defines a Hermitian metric on the
universal Teichmiiller curve, whose pull-back to Diff +(S!)/S! coincides with
the Kirillov metric. We call this Hermitian metric the Velling—Kirillov metric.
We show that the vertical integration of the square of the symplectic form of
the Velling—Kirillov metric on the universal Teichmiiller curve is the symplectic
form that defines the Weil-Petersson metric on the universal Teichmiiller space.
Restricted to a finite dimensional Teichmiiller space, the vertical integration of
the corresponding form on the Teichmiiller curve is also the symplectic form that
defines the Weil-Petersson metric on the Teichmiiller space.

1 Introduction

Let T(1) be the universal Teichmiiller space and 7 (1) be the corresponding
universal Teichmiiller curve. T(1) and 7 (1) have the natural structure of infinite
dimensional complex manifolds, and the natural projection p : 7(1) — T(1) is a
holomorphic fibration. In [Vel], J. Velling introduced a metric on 7'(1) by using
spherical areas. Namely, consider the Bers embedding of T'(1) into the Banach
space

Axo(A) = {qb holomorphic on A : sup |¢(2)(1 — |2|?)?| < oo} ,
2€EA

where A is the unit disc. For every Q € A, (A) and ¢ small, the solution to the
equation

(1.1 S(f*9) = tQ,

where S(f) is the Schwarzian derivative of the function f, defines a family of
domains Q; = f*?(A). Here f'“ is normalized so that f*9(0) = 0, f!?(0) = 1
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and f!2(0) = 0. Velling proved that the spherical area As(9;) of the domain (),
satisfies 2

EﬁAS(Qﬂ)lt:o > 0.
This defines a Hermitian metric on the tangent space to T'(1) at the origin, identified
with Ax(A). Our first result, Theorem 3.4, is the following explicit formula for

this metric:

2 o0
1Q1 = 5 g As(@p = 3l

where Q(z) = 3 oo o(n® — n)a,z"~2. The series converges for all @ € A (A).
However, since the spherical area of the domain f*@(A) is not independent of the
choice of the function f*@ that satisfies (1.1), || - ||s does not naturally define a
metric on T'(1) by right group translations.! Nevertheless, Velling’s approach can
be generalized to define a metric on the universal Teichmiiller curve 7(1). This is
achieved by a natural identification of 7'(1) with the space Homeo,(S*)/S' — the
subgroup of orientation preserving quasisymmetric homeomorphisms of the unit
circle that fix the point 1, and with the space

D = {f : A — € a univalent function : £(0) =0, f'(0) = 1,

£ has a quasiconformal extension to C},

which we prove in Section 2. This endows 7 (1) with a group structure.? Following
Velling’s approach to T'(1), given a one-parameter family of univalent functions
ft:A - CeD, flli=¢ = id, which defines a tangent vector v corresponding to
% [t]t=0 at the origin, we define a metric on the tangent space to 7 (1) at the origin
by
o = o L As(AD] oy

and extend it to every point of 7(1) by right translations. This metric is Hermitian
and Kiahler. More remarkably, its pull-back via the embedding Diff . (51)/S! —
Homeo,,(S1) /S ~ T(1) is precisely the metric

o

o= nleal?

n=1
on Diff{ (S?)/S* introduced by Kirillov [Kir87, KY87] via the coadjoint orbit
method. Here v = ¥, ¢,ei?8/88, c_,, = &, is a vector field on S'. We call this

I'The metric on T(1) defined as a pull-back of the Hermitian metric on Ax(A) given by || - ||s is
not natural. It does not induce a metric on finite dimensional Teichmiiller spaces embedded in T(1)
since these embeddings are base-point dependent.

21t is well-known (see, €.g., [Nag93, Leh87]) that 7(1) is not a topological group.
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Kihler metric on 7(1) the Velling—Kirillov metric and prove that it is the unique
right invariant Kihler metric on 7(1).

Let x be the symplectic form of the Velling—Kirillov metric on 7(1). We
consider the (1, 1) form w on T'(1), which is the vertical integration of the (2, 2) form
kAkonT(1),1.e., integration of k Ak over the fibers of the fibrationp : 7(1) — T(1).
We show that this is equivalent to Velling’s suggestion of averaging the Hermitian
form || - ||s along the fibers of 7(1) over T'(1). Our second result, which we prove
in Theorems 4.2 and 4.3, is that w is the symplectic form of the Weil-Petersson
metric on T'(1), defined only on tangent vectors which correspond to H 3/2 vector
fields on S!.

When T is a cofinite Fuchsian group, the Teichmiiller space T'(T") of I" embeds
holomorphically in 7(1). The Bers fiber space BF(T') is the inverse image of
T(T') under the projection map T (1) — T'(1), and the Teichmiiller curve F(I') is a
quotient space of BF(I'). The symplectic form « is well-defined when restricted
to F(I'). We prove in Theorems 4.9 and 4.10 that the vertical integration of k A
via the map F(I') — T(T") is the symplectic form that defines the Weil-Petersson
metric on I.

In the Appendix, we consider an analogue of the Bers embedding for 7(1). We
prove that 7(1) embeds into the Banach space

Aoo(D) = {1,1; holomorphic on A : sup |1(2)(1 — |2|?)| < oo} ,
Z2€EA

and its image contains an open ball about the origin of A (A). We also verify that
Ax(A) and A, (A) @ C induce the same complex structure on 7 (1). These results
are not used in the main text.

The content of this paper is the following. In Section 2, we review different
models for the universal Teichmiiller space and the universal Teichmiiller curve
and study their relations with the homogeneous spaces of Homeo,(S*). In Sec-
tion 3, we review Velling’s approach and define a metric on the universal Te-
ichmiiller curve. We prove that its pull-back to Diff ; (S1)/S? coincides with the
Kirillov metric. In Section 4, we prove that the vertical integration of the square
of the symplectic form of the Velling—Kirillov metric is the symplectic form that
defines the Weil-Petersson metric on Teichmiiller spaces. In the Appendix, we
consider an embedding of 7(1).
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available, which has been a great stimulation for the present work. The author has
quoted or reproduced some of his results for the convenience of the reader.

2 Universal Teichmiiller space and the universal
Teichmiiller curve

2.1 Teichmiiller theory. Here we collect basic facts from Teichmiiller
theory. For details, see [Nag88, Ahl87, Leh87].

Let T'(1) be the universal Teichmiiller space. There are two classical models of
this space.

Let A be the open unit disc and A* = C\ A = {z € CU{oo} | |2| > 1} the
exterior of the unit disc. Let L®(A*) (resp., L®(A)) be the complex Banach space
of bounded Beltrami differentials on A* (resp., A) and let L>(A*); be the unit ball
of L*(A*). For any u € L*°(A*),, we consider the following two constructions.

(I) Model A: w, theory.

We extend p by reflection to A, i.e.,

TN L2
@.1) w(z) = p (%) 5 zen

There is a unique quasiconformal map w,,, fixing —1, ~¢ and 1, which solves the
Beltrami equation

(wp)z = plwy)e.

It satisfies

1 1
2.2 m =w, (E)

by the reflection symmetry (2.1). As a result, w,, fixes the unit circle S?, A and
A*.

(II) Model B: w* theory.

We extend p to be zero outside A*. There is a unique quasiconformal map w*,
holomorphic on the unit disc, which solves the Beltrami equation

and is normalized such that f = w#|, satisfies f(0) = 0, f'(0) =1 and f"(0) = 0.
The universal Teichmiiller space T'(1) is defined as a set of equivalence classes
of normalized quasiconformal maps

T(1) = L®(A%)/ ~,
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where u ~ v if and only if w, = w, on the unit circle, or equivalently, w* = w” on
the unit disc.
Using model B, we can identify T'(1) with the space

D ={f:A - Cunivalent : f(0) =0, f(0) =1, f'(0) =0;

f has a quasiconformal extension to C}.

