

Communications in Statistics－Simulation and Computation

Publication details，including instructions for authors and subscription information： http：／／www．tandfonline．com／loi／Issp20

Nonparametric Multiple Test Procedures for Dose Finding

Show－Li J an ${ }^{\text {a c }} \&$ Gwowen Shieh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Mathematics，Chung Yuan Christian University，Chungli， Taiwan，R．O．C．
${ }^{\mathrm{b}}$ Department of Management Science，National Chiao Tung University，Hsinchu， Taiwan，R．O．C．
${ }^{\text {c }}$ Department of Applied Mathematics，Chung Yuan Christian University，Chungli， Taiwan，32023，R．O．C．
Published online： 15 Feb 2007.

To cite this article：Show－Li J an \＆Gwowen Shieh（2004）Nonparametric Multiple Test Procedures for Dose Finding， Communications in Statistics－Simulation and Computation，33：4，1021－1037，DOI：10．1081／SAC－200040305

To link to this article：http：／／dx．doi．org／10．1081／SAC－200040305

PLEASE SCROLL DOWN FOR ARTICLE

Taylor \＆Francis makes every effort to ensure the accuracy of all the information（the＂Content＂）contained in the publications on our platform．However，Taylor \＆Francis，our agents，and our licensors make no representations or warranties whatsoever as to the accuracy，completeness，or suitability for any purpose of the Content．Any opinions and views expressed in this publication are the opinions and views of the authors， and are not the views of or endorsed by Taylor \＆Francis．The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information．Taylor and Francis shall not be liable for any losses，actions，claims，proceedings，demands，costs，expenses，damages，and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with，in relation to or arising out of the use of the Content．

This article may be used for research，teaching，and private study purposes．Any substantial or systematic reproduction，redistribution，reselling，loan，sub－licensing，systematic supply，or distribution in any form to anyone is expressly forbidden．Terms \＆Conditions of access and use can be found at http：／／ www．tandfonline．com／page／terms－and－conditions

Nonparametric Multiple Test Procedures for Dose Finding

Show-Li Jan ${ }^{1, *}$ and Gwowen Shieh ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Chung Yuan Christian University, Chungli, Taiwan, R.O.C.
${ }^{2}$ Department of Management Science, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Abstract

We consider identifying the minimum effective dose (MED) in a oneway layout, where the MED is defined to be the lowest dose level that is more effective than the zero-dose control. Proposed herein are two rank-based nonparametric step-down closed testing procedures that do not make order assumptions on the dose-response relationship. The corresponding p-value for the estimated MED is computed. A numerical example is given to illustrate the proposed tests. Finally, the results of a Monte Carlo study of the relative error rate and power performances are reported.

*Correspondence: Show-Li Jan, Department of Applied Mathematics, Chung Yuan Christian University, Chungli, Taiwan 32023, R.O.C.; E-mail: sljan@math. cycu.edu.tw.

Key Words: Dose-response study; Minimum effective dose; One-way layout; Step-down closed test.

Mathematics Subject Classification: 62G10; 62K10.

1. INTRODUCTION

To investigate the effect of a compound in a drug development study, a dose-response experiment is often conducted in a one-way layout in which several increasing dose levels of the compound, including a zerodose to serve as a control, are administered to separate groups of subjects. One major concern in this case is to identify the lowest dose level with a mean exceeds that of the zero-dose control, which is commonly referred as the minimum effective dose (MED, see Ruberg, 1989).

When the responses are assumed to be normally distributed, Williams $(1971,1972)$ proposed one of the first dose-finding procedures. His test is a step-down closed testing procedure based on the isotonic regression of the sample means for a monotonic dose-response relationship. Ruberg (1989) considered single-step multiple testing procedures based on different contrasts of sample means for identifying the MED. Tamhane et al. (1996) further investigated some stepwise closed testing procedures based on a variety of contrasts of sample means for the dose-finding problem. Finally, they suggested using pairwise and Helmert contrasts incorporated into the proposed step-down testing scheme.

When the normal assumption is not tenable, many nonparametric procedures have been proposed for this MED identification problem. Shirley (1977) considered multiple test based on the isotonic regression of the Kruskal-Wallis rank averages (Kruskal and Wallis, 1952) for a monotonic dose-response relationship. Her procedure is a nonparametric analogue of Williams' test (Williams, 1971,1972). Williams (1986) further provided a modification of Shirley's test (Shirley, 1977). Chen and Wolfe (1993) suggested multiple testing procedures based on the rank-based isotonic regression estimators for umbrella pattern of dose-response relationship. Chen (1999) further proposed a step-down closed testing procedure based on the two-sample Mann-Whitney statistic (Mann and Whitney, 1947) for identifying the MED. Note that the procedures based on contrasts are more convenient to compute than those based on isotonic regressions; moreover, it is known that in some settings step-down procedures are more powerful than either their step-up or single-step counterparts for simultaneous testing problems. Therefore, in this paper we introduce the nonparametric procedures based on two different
contrasts of the Kruskal-Wallis rank averages incorporated with the step-down closed testing scheme. We then compute the associated p-value of the identified MED, which is defined to be the smallest level of significance at which the dose level would be declared as the MED.