Let S(f) be the Schwarzian derivative of the function f, which is given by

so=(%). -1 (%) =53 (%)

Let A, (A) be the Banach space

Ax(A) =_{¢ holomorphic on A : Sgg lp(2)(1 = |2]%)?] < OO} .

The Bers embedding T'(1) < Ay (A), which maps [p] — the equivalence class of u
— 10 S(w#|a), endows T'(1) with a unique structure of a complex Banach manifold
such that the projection map

& : L®(A"); = T(1)

is a holomorphic submersion. In particular, L°(A*); and A (A) induce the same
complex structure on 7°(1).
The derivative of the map @ at the origin

Do® : L®(A*) — ToT(1)

is a complex linear surjection, with kernel N (A*) — the space of infinitesimally
trivial Beltrami differentials, Explicitly,

N(AY) = {ue L°°(A*)¢//u¢=0, V¢'€A1(A*)},
At

where A;(A*) is the Banach space of L (with respect to Lebesgue measure on A*)
holomorphic functions on A*.
Define

A (A*) = {¢ holomorphic on A™ : sug) [6(2)(1 — [2]%)?| < oo}
ZEA*

and its complex anti-linear isomorphic space

Q1(A%) = {u(e) = (1 - |217)76(2) : ¢ € 4u(AT)},
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the space of harmonic Beltrami differentials on A*. There is a canonical splitting
(AM) =N(@A) e a (A,

which identifies the tangent space at the origin of T'(1) with Q1! (A*). Moreover,
the Bers embedding induces the isomorphism Q11 (A*) = A, (A) given by

=

L>(A*); has a group structure induced by the composition of quasiconformal
maps,
Axp=v, wherew, =wyow,.
Explicitly, it is given by
Bt (how,) Zeke

v= .
1+ p()\ow,,)—-fil-‘-

This group structure descends to T(1). Moreover, the right group translation by
(e}, Ry : T(1) = T(1), [A] = [A * p] is biholomorphic. However, the left group
translation is not even a continuous map on 7'(1) (see, e.g., [Nag88, Leh87]).

Remark 2.1. Conventionally, the model of the universal Teichmiiller space is
the complex conjugate of the one we define above. Consider the natural complex
anti-linear isomorphism

L*(A*), = L™(A)x
. 1\ 22
u = ,u:,u(—z_-)gé-, 2 €A,
Setting ji to be zero outside A, we obtain a unique solution of the Beltrami equation
wfz} = ﬂwfw

which is holomorphic on A* and normalized such that g = w#|5- has Laurent
expansion at co given by

- G2 3, .
(2.4) 9(z) = z(l S5 )
Thus T(1) is identified with the space

D* = {g: A* = C univalent : g has Laurent expansion at oo given by (2.4)

and has quasiconformal extension to (If}
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The universal Teichmiiller curve 7 (1) is a fiber space over T(1)}. The fiber over
each point [y] is the quasidisc w#*(A*) € C with the complex structure induced
from C,

25) T = {(,2): Wl € TQ), 2 e w (A"},

It is a Banach manifold modeled on A{A) & C. We have a real analytic isomor-
phism between T(1) x A* and 7(1) given by

({e], 2) = ([, w*(2)).

2.2 Homogeneous spaces of Homeo,(S'). Let Homeo,s(S') be the
group of orientation preserving quasisymmetric homeomorphisms of the unit
circle S'. It contains the subgroup of orientation preserving diffeomorphisms
— Diff, (S'). We denote by M6b(S!) the subgroup of Mbius transformations and,
abusing notation, denote by S* the subgroup of rotations.

Consider the model A of the universal Teichmiiller space T'(1) given above.
Clearly, the map T'(1) > [u] = w,|s: € Homeoy,(S?) is well-defined and one-to-
one. The Ahlfors—Beurling extension theorem implies that its image consists of all
normalized orientation preserving quasisymmetric homeomorphisms of the unit
circle (see, e.g., [Ber72, Nag88, Leh871); in other words,

T(1) = Homeoy,(S')/ Mob(S1).

Let 4 € Q~11(A*) be a tangent vector at the origin of 7'(1). It generates the
one-parameter flow wy,; and the corresponding vector field is given by w,8/0z,

where
W (2) = +D+i)(z-1) [/ — () dCAdT,

2mi C+DE+9(C-1)

and f is the extension of u by reflection to C. Restricted to S!, we have w,(z) =
izu(z), where u(et?)8/88 is the vector field on S*,

It was proved by Reimann (see [Rei76, GS92, Nag93]) that the tangent space
to Homeo,(S') at the origin is the Zygmund space

A(SH = {u(eie)-aa—o : (i) u: S = R is continuous, and

(i) Fu(z) = %(zz + (z—;-:) is in A(IR)},

T
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where

A(R) = {F :R — R: (i)F is continuous, and
(ii) |[F(z + t) + F(z — t) — 2F(z)| < B|t| forsome B,Vz,t € IR;}.

By imposing extra normalization conditions, we can characterize the tangent space
at the origin of Homeo,;(S')/S" and Homeog,(S')/ Mob(S!) in a similar way.

Remark 2.2. It is not known how to characterize the Zygmund space A(S!)
using Fourier coefficients on S!.

In [Kir87], Kirillov considered the Lie group Diff . (S?) and proved that there
is a natural bijection between the space K of smooth contours of conformal radius
1 which contain 0 in their interior and the space Diff , (S!)/S*. We generalize this
bijection in the following theorem.

Theorem 2.3. There is a natural bijection between the space Homeo 45(S*)/S*
and the space K4 of all quasicircles, i.e. images of the unit circle under quasi-
conformal maps of conformal radius 1 which contain 0 in their interior. Moreover,
for every v € Homeogs(S')/S?, there exists two univalent functions f : A = C and
g: A" = C determined by the following properties:

1. f and g admit quasiconformal extensions to quasiconformal mappings of C;
2. y=g'o flss modS;
3. f(0)=0, f(0) =1,

4. g(c0) = 00, ¢'(c0) > 0.

Proof. By the Ahlfors—Beurling extension theorem, an orientation preserving
quasisymmetric homeomorphism v of the unit circle can be extended to a quasi-
conformal map w of C satisfying the reflection property (2.2). Let 1 be the Beltrami
differential of the map w|a-. Up to a linear fractional transformation, w agrees
with w, as defined in Section 2.1, i.e., w = 0, o w, for some ¢, € PSU(1,1).
The corresponding map w# (Section 2.1) is holomorphic inside the unit disc A.
Define g = 05 o w* o w™!, where 0, € PSL(2,C) is uniquely determined by the
requirement that f = o5 o w* satisfy f(0) = 0, f'(0) = 1 and g satisfy g(oo) = 0.
The maps f|a and g|a- are holomorphic. They do not depend on the extension of
4, and we have v = g7! o f|s:. The image of S! under f, which is the same as
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the image of S! under g, is by definition a quasicircle ¢ with conformal radius 1.
By post-composing w with a rotation, we can arrange for the map g also to satisfy
g'(c0) > 0.

Conversely, by definition, a quasicircle C is the image of S! under a quasicon-
formal map h : C — C. Let u; be the Beltrami differential of k|, extended to A*
by reflection. Let w,,, be a solution of the corresponding Beltrami equation. Then
f = how;,! is a quasiconformal map which is holomorphic inside A. When 0 is in
the interior of C, there is a unique way to normalize w,,, by post-composition with a
PSU(1, 1) transformation such that f(0) = 0 and f'(0) > 0. The image of S* under
[ is the quasicircle C. In fact, by the Riemann mapping theorem, f] is uniquely
determined by C and the normalization conditions f(0) = 0, f'(0) > 0. ThatC
has conformal radius 1 implies that f/(0) = 1. Let u be the Beltrami differential
of fla-, extended to A by reflection. Let w, be a solution of the corresponding
Beltrami equation. Define g = f o w;! o o, where ¢ € PSU(1,1) is uniquely de-
termined so that g(co) = co and g'(00) > 0. The map v = g~ ! o f|s: is then an
orientation-preserving quasisymmetric homeomorphism of the umit circle. O

The decomposition v = g~! o f is known as conformal welding. Using the
fact that the correspondence between f and the quasicircle C is one-to-one, we can
identify Homeo,,(S*)/S* with the space of univalent functions

D = {f: A — C a univalent function : f(0) = 0, f'(0) = 1,

f has a quasiconformal extension to C}.

D is a complex subspace of the complex space of sequences {a,} (Fourier
coefficients of the holomorphic function f). This induces a complex structure
on Homeog,(S)/St.

Remark 2.4. Observe that if v = w,|s: up to post-composition with a
PSU(1,1) transformation, then the corresponding f is equal to w* up to post-
composition with a PSL(2, C) transformation.

We identify Homeog,(S')/S? as the subgroup of Homeog,(S') consisting
of quasisymmetric homeomorphisms that fix the point 1. Consider
Homeo,s(S*)/ M&b(S?) as the subspace of Homeo,,(S)/S? corresponding to the
natural inclusion T'(1) ~ D < D ~ Homeo(S')/S!. Analogous to the
isomorphism T'(1) ~ Homeog,(S')/ M6b(S*), we have

Theorem 2.5. There is an isomorphism between T (1) and Homeo 44 (S*)/S* ~
D. Moreover, the complex structure of T(1) induced from A.(A) @ C coincides
with the complex structure induced from D.
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Proof. The fiber of Homeo,s(S!)/S* overy € Homeog,(S')/ Mob(S!) consists
of all quasisymmetric homeomorphisms of the form o oy mod S!, where o €
PSU(1,1) mod S? are parametrized by w € A* ~ PSU(1,1)/5%, i.e.,

1—2w

(2.6) ow(z) = —

Let f,g (resp. fu,gw) be the univalent functions corresponding to < (resp., Y =

oy ©), ie.,
v=g""0f, owor=g5"0 fu.
Using Remark 2.4, we have
Ju=Dwolf, and hence g, = Ayo0goo}’

for some A, € PSL(2,C). The normalization conditions on f,, € Dand f € D
imply that

1"
Z , where ¢, = -——l-f“’(o)
cw2 +1

@7 Au(z) = S0

The condition g,,{00) = oo implies that

(2.8) Cy = --——-1——-.

g9(w)
Let |1} be the equivalence class which corresponds to v under the isomorphism
T(1) ~ Homeoy(S')/ M6b(S'). For w € A*, the point g(w) lies in f(A*) =
w*(A*), since f(A*) = g¢g{A*). Hence the natural correspondence between
Homeo,,(S)/8' (=~ D) and T(1), given by

0w oy € Homeog,(S1)/S'  (fu = Awo f € D),
2.9 0w 0o (fu = Ay o f) = (1), g(w)),

is an isomorphism.

In the identification above, 7'(1) is the natural subspace {([u], ) : [u] € T(1)}
of 7(1). The embedding ([u], 00) + f of T(1) into D is the pre-Bers embedding.
Hence the complex structure of T(1) ~ A, (A) agrees with the complex structure
induced from D . From (2.9), (2.7), (2.8), we see that if we fix [u] in ([u], 2) € T(1),
and change 2 holomorphically, the corresponding f € D associated to ([u), 2)
changes by post-composition with A = (19) € PSL(2,C), where the coefficient ¢
depends holomorphically on z. This implies that the complex structure of 7(1)
induced from the embedding 7(1) — A (A)®C agrees with the complex structure
of D induced from the isomorphism (2.9). ]
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We can identify each point in 7(1) as an equivalence class of quasiconformal
mappings as in the proof of the theorem above. This immediately implies that
7 (1) also has a group structure coming from composition of quasiconformal maps,
which is an extension of the group structure on 7'(1). According to the definition
and the identification given in the proof of Theorem 2.5, the group multiplication
in terms of coordinates (2.5) is given by

(2.10) ([Alvz) * ({!*"LZO) = ([V},Z'),

where

Wy
(2.11) v= g%%—%’—”ﬁ and 2 =w"ow o (w) " (2).

W,
Here w is the quasiconformal map corresponding to the point ([u], zo) € T(1) =~
Homeog,(S?)/S*. The right group translation by ([u], z0), Bju),z0) : T(1) = T (1)
is biholomorphic (see [Ber73]). Thus we can identify the tangent space at {[u}, z0)
with the tangent space at (0, 00) — the origin of 7(1) — via the inverse of the
derivative of the map Rf,,,,) at the origin, i.e., via the map (D(O,m)R(M,zO))_l.
Moreover, this identification and the group structure give rise to a splitting of the
tangent space at each point of 7(1) into horizontal and vertical directions. At
the origin (0, c0), the vertical direction is spanned by {0} @ C and the horizontal
direction is spanned by Q11 (A*) & {0}. A horizontal vector (1, 0), v € Q- 1H{A*),
at the origin (0, 0o) has a unique horizontal lift to each point (0, z) on the fiber at
(0,00). Namely, let ([tv], z}), 25 = z be a curve that defines the horizontal lift of
(v,0) at the point (0, z). For ¢ small, z; is determined by the equation

(M), 00) x (0, 2) = ([tv], 2), At) € L®(8%)1.

The point (0, z) corresponds to the map o, defined by (2.6) (the subscript z does
not indicate a derivative). Using the formulas (2.10), (2.11), taking the derivative
with respect to ¢ and setting t = 0 (which we denote by - ), we have

. !
(2.12) A= (1/ -q_.—..z-) og;? and ¢ =dY(2).

Hence the horizontal tangent vector (v, 0) at (0, 0o} is lifted to the vector (v, w¥(z))
at {0, z}, and the latter is identified with the horizontal tangent vector A,0) at the

origin {0, 00) of 7(1).

2.3 Identification of tangent spaces. Here we want to identify the tan-
gent spaces of the different models of the universal Teichmiiller curve and universal
Teichmiiller space. We need the following two lemmas.
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Lemma 2.6. Let Q(z) = Yoo ,(n® — n)an2™? € Ax(A). Then the series

S o n¥lan|? is convergent for all real s < 1.
Proof. Since

Q € Ax(A) = {¢ holomorphic on A : sup |¢(2)(1 — |2|*)?] < o0},
ZEA
we have for any o < 1,
__dzdy
2)(1 - |2]?)? < 00,
[/;cz =P ot
where 2z = z + iy. This integral is equal to

- 7;2(?13 . n)2 F(?(‘i z)g(na 1)‘ n} .

Stirling’s formula for the gamma function I' implies that
I(n = 1)(n® - n)?

A, I'(4+n—a)nlte =1
By the comparison test, the series
0
Z nl+alg, |2
n=2
is convergent for all o < 1, which implies the assertion. g

Remark 2.7. We have used an idea of Velling [Vel] in the proof of this
theorem.

Lemma 2.8 ([Zyg88]). If the function f(z) = ap + mz+ -+ 02"+ is
holomorphic on A and continuous on AUS?, and the series 5, n|a,|? is convergent,
then the series

ap + a6 + -t ape’™ 4 ..
converges uniformly to f(e®) on 0 < 8 < 2.
First, we look at the isomorphism between the universal Teichmiiller curve
W : Homeog,(S')/S* — D,
e S

It establishes the relation between the real analytic (through Homeoy,(S')/S'))
and complex analytic (through D) descriptions of 7/(1). Infinitesimally, it takes the
following explicit form.
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Theorem 2.9. The derivative of W at the origin is the linear mapping
DoW : To Homeoys (S') /S — TyD given by

Proof. Consider the smooth one parameter flow v* = (¢")~! o ft|g1, 7|y =

id. It is known (see, e.g., [Leh87]) that v*, f* and g' can be extended to quasi-
conformal mappings of C, real analytic on C\ S!. The corresponding vector fields
d_;

dt
Zi?'y’ &-f and

&
are continuous on C, real analytic on ¢ \ St
We write the perturbative expansion
fiz) =z +tu+ O(t?) = z + tz{a12 + ag2® + --- ) + O(?),
forz € A, and
g =2+tv+ 0% =24+ tz(bo +brz7  +boz™2 +---) + O(t?),

for z € A*.