Section 2 proposes two rank-based nonparametric step-down closed testing procedures for identifying the MED. It is seen that one of the proposed rank-based procedure is identical to Chen's test (Chen, 1999) based on Mann-Whitney count statistic. Section 3 gives a numerical example to illustrate the tests. Section 4 presents the results of a Monte Carlo simulation study of the relative error rate and power performances of the competing tests. Finally, Sec. 5 contains some conclusions.

2. THE PROPOSED PROCEDURES

Denote a set of increasing dose levels by $0,1, \ldots, k$, where 0 corresponds to the zero-dose level (or placebo control). Consider a one-way layout setting and let $X_{i j}$ denote the j th observation on the i th dose level, $i=0,1, \ldots, k, j=1, \ldots, n_{i}$. We assume that all observations $X_{i j}$ are mutually independent, each with a continuous distribution function $F_{i}, i=0,1, \ldots, k, j=1, \ldots, n_{i}$. Henceforward, for the sake of convenience, we restrict to the case of equal sample size, that is, $n_{0}=n_{1}=\cdots=n_{k}=n$; the numerical example and the simulation study are confined to this case. In the final section, we discuss how to extend the procedures to the case of unequal sample size. In this paper, we wish to identify the MED, which is defined as $\operatorname{MED}=\min \left\{i: F_{i}<F_{0}\right\}$, i.e., the smallest i such that the response in the i th population is stochastically larger than that in the control. This problem is often formulated as a sequence of hypotheses testing problems as follows:

$$
\begin{align*}
& H_{0 i}: F_{0}=F_{1}=\cdots=F_{i-1}=F_{i} \quad \text { vs. } \\
& H_{1 i}: F_{0}=F_{1}=\cdots=F_{i-1}>F_{i}, \quad i=1, \ldots, k . \tag{2.1}
\end{align*}
$$

If i^{*} is the smallest i for which $H_{0 i}$ is rejected, then the i^{*} th dose is identified to be the MED, that is, MED $=i^{*}$.

As noted in Tamhane et al. (1996), the family of hypotheses $H=\left\{H_{0 i}: 1 \leq i \leq k\right\}$ is closed under intersection in the sense that $H_{0 i} \in H$ and $H_{0 i^{i}} \in H$ imply that $H_{0 i} \cap H_{0 i^{i}} \in H$. Hence, a α-level closed procedure that includes separate α-level tests of individual $H_{0 i}$, applied in a step-down manner can be employed in finding the MED. Moreover, the closed testing scheme strongly controls the familywise error rate (FWE), which is defined as $\mathrm{FWE}=P$ \{at least one true $H_{0 i}$ is rejected $\}$. Therefore,
we consider using two sets of contrasts of Kruskal-Wallis rank averages incorporated into the step-down testing scheme for identifying the MED.

When the dose levels $0 \sim i$ are under study, let $R_{s j}^{(i)}$ be the KruskalWallis rank of $X_{s j}$ in the combined $i+1$ samples, and let $R_{s}^{(i)}=\sum_{j=1}^{n} R_{s j}^{(i)}$ denote the sum of ranks of the s th dose level, $i=1, \ldots, k$, $s=0,1, \ldots, i$, and $j=1, \ldots, n$. Contrasts based on $R_{s}^{(i)}, s=0,1, \ldots, i$, can be used for testing $H_{0 i}$ against $H_{1 i}$ of (2.1). We consider the following two types of contrasts:
(I) Pairwise Contrasts. The pairwise-type statistic comparing the i th dose level with the control is defined by $P_{i}=R_{i}^{(i)}-R_{0}^{(i)}, i=1, \ldots, k$. Let

$$
\begin{equation*}
J P_{i}=P_{i} / \sqrt{\operatorname{Var}\left(P_{i}\right)}, \quad i=1, \ldots, k \tag{2.2}
\end{equation*}
$$