We denote
d , i d oy ¢

d
L _ @ B ] ;2
T=u” F=gf and g=29|

3
=0 lt=0

so that f|a = u and g|a- = v.
Under the Bers embedding, S(f*|a) belongs to a bounded subspace of A (A);
and the corresponding tangent vector to T'(1) at the origin is

_ D
ez = 2:S(f 1A)]M € Au(A).

Since u = Y o anz™*! is holomorphic on A and continuous on C, Lemma 2.6
(with s = 1) and Lemma 2.8 imply that the series

oo
Z anez(n+l}6
nzz1

converges uniformly to the continuous function u|s: (¢*) on the unit circle S*.
Similar arguments imply that the series

o0
Z bnei(l--n)O

n=0
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converges uniformly to the continuous function | : (¢¥) on S*.
Taking the derivative with respect to ¢ of the relation v¢ = (g*) ™! o f* and setting
t = 0, we have

(2.13) Y= —g+f.
This shows that the series
> S b
anei(n+l}6 . bnet(l—n}()
n=1 n=0
converges uniformly to the function 4| 1. In particular, it is the Fourier series of

4ls:. Let u(e®®)8/00 be the corresponding vector field, so that 4 = izu(z) on S*.
We have proved that the Fourier series of u(e#)

E cne™, e, =72n

nez
converges uniformly to u(e*®) . Moreover,

%) )
i Z Cnez(n+1)6’ = Z anez(n+1)0 = Z bnez(l—n)ﬂ.
nez n=1 nz==0

Comparing coefficients, we have
a, =icp, bp=-—ic.,, n>1
Moreover, we have the relation

an = b o

By imposing extra normalization conditions, we can pass from the models for
T (1) to the models for T'(1).

Remark 2.10. In [Nag93], Nag proved a result similar to Theorem 2.9 for
T(1) by using explicit formulas for 4 and f from the theory of quasiconformal
mappings. Here we use a slightly different approach.

For the second isomorphism between the universal Teichmiiller space, we
combine the Ahlfors—Beurling extension theorem and the Bers embedding and get
the map

B : Homeog, (S1)/ Mob(S*) = (L®(A*)1/ ~) = Aw(A),
¥ - (] = S(w*la),

where v = wp|s1. Our argument in the proof of Theorem 2.9 gives immediately
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Theorem 2.11. The derivative of the map B at the origin is the linear mapping
DB : Ty (Homeogs (S*)/ M6b(S)) = A (A) given by

oo
Z cne™ iZ(ns —n)ep2™ 2.
n#—1,0,1 n=2

Remark 2.12. Lemmas 2.6, 2.8 and Theorem 2.9 imply that the tangent
vectors at the origin of Homeo,,(S!)/S' have Fourier series ¥, ¢, which
converge absolutely and uniformly and belong to the Sobolev class H* for all
5 < 1. Here the Sobolev space H*(S') is defined as

H*(SYH = {u(ew) = Zane""e : Z [n|*|an]? < oo}.
nez ngZ

In light of Theorem 2.9, we say that a tangent vector u = 3 oo an2"t! € TyD is
in H* if it is the image of a H® vector ) c,e'™ under the map DoW.

2.3.1 More on complex structures. The almost complex structure J at
the origins of Diff, (S;)/S* and Diff  (S')/ M&b(S?!) is defined by the linear map
J : Ty — Ty given by

g O e O
: iné _ ing
(2.14) Jv=1 En sgni{n)cpe 36’ where v = En Cnt TR

See references in [NV90]. (Note that we differ from the definition in [NV90] by
a negative sign.) By Remark 2.12, J extends to almost complex structures on
Homeo,s(S')/S! and Homeog,(S)/ Méb(S?).

In [NV90], Nag and Verjoysky proved that the almost complex structure J
on Diff . (S')/ M&b(S?) is integrable and the corresponding complex structure is
the pull-back of the complex structure on T'(1), induced by the complex structure
of L*°(A);. Adapting their proof to our convention, we immediately see that
the complex structure J on Homeog,(St)/S! coincides with the complex structure
induced from 7(1).

Under this convention, the holomorphic tangent vectors are of the form

v—idu ;
w= — E :Cnemﬂs

2 n>0

and the antiholomorphic tangent vectors are of the form

. v+iJu :
h = = Z cnet™.
2
n<0
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2.4 Metrics. We are interested in homogeneous Hermitian metrics, i.e.,
Hermitian metrics which are invariant under the right group action on the homoge-
neous spaces of Homeog,(S'). In (Kir87] and [K'Y87], Kirillov and Yuriev studied
Kihler metrics on Diff ;. (§1)/S?. It is known that the homogeneous Kihler metrics
on Diff ; (5!)/S! must be of the form

(2.15) lvl2s=>"(an® + bn)lca]?,

n>0
where v = 3, .z ¢ne™?8/80 € Ty Diff { (5')/5*. The metric || - {lo,1 is called the
Kirillov metric.

On the other hand, since the vector fields e ~%9/98, /8, ¥ 8/ 58 generate the
PSU(1, 1) action on S?, (2.15) defines a metric on Diff 1 (S?)/ M6b(S?) if and only
if an® + bn = 0 for n = —1,0,1. This implies that, up to a constant, there is a
unique homogeneous Kihler metric on Diff . (51)/ Mob(S?!) given by

T
2.16) lo P= 5 20 = n)leal®.
n>0

Let I" be a Fuchsian group realized as a subgroup of PSU(1,1) acting on A*.
Let L*(A*,T") be the space of Beltrami differentials for T, i.e.,

L=(A*T) = {u € L™(A*) :uo'yg =u,Vy € F}.
The Teichmiiller space T'(I') of I" is the subspace of the universal Teichmiiller space
T(T) = L*=(A% )/ ~,
where
LZ®(A*,T) = L¥(A*); N L*®(A%T),

and ~ is the same equivalence relation we use to define T{1). The tangent space
at the origin of T'(T') is identified with the space of harmonic Beltrami differentials
of I

Qb AYT) = 7N (AY) N L®(A%T).

When I' is a cofinite Fuchsian group, i.e., when the quotient Riemann surface
I'\A* has finite hyperbolic area, there is a canonical Hermitian metric on T'(T’)
given by

{n,v) = //uﬂp, p,v € Q7H(A*T),
r\A+
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where p is the area form of the hyperbolic metric on A*. This metric is called
the Weil-Petersson metric. The notation T'(1) for the universal Teichmiiller space
indicates that it corresponds to the case I' = {id}. This suggests defining the
Weil-Petersson metric on T'(1) by

(m,v) = /fﬂﬁp, pv € QTVHA®).
A#

However, this integral does not converge for all y,» € Q11 (A*). In particular,
it diverges when both u, v are Beltrami differentials of a Fuchsian group which
contains infinitely many elements. However, it was proved by Nag and Verjoysky
in [NV90] that the integral is convergent on Sobolev class H%/? vector fields, which
contains the C? class vector fields. More precisely, they proved that the pull-back
of the Weil-Petersson metric on 7'(1) to Diff . (S*)/ M&b(S!) coincides with the
unique homogeneous Kihler metric (2.16) on Diff ; S1/Mob(S?) (up to a factor 4).
Henceforth, when we say the Weil-Petersson metric on 7T'(1), we understand that
it is only defined on tangent vectors in the Sobolev class H3/2.

Under the Bers embedding, the Weil-Petersson metric on 7'(1) induces a metric
on Ay (A). It is given by

Theorem 2.13. For Q = u,., € A (A), identified as a tangent vector to T(1)

at the origin such that u = 320 | anz™' € H%?, the Weil-Petersson metric has
the form

uQnWP—22<n ~ )lanl? = / Q(1 = |2 dzdy.

Proof. The first equality follows immediately from the identification of tan-
gent spaces given by Theorem 2.11. The second equality is an explicit computation
of the integral. 0

Remark 2.14. The derivative of the map D < Ay (A) at the origin, f — f...
can be viewed as a linear mapping sending vector fields to quadratic differentials.
The theorem states that the Weil-Petersson metric on A.,(A) given by the Bers
embedding T(1) — A, (A) is the usual Weil-Petersson metric defined on the
space of quadratic differentials. This can also be proved directly by using the
isomorphism (2.3). In particular, we have

IQov(Y)? Ivp=Il Q liyp, forall y € PSU(L,1).

Remark 2.15. Analogues of Theorems 2.9, 2.11 and 2.13 hold for finite
dimensional Teichmiiller spaces T'(I') embedded in the universal Teichmiiller space

T(1).
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According to Remark 2.12, the Kirillov metric on Diff ;(S!)/S! extends to
7(1). Namely, at the origin, it is of the form
(2.17) v lP=" nleal?,

n>0

where v = 3", ¢,e""?0/80 is the corresponding tangent vector. The series (2.17) is
convergent. Using the right translations, we define a homogeneous Kéhler metric
on 7 (1).

Since every homogeneous Kihler metric on Diff ; (S?)/S! can be written as a

linear combination of the metric (2.17) and the Weil-Petersson metric, and only
the former is convergent for all the tangent vectors of 7 (1), we have

Theorem 2.16. Every homogeneous Kdhler metric on T (1) is a multiple of
the metric (2.17).

3 Velling’s Hermitian form and the Velling—Kirillov
metric

3.1 Spherical area theorem. The spherical area of a domain 2 in Cis
/ / 4dzdy
1+ |2[2)2
It is invariant under rotation, i.e., As(Q) = Ag(e®?(Q2)).
Following Velling [Vel], for @ € Ax(A) and t small, we consider the one-

parameter family of functions f!? € D satisfying S(f!?) = tQ and the spherical
areas of the domains ; = f!?(A),

4dxdy

s() // (1+ |2]2)2
_4 // _ldfeE
(1+]fe@p)?

Velling’s spherical area theorem is the following.

Theorem 3.1 (Velling [Vel]). For ) € Ax(A), we have

EZAS(ftQ( Nle=o =0,

d?
dt?
with equality if and only if Q = 0.

——As(f*9(A))]e=0 > 0,
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This follows from another result, proved by applying the classical area theorem.

Theorem 3.2 (Velling [Vel]). Let f : A — C be a univalent Junction
(perhaps meromorphic) with Taylor expansion f(z) = z(1+ a22® + azz® + ---) at
the origin. Then the spherical area As(f(A)) satisfies

As(f(A)) 2 2m,

with equality if and only if f =

The second inequality in Velling’s spherical area theorem implies that
WAs(f‘Q(A))h —o is a Hermitian form on A, (A). Our goal is to compute this

form explicitly.
The following lemma is very useful for computations.

Lemma 3.3 ([Zyg88]). Let f(z) = Y .., anz" be an analytic function on A
and $(r) an integrable function on (0,1). Then

/ &(|z|) Re (f(2))dzdy = 27 Re (a0 / &(r)

x 1
[ Hebis @y = 223 loul? [ sty
A n=0 0

3.2 Velling’s Hermitian form. Now we compute Velling’s Hermitian
form —;As( ft9(A))|¢=o- For t small, we write the perturbative expansions

FR(2) = 2+ tu(2) + *u(2) + O(t°),

3.1 u(z) = 2(ap2® +az2® +--+) = Z anz™t!
n=2
o0
v(z) = 2(bo2® + b3 +.-+) = Z bpz"™t!
n=2

Taking the t derivative of the equation S(f*?) = tQ and setting t = 0, we get the
relation

Fun=q@, i, Q(2)=2(n3—n)anzn‘2-

Using the expansion

IFI92F |14 tu, + 2,2

3
(14 [F1912)2 (14 |2 + tu + t202)2 o(t),
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we obtain
Xx(z)dzdy
dt2AS(ftQ(A)) t=0 8// (1+[22)2
24 T4 5u)2
X(2) = (0, +75 + Ju, ) - 2220+ 11l - ﬁ:{; fuus 1) | 3%“4_“? :{’;))2 .

Using the series expansion (3.1) and v(0) = v'(0) = 0, we see that v drops out
from the integration. Applying Lemma 3.3, we get

d?

TaAs( (Ao, = 167 Z enlanl?,

n=2

3.2)

where

’ /1 6T2n+4 (4?24' 6),!.271-{-2 ('I’l + 1)27.27:
= — rdr.
A+t (1+r2) 1 +r2)2

We compute ¢, by repeatedly using integration by parts:

/ 6rot? _ (n+ 6)rntl . (n+ 1)21"‘) dr
tn (1+7r)t (1+7)8 (1+ )2 ’
1 pnt2 22+ Tn+7 n(n +1)(n+ 2) 1pn-1

s A+ri = 24 6 1+r

/1 prtl g e - 2n+3 n(n+1)/
o (1+7‘)3 8 1+T "

1 n n—1
T 1 Ly
/o W(1+r)2dr~—*2-+n A 1+rdr.

' ¥

When we substitute into ¢, all the terms with integrals cancel; and we are left with
¢, =n/8.
Therefore, we have
Theorem 3.4. Let € Aw(A). Then

d?

FA(FIA)| _ =2 Y njanf?

=2
Remark 2.12 implies that the series is convergent for all @ € A (A). Hence,
ve can define a Hermitian form on A, (A) by

1 QU= o A (7B lemo = 3 nlanl,

n=2
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where
o0

Q(z) =) _(»* —n)anz"%

n=2

we call this Velling’s Hermitian form.

Remark 3.5. The first half of the computation above is reproduced from
Velling’s unpublished manuscript [Vel]. Velling gave the result in terms of (3.2).
Our observation is that ¢,, can be computed explicitly.

Note that in evaluating the Hermitian form, we have chosen a particular nor-
malized solution f!? to the equation S(f!¢) = tQ. Any other choice will differ
from this one by post-composition with a PSL(2, C) transformation. However, the
spherical area of a domain Ag(f(A)) is not invariant if f is post-composed with
a PSL(2,C) transformation. If we choose different normalization conditions to
identify T'(1) as a subgroup of 7(1), we get a different right invariant metric on
T'(1). Hence the Hermitian form || - ||s does not naturally define a right invariant
metric on T'(1).

On the other hand, since the correspondence between v € Homeo 44(S')/S?
and f € D is canonical, we can use the same approach to define a metric on
T (1) ~ Homeo,,(S')/S*. Namely, given the tangent vector v = 3 c,e™?0/96
at the origin with the associated one-parameter flow vt = (g*) ™! o f|s1, we define
a Hermitian form by

lvlP= & ods(f ).

The proof above holds with an extra term n = 1 (notice that we only need the
fact there are no constant terms and terms linear in z in the first and second order
perturbations), and we get

o« o
o= o dtzlt_ As(FH(A)) = Y nlan* = 3 nleal?,
n=1 n=1

which coincides with the metric (2.17) at the origin. It is quite remarkable that
this metric, introduced by Velling using classical function theory, coincides with
the metric introduced by Kirillov using the orbit method. Henceforth, we call this
metric on 7 (1) the Velling—Kirillov metric.