where $\operatorname{Var}\left(P_{i}\right)=n N_{i}\left(N_{i}+1\right) / 6$, with $N_{i}=(i+1) n$, is the null $\left(H_{0 i}\right)$ variance of P_{i}. Note that, if there are ties among the N_{i} observations, then $\operatorname{Var}\left(P_{i}\right)$ is modified by replacing the term $N_{i}+1$ with $N_{i}+1-$ $\sum_{j=1}^{g} t_{j}\left(t_{j}^{2}-1\right) /\left[N_{i}\left(N_{i}-1\right)\right]$, where g is the number of tied groups and t_{j} is the size of the tied group j. Moreover, due to the facts that $J P_{i}$ has limiting standard normal distribution under $H_{0 i}$ and the correlation between $J P_{i}$ and $J P_{i^{\prime}}$ approaches $1 / 2$, the results of Theorem A13 of Hettmansperger (1984) imply that, under the complete null hypothesis $H_{0 k},\left(J P_{1}, \ldots, J P_{k}\right)$ has asymptotic multivariate normal distribution with zero mean vector and correlation matrix \mathbf{R}, where

$$
\mathbf{R}=\left[\begin{array}{ccc}
1 & & 1 / 2 \\
& \ddots & \\
1 / 2 & & 1
\end{array}\right]
$$

(II) Helmert Contrasts. The Helmert-type statistic comparing the i th dose level with the combined all lower dose levels (including the control) is defined by $H_{i}=i R_{i}^{(i)}-\left(R_{0}^{(i)}+\cdots+R_{i-1}^{(i)}\right), i=1, \ldots, k$. Define

$$
\begin{equation*}
J H_{i}=H_{i} / \sqrt{\operatorname{Var}\left(H_{i}\right)}, \quad i=1, \ldots, k \tag{2.3}
\end{equation*}
$$

where $\operatorname{Var}\left(H_{i}\right)=i N_{i}^{2}\left(N_{i}+1\right) / 12$ is the null $\left(H_{0 i}\right)$ variance of H_{i}. The modification of $\operatorname{Var}\left(H_{i}\right)$ for ties is the same as in (I). It can be shown that the test based on $J H_{i}$ is identical to Chen's test (Chen, 1999), a Helmert-type Mann-Whitney statistic. Therefore, the asymptotic null $\left(H_{0 k}\right)$ distribution of $\left(J H_{1}, \ldots, J H_{k}\right)$ is multivariate normal with zero mean vector and identity correlation matrix.

We now describe how to incorporate the proposed procedures $J P_{i}$ or $J H_{i}$ into the step-down closed testing scheme suggested by Tamhane et al. (1996). First, we let $\left(Z_{1}, \ldots, Z_{k}\right)$ be asymptotic multivariate normal with zero mean vector and common correlation ρ. (Here Z_{i} refers to $J P_{i}$ and $J H_{i}$ when $\rho=1 / 2$ and 0 , respectively.) Let $Z_{i, \rho}^{\alpha}$ denote the upper α th percentile of the distribution of $Z_{(i)}=\max \left(Z_{1}, \ldots, Z_{i}\right), i=1, \ldots, k$. To identify the MED at level α, we first let $k_{1}=k$ and find $Z_{\left(k_{1}\right)}=$ $\max \left(Z_{1}, \ldots, Z_{k_{1}}\right)$. Define $d\left(k_{1}\right)$ to be the antirank of $Z_{\left(k_{1}\right)}$, i.e., $Z_{\left(k_{1}\right)}=Z_{d\left(k_{1}\right)}$. Then, if $Z_{\left(k_{1}\right)}>Z_{k_{1}, \rho}^{\alpha}$, we reject $H_{0 i}$ for $i=d\left(k_{1}\right), \ldots, k_{1}$, and go to the second step with $k_{2}=d\left(k_{1}\right)-1$; otherwise, stop testing and accept all the null hypotheses. In general, at the j th step, let $k_{j}=$ $d\left(k_{j-1}\right)-1$. If $Z_{\left(k_{j}\right)}$ or $Z_{d\left(k_{j}\right)}>Z_{k_{j}, \rho}^{\alpha}$, then reject $H_{0 i}$ for $i=d\left(k_{j}\right), \ldots, k_{j}$; otherwise, stop testing. When the testing stops at, say, the m th step, then identify the MED as $d\left(k_{m-1}\right)$ or $k_{m}+1$.