4 Metrics on Teichmiiller spaces

4.1 Universal Teichmiiller space. Let k be the symplectic form of the
Velling—Kirillov metric on 7(1) ~ D. We want to define a metric on T(1) by
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vertical integration of the (2, 2) form & A k. Namely, let

w=[[rn

fiber

and define a Hermitian metric on 7'(1) such that w is the corresponding symplectic
form.? Since & defines a right invariant metric, w also defines a right invariant
metric. Hence we only have to compute the form w at the origin of T(1). We
identify the tangent space of 7 (1) at the origin with 4.,{A)@®C. The vertical tangent
space is spanned by 9/6w and 8/0w, where w is the coordinate on C. Observe
that the horizontal and vertical tangent spaces are orthogonal with respect to the
Velling—Kirillov metric. Hence, given a holomorphic tangent vector @ € A (4A),
we have

0@, =2 [[ 60, Qx5 55w A,
I

where ( is the horizontal lift of (Q,0) to every point on the fiber. Using the right
invariance of the Velling-Kirillov metric, we see at once that x(0/0w, 8/0W)dwAdw
is the area form of a right invariant metric on A*. Hence, up to a constant, it is the
hyperbolic area form dA ;. Checking at the origin, we find that

a & _dzdy 1
E(é‘w—, %)dw/\d‘w— --—-————“(1 “Twl)? =3

Via the identification (2.12) and the isomorphism (2.3), Q at {0,w) is identified
with Q o o' ({(03)')? at the origin. Hence

K@) w) = 31 Qooz () I

Under the change of variable w — 1/w, o} is changed to v,,, where modulo S,

Z+w
1420

Yw(z) =

Since pre-composing Q with a rotation does not change the Hermitian form {| Q ||,
we finally get

Q@) =7 [[10ulBdan,  Qu=Qom0Lr.
Fa

3Since the fiber is not compact, it is not a priori clear that we get a weli-defined symplectic form on
T(1).



THE VELLING-KIRILLOV METRIC 293

Thus our approach to defining a Hermitian metric on 7T°(1) coincides with Velling’s
suggestion {Vel] of averaging the Hermitian form || - ||% along the fiber to define
Hermitian metric on T'(1), i.e.,

@1 1Q Iy=~2w(@Q.Q) = f/ Q| Su%ﬁ;)?

Remark 4.1. I am grateful to my advisor L. Takhtajan for his suggestion of
using vertical integration to obtain a metric on T'(1).

Since the Hermitian form || Q ||% is expressed in terms of the norm square of the
corresponding coefficients |a,|?, to compute (4.1) it is sufficient to average |an|*
forn > 2.

We set
Qu(z) = Qo u(7),)2(2) = é(n - n)a¥z"?, m(s) = T : =
Then
w _ 1 (Q ° Y ('7:::)2)(1“—2)
(4.2) MW on) . (n-2) ’
and
I QuliE=_ nlay .
n=2

Theorem 4.2. Letu(z) = Y oo, a,z"tt € HY? and Q = us... Then

wpe 4ddzdy 2 2(1 — lwl?)2dz

- St

n=2

Proof. Using (4.2), we set
=L Qom0 cilw)
N VAR (G-2)! G~y
and introduce the generating function for the ¢;(w)’s,

f(u,w) = i cj(w)ujhz
j=2
)(j—-Z)

(Q o Yw(my)
- Z G-2)

= Q © o () (Y2 ().

(0)w/ 2
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Writing u = pei®, we have

et X 1 2x
S lesw)e = 5 [ Ifte w)Fd
=2

and

2 d:z:dy pri= o 2 dzdy
mlf @ ™ = 5 / Al e

2n
/ 1Q 0 7w (pe™) (73, (pe'))? 12( dzl-d112)2d

Denoting this integral by Z, substituting the series expansion of @ and using polar
coordinates w = re*, we get

(4.3)

2w 27
1 (I-r ) 2
I= / / dfrdrda A F rpei@-m)t 7 '

2 > i 1 m—2
3 _ pe® +re T 3 __ [ peTi™ 4 re i
;(n n)an (————1 T rpeita- 9)) mzzz(m m)am, 1 +"Tpe_i(a—o) :
We do some “juggling”,
pei +rei \"7? [ peia 4 peif \ ™72
(1 + rpei(a—")) (1 + rpe‘““‘”)

peite=9 4 e pe~i@=0) 4 ¢ m=2 i(n—m)d
1+ rpei(e=0) 1+ rpe=ia—9) ¢ ’
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and make a change of variable a — (a + 8) to get

2 27
I =5z / dérdrda Z (n® - n)(m® - m)anan,

n,m>2

Pei“ +r\"7 [ pere e\ (117 2 jitn—m)p
1+ rpete 1+ rpe—ic (1 + rpeia)t

2n 1
:/ / rdrda
Z(ﬂ 'ﬂ)zia !2 peia tr " e AT "~ (1 - T2}
A1+ rpeie 1+ rpe~ia (1 + rpeia)d
27r
/ / rdrda
Z(”s — n)?anf? p+re® \"7? ( pyreia \"? l (1-1r?)
"\ 1+ prea 1+ pre“ia 1+ preia)“

n=2

2

2

where we have done more juggling to get the second to last equality. Observe that

ptw
1 +pw _“’Yﬂ('w)v
1 yw)?

(1 +pw)t  (1-p2)%
Hence we have
p+w\" P p+m\"H) 1wl 2
//(Haw) (1+pm) T purt] 2%
2
/ [ (@2 on0) @5 om0 ) T L deay

(1 — ni2)2
= / / w"“zw“‘z—-——-—w(zl _—h:i)z dady,
a
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using PSU(1, 1)-invariance of the Weil-Petersson metric. This gives
2, n-2 [w|?)?
I//Zn~n]an|”w"2( p)ddy

:(1——792“)2 / Q)P (L — wf)?dedy

=3 Lt e / Q@)P(1 — fw]?)*dedy.
i=2

Comparing coefficients, we get

0
/ les)l g fﬁiﬂ2>2 =5 / Q) (1 ~ wf*)*dady,

asp 4dxdy B e

which finishes the proof. O

Theorem 4.3. Let Q = u,,, € Aw(A) be atangent vector to T (1) at the origin
such that u € H%/?. Then

IQly= // 1 Qu I ooty = 7 [ 1Q)PQ o dods,
A

which is the Weil-Petersson metric.

Proof. This is just a simple sum of the telescoping series:
/f Qu I 2 oy = Z"f/‘ S
- 2 m / f QW)P(1 — fwf?)?dedy
=3 A/ Q)P (L - fwf?)?dady.

4.2 Finite-dimensional Teichmiiller spaces. Let T' be a cofinite
Fuchsian group. The tangent space to T'(T") at the origin is identified with

Aco(AT) = {Q € Axs(8) : Q0 v(Y')* = Q,Vy €T},
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and the Weil-Petersson metric is given by

o) 1Qvr=1 [/ 10G@)PQ - jwP)dsay.
rna
The inverse image of T'(T') under the projection map 7(1) — T(T") is the Bers
fiber space BF(I'). The quasi-Fuchsian group I'* = w* oT'o (w#)~1 acts on the fiber
w# (A*) at the point [p] € T(T'). The quotient space of each fiber is a corresponding
Riemann surface. They glue together to form the fiber space F(I") over T(I),
which is called the Teichmiiller curve of I'. First we have

Lemma 4.4. Let T be a Fuchsian group. The symplectic form & on T(1)
restricted to BF(T) is equivariant with respect to the group action on each fiber.

Proof. We only need to check this statement on the fiber at the origin. The
form « restricted to the vertical direction is clearly equivariant. We are left to verify
thatifw € A*,vyeTand Q € A, (4,T), then

K(Q,Q)(w) = &(Q, Q)(w"),

where w' = y(w). Note that the PSU(1,1) transformation o, o7y o g3, fixes oo,
hence is a rotation. Using the fact that the Hermitian form |} Q [|% is invariant if Q
is pre-composed with a rotation, we have

1Qoozt (027 1% =l (Q o v(¥)?) 003" ((63Y))* I3
= Qoaz ((e51))’ 11} - .

The lemma implies that k descends to a well-defined symplectic form on F(T').
We vertically integrate the (2, 2)-form & A k on F(T') to define the Hermitian metric
on T'(I'). Using the same reasoning as in Section 4.1, we get

@5) 1QI=7 [[1Qul ddn, QeanaD).
A

We want to compute this integral using a regularization technique suggested by JI.
Velling [Vell.

Theorem 4.5. Let T be a cofinite Fuchsian group and h € L*®(A) be T-
automorphic. Then

// h(w)dAg = lim Area (I\A) [, h(w)dAn

Tyl dA4 !
A - ffA,, H
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where Areap(T\A) is the hyperbolic area of the quotient Riemann surface I'\ A
and Ay = {z:]z| <r'}.

Proof. We use the fact that for any z € A, the number of elements v € I such
that y(z) is in the disc A,., is given asymptotically in terms of r' by

(4.6) /dAH 1 + o(1)) asr’ =17,

Area,H (T\Q)

where the o(1) term is uniform for all » in a compact set (see [Pat75]).

Let F be a fundamental domain of I'. Given E C F, let E' = |}, 7(E). Let
x4 be the characteristic function of the set A. Since I' is cofinite, using (4.6), we
have

+o(1

// dA _ Areag(T\A) [f, , xzrdAn
XBaaH = NZY,

Here the o(1) term is uniform for all the sets E C F. Since
sup |h(w)| < oo,
wEA
standard approximations of h by bounded step functions give our assertion. a

Corollary 4.6.

” 0 ”2 _ AreaH(F\A) ffA y ]Q(w |2§1__|_J._dedy
wp= r'l>nll~ ffA . dAy

Proof. Take h(w) = |Q(w)(1—|wf?)?|>. Since Q@ € Aw(A), h is in
L®(A). 0

Lemma 4.7. Let Q € Aoo(A). Then

sup || Qu [IE< oo.
weA

Proof. Let (Q o 7u(74)?) (2) = Qu(2) = Yoo, a¥z"2. The proof of Lemma
2.6 with o = 0 implies that

1 Qu 3= nla¥l? < © / [10u@)a - 127 dedy, 2=z +i,

n=2
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where C is a constant independent of Q € A, (A). After the change of variable
2+ 72 (2), the integral on the right hand side becomes

// Q)1 ~ 12?|” |(73Y)'(2)|” ddy.
A

Since @ € A (A), |Q(z)(1 - |z|2)2|2 is bounded on A; thus the formula (see

[Kra72])
_ 2
//1(7 2)| dedy _// u |“’|_4 dzdy = 21
X w|
concludes the proof of the lemma. O

Theorem 4.5 and Lemma 4.7 imply that our approach to defining a Hermitian
metric on T(I") agrees with J. Velling’s original suggestion of using regularized
integrals. Namely, one has from Theorem 4.5 and Lemma 4.7

Corollary 4.8.

1 Arean(T\A) ff, 1| Qu I} dAm
1QI}=5 lim :
v 2 r 51— f.[A,,/ dAH

Now we start to compute || @ ||?,. First we have
Theorem 4.9. Let T be a cofinite Fuchsian group, Q € Ay (A,T'). Then

Areayy (T\A) [f, , 1o} 1?dAn

lim = e -
o1~ ffAr, dAH 3(.73 _]) ” Q ”WP

Proof. The proof is almost the same as that of Theorem 4.2. We have

dzdy .
Z= 2// s G

I=ZA
- _ -2 9
o PHw p+w\" ‘1—|w| \
- — ————| dzdy.
//Zn n)’lan| <1+pw> (1+pﬁ> 1+ puw)tl %

Now observe that if v € PSU(1,1) and Q € Aw(A,T), then Q o v(v')?
€ Awo(A,7y71Ty), and

U@ ety = (1 Q o v(¥)? Iy p)T(r-11)-
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In particular, for any u = pe'® € A,

Arean(T\A) [f, , Qo 7 (v1)?)(w)? L= dray
Jfa, dAn ‘

since Areay (C\A) = Areay (77 'I'v,\Q). It follows that

, o Arean(D\A)Z o s, 1(Qo (v (W) L—U—-Ld:«:dyda
1Q llwp= Jim_ Jla, dAn

But
2 2 (1= w?)? r [2)2
/ / 10Q 0 (1)) )P L) g dyda

2n 2n .
r)(1 - p%)? 2
] drdrda 2 (1 P 0))4 ]

n-2 oo —i —ig \ M2
5 pea + re 3 o peT " e
Z(n an (LS Yo -mm (E)

This is similar to the integral (4.3) with the role of # and « interchanged, so it is
equal to

(1...,02)4//“’ Y e(pw)"‘?(pm)"‘? 1- w2
3 ;(” mlenl" \ 5w 1+ om0 !(1+pw}‘ dzdy
A, -

_ (1=
= -—-——4—-—~—I.
Hence
= AreaH(I‘\A)ffAr, ic}'(w)Puijg g 4
221- i ffA,,, dAg M = (1 _ p2)4 H Q “%VP .

Comparing coefficients, we have

AreaH(I‘\A)ffAH |Cj(20),2(—l—f‘ﬁ%h! _ 253 - §)

. 2
Jim. Ty 7 Q@ llwe
and
Areag(F\A)ffA,, {a}.vl?dAg _ 2
- ffA,.: dAy "33 -7) 12w =
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As in the case of Theorem 4.3, this immediately implies

Theorem 4.10. Let T' be a cofinite Fuchsian group and Q € Ax(AT) a
tangent vector to T (T') at the origin. Then

lQ=leQls-
For a general Fuchsian group I" and Q € A (A,T’), we can define

1Q = lim Ja k@ @Ar [{a, || Qu lI% dAx
vV— a1 ffA,./ dAH )

whenever the limit is finite. Here F(T') is a fundamental domain of 'on A. WhenT
is the trivial group, this reduces to integrating over the whole disc, which coincides
with our original definition.

Appendix A Embedding of 7(1)
Consider the Banach space
Aoc(A) = {¢ holomorphic on A : sup |¢(2)(1 - |z|?)| < oo} .
z€EA

Analogous to the Bers embedding T'(1) >~ D — A (A) (defined in Section 2.1),
which is achieved by the mapping f € D — S(f) € A (A), we prove that there
is an embedding 77(1) ~ D < A (A), achieved by the mapping f € D ~ 6(f),

where
o) = gloe 1. = 2.
By the classical distortion theorem (see, e.g., [Ahl73]), f € D implies that
fzz 2z 4
o =P T 1=z

Hence 8(f) € Ax(A), and the map 6 : D — Ao (A) is well-defined. We claim that
this map is an embedding, and the image contains an open ball.

Lemma A.1. The map 6 is injective.

Proof. If f,g € D are such that (f) = 6(g), then
d d
7; 108 f: = 5-logg..
This implies that f = c¢19 + c2 for some constants ¢; and ¢;. The normalization
conditions f(0) = g(0) = 0, f'(0) = ¢’(0) = 1 (from the definition of f,g € D)
imply that ¢; = 1,cp = 0. Hence f = g. O
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We use the following notation for the sup-norms of A, (A) and A (A):
I ¥ lloo,1= sup W(z)(1=121P)], ¥ € Ax(A);

| ¢ lloo,2= §}£!¢(Z)(l =12, ¢ € Ax(A).
Notice that S(f) = 8(f). — 36(f)%. For ¢ € Ay(A), we define

Yo W) = v = 5P

We claim that this is a map from Ay (A) 10 4, (4). First, we have the following
continuity theorem.

Theorem A.2. For any ¢ > 0, there exists § > 0 such that if 1 € Ax(A)
satisfies || ¥ ||loo,1< 8, then ¥(Y) € A (D) and || ¥(¥) |leo,2< €.

Proof. Fix § > 0 and assume that ¢ € A (A) satisfies || ¥ [|co,1< 8. We use
the Cauchy formula

Y.(2) = —Lj[ Y(w) —dw, || <r<]1,
w

27t Jjpj=r (w = 2)?

to estimate ¥, (2). Since sup,ca [V(w)(1 - |w|?)| < 4,

é ldw|
Iw:(z)‘ S 27T(1 - 7'2) !w¥=r ‘w — Zt2.

Elementary computation gives

1 l[dw| T
27 Jiwp=r lw =22 12— |2

Choosing r = (1 + |z])/2, after some elementary computations, we obtain*

88(1 + |2)° 646

W=D S e ay S 3 Pr ISt
Hence
2
(w0 - jowie®) -y < %24 2.

Given e > 0, we can always find § > 0 such that 646/3 + 62/2 < £. This proves our
assertion. a

“This is not the sharpest estimate.
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Corollary A.3. ¢ — ¥(¥) is a holomorphic map from A, (D) 10 Ax{A).

Proof. The map ¥ — ¢, is linear. From the proof of the theorem above, we
see that it is a continuous map from A, {A) t0 A (A). The map y —%1{22 is
clearly a continuous map from A, (A) to A {A). Hence ¥ is a continuous map
from A (A) to A (A).

To prove holomorphy, it is sufficient to note that for any ¥, € A, (A) and
¢ € C in a neighbourhood of 0, the Frechet derivative

V(Y +ep) — ¥(¥)

lim =@, — Yo
«—0 €

exists in the || - lls,2 nOrm, since

U V(¥ +ep) —0(y)

€

_ 1, — 1 2
(o: = vol||_, =ell 5¢° o= 5ell @ I
tendsto O ase = 0. O

Theorem A.4. The image of 6 contains an open ball about the origin of
A (D).

Proof. By Theorem A.2, thereexists a suchthatif || ¢ ||co.1< o, then ¢ = ¥(¥)
satisfies || @ |lo2< 2. By the Ahlfors-Weill theorem, there exists a univalent
function f; : A — C such that S{f;) = ¢ and f, has a quasiconformal extension
to C. On the other hand, there exists a unique holomorphic function f : A = C
which solves the ordinary differential equation

d o
d—z-logfz =y; f(0)=0,f(0)=1

Obviously, S(f) = ¥(¥) = ¢. Hence f and f, agree up to post-composition
with a PSL(2,C) transformation. This implies that f also has a quasiconformal
extension to C and f € D. Hence the image of # contains the open ball of radius
a. g

From Lemma A.1 and Theorem A 4, it follows that there is an embedding of D
into A, (A) whose image contains an open ball about the origin. This implies that
D has a Banach manifold structure modeled on A, {A). We want to compare this
structure with the structure induced from the embedding D ~ 7(1) < Ay (A)®C.
We define a map T : Ao(A) = A (A) & C by

v (¥, 5900))
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Theorem A.S. The map T is holomorphic and one-to-one.

Proof. Holomorphy follows directly from Corollary A.3. To prove injectivity,
suppose \fl(d;l) = U(¢p,). Forj = 1,2, let

filz) = / elo’ ¥i(Wdugy,
0

Then dizlogfj'- = 9;, f;(0) = 0, f{(0) = 1. This implies that S(f1) = ¥(¢1) =
¥(1p2) = S(f2). Hence f1 = oo f; for some o € PSL(2,C). Now f;(0) =0, f}(0) =
1,5 = 1,2 implies that ¢ = (1 ¢) for some ¢ € C. We also have

d d
EIngll =7 (logo' o fa +log f3) .

Setting z = 0 gives
¥1(0) = —2¢ + 12(0).

Thus @(wl) = \/I\'(d)z) implies ¢ = 0 and f1 = fo, ¥1 = ¢2. 0

Theorem A.6. The Banach spaces Ax(A) and Ao (A) @ C induce the same
Banach manifold structure on D.

Proof. From our discussion in Section 2.2 (in particular (2.9), (2.8), (2.7)),
we know that the embedding D < A.(A) & C factors through the map ¥, i.e., it
is given by f + 6(f) AN (S(f), 26(£)(0)). Let U (resp., V) be the image of D in
Axo(A) (resp., A (A) & C). Bers proved that V is open in Ay, (A) & C ([Ber73])
using a theorem of Ahlfors ([Ahl63]) which says that the image of T(1) in A ,(A)
is open. The continuity of the map ¥ implies that U is open in A (A). Hence
we have a holomorphic bijection @|U : U — V. In order to conclude that this is
a biholomorphic map between open subsets of Banach manifolds, by the inverse
mapping theorem (see, e.g., [Lan95]), we only have to show that for any ¢ € U,
the derivative of ¥ at 1, Dy ¥,isa topological linear isomorphism between A, (A)
and A, (A)® C.

From the proof of Corollary A.3, the linear map D,,,@ tA(A) & A(A) e C
is given by
Dy¥(p) = (‘Pz — o, %w(O)) :

From the theory of ordinary differential equations, it is easy to prove that this
map is injective. To prove surjectivity, let f € D be such that §(f) = . Given
(¢,¢) € Axo(A) ® C, consider

w(z) = f'(2) (/02 -;%du + 2c) .
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It is straightforward to check that ¢ is the unique holomorphic function on A that
satisfies 1
-pp=¢ and §<p(0) =c

What remains to be proved is that ¢ € A4 (A).
Let @ = f(A) and Q* = €\ Q be the exterior of the domain 0. Let \(w)|dw| be
the Poincaré metric on €2, which is given by
1
Ao f(2)|f(2)] = e,

For w € (1, let §(w) denote the Euclidean distance from w to the boundary of .
The Koebe one-quarter theorem (see, e.g., [Nag88, Leh87]) implies that

A1) %gAmwmﬁgL

Let (w) = ¢ o = (w) (f7(w))”. Then

Mww~/¢@@~ym,

0

where w = f(z). Since
sup [\ (w)(w)] = sup |(1 — |2[*)?¢(2)| < oo,
weQ zZEA

by a theorem of Bers ([Ber66}), there is a bounded harmonic Beltrami differential
on %, p: O = C, sup,,eq- lu(w)] = B < oo, such that

dv A dp

3w) = [ / MO |RADR] wen
This implies that
2 dv A do
o{w) = —;r- [/ (vﬁi(vlz)s '!)/2\ e +Cy,
Q*

where C is a constant such that $(0) = 0. Since every point v € Q* is of distance
at least 6(w) away from w, we have the following estimate:

=

]v- |>8{w)

2w 1
— pdpdf + C
‘/é(w) P3 P !

dv Adv

5 + Cy

= 55% + Cy < 168\ (w) + Ch.
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Using (A.1) and w = f(z), we also have

)
e () <1
1S TP =t
5(£(2)

1-[2?

40(f(2))
1- |z

<If(2) <

Hence
()] < 17 (N1 (F(2)) + Cl
< 16N (SIS ()] + Co L)

< .
— 11— 2]

Here C2 and C are constants. To get the last inequality, we have used the fact that
6(f(2)) is bounded for z € A. This concludes the proof that ¢ € Ay (A). O

Remark A.7. When T is a Fuchsian group, the embedding § : D ~ T(1) —
Ao (A) restricts to an embedding BF(I') — A (A, T), where

AwlBD) = {0 € Am(B) 102 - 197 € (8D}

In contrast to the description of 4, (A,I') as || - [|e,2 bounded holomorphic
quadratic differentials of the Riemann surface I'\ A, A (A, T') does not have an in-
trinsic characterization as a space of differentials on I'\A. Rather, it is extrinsically
defined as the space of solutions to the Ricatti equation

1
bo- 5V =6 9E€An(AT)
on the Riemann surface I'\A. However, it contains the subspace of affine
connections on '\ 4, i.e.,

{/\:A—-)C holomorphic : || A |l 1< 00, A0y = A = 77—1 V’yer},

which is an affine space modeled on the space of | - ||o,1 bounded holomorphic
1-forms on '\ A.
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