Next we show how to obtain the p-value of the identified MED, which is the smallest significance level at which the dose level would be declared as the MED (Wright, 1992). In general, at the j th step for testing $H_{0 k_{j}}$, let $z_{\left(k_{j}\right)}$ be the observed value of $Z_{\left(k_{j}\right)}$, first compute the null $\left(H_{0 k_{j}}\right)$ probability

$$
\begin{aligned}
p^{\prime}\left(k_{j}\right) & =P\left\{Z_{\left(k_{j}\right)} \geq z_{\left(k_{j}\right)}\right\} \\
& =P\left\{\text { at least one } Z_{t} \geq z_{\left(k_{j}\right)}, t=1, \ldots, k_{j}\right\}, \quad j=1,2, \ldots
\end{aligned}
$$

Note that $p^{\prime}\left(k_{j}\right)$ can be computed by using the PROBMC function of SAS for $\rho=0.5$, or by $1-\left[\Phi\left(z_{\left(k_{j}\right)}\right)\right]^{k_{j}}$ for $\rho=0$, where $\Phi(\cdot)$ is the distribution function of a standard normal variable. The adjusted p-value is then defined to be

$$
\begin{equation*}
p\left(k_{j}\right)=\max \left\{p^{\prime}\left(k_{j}\right), p^{\prime}\left(k_{j-1}\right), \ldots, p^{\prime}\left(k_{1}\right)\right\}, \quad j=1,2, \ldots \tag{2.4}
\end{equation*}
$$

Then, the MED can be identified at the significance level α based on the adjusted p-vlaues. That is, at the j th step, if $p\left(k_{j}\right)<\alpha$, then reject $H_{0 i}$ for $i=d\left(k_{j}\right), \ldots, k_{j}$. If the testing stops at, say, the m th step, then the identified MED is $k_{m}+1$ and the p-value of this conclusion is $p\left(k_{m-1}\right)$, which provides a measure of the strength of evidence for the rejection of $H_{0 k_{m-1}}: F_{0}=F_{1}=\cdots=F_{k_{m-1}}$.

3. EXAMPLE

We consider the data set in Table 1, which corresponds to the third replication of the Ames test (Ames et al., 1975) as reported in Simpson

Table 1. Revertant colonies for acid red 114, TA98, hamster liver activation.

	Dose $(\mu g / \mathrm{mL})$				
0	100	333	1000	3333	10000
23	27	28	41	28	16
22	23	37	37	21	19
14	21	35	43	30	13

and Margolin (1986). These data, also analyzed in Chen and Wolfe (1993) and Chen (1999), contain five dose levels and a zero-dose control. There are three observations in each dose level. The observations represent the numbers of visible revertant colonies observed on plates containing Salmonella bacteria of strain TA98 and exposed to different doses of Acid Red 114.

The values of the contrasts, along with their corresponding tieadjusted variances, and the statistics computed by using formulas (2.2) and (2.3) are shown in Table 2. Table 2 also contains the critical values $Z_{i, \rho}^{0.05}$, which are taken from Hochberg and Tamhane (1987). We wish to identify the MED at $\alpha=0.05$ level.
(I) Procedure $J P$. At the first step, $k_{1}=5$ and $z_{(5)}=z_{3}=2.727$ (with adjusted p-value $\left.=p(5)=p^{\prime}(5) \approx 0.0138\right)$. Since $z_{(5)}>Z_{5, \rho=0.5}^{0.05}=2.23$ (or $p(5)<0.05$), we go to the second step with $k_{2}=3-1=2$. Note that $z_{(2)}=z_{2}=2.320\left(\right.$ with $p^{\prime}(2) \approx 0.0190$ and hence $p(2) \approx \max \{0.0138$, $0.0190\}=0.0190$) and $z_{(2)}>Z_{2, \rho=0.5}^{0.05}=1.92($ or $p(2)<0.05)$, so we go to the third step with $k_{3}=3-2=1$. Now $z_{(1)}=z_{1}=0.886$ (with $p^{\prime}(1)=0.1867$ and so $\left.p(1) \approx \max \{0.0138,0.0190,0.1867\}=0.1867\right)$, since $z_{(1)}<Z^{0.05}=1.645$ (or $p(1)>0.05$) and hence we stop testing.

Table 2. Calculation of the proposed statistics and critical values.

i	Pairwise				Helmert			
	P_{i}	$\operatorname{Var}\left(P_{i}\right)$	$J P_{i}$	$Z_{i, \rho=0.5}^{0.05}$	H_{i}	$\operatorname{Var}\left(H_{i}\right)$	$J H_{i}$	$Z_{i, \rho=0}^{0.05}$
1	4.0	20.40	0.886	1.645	4	20.40	0.886	1.645
2	15.5	44.63	2.320	1.92	27	133.88	2.334	1.95
3	24.0	77.45	2.727	1.06	52	464.73	2.412	2.12
4	10.5	119.14	0.962	2.16	-15	1191.43	-0.435	2.23
5	-9.5	170.29	-0.728	2.23	-123	2554.41	-2.434	2.32

Table 3. Testing results of the procedures.

Procedure	Step (j)	k_{j}	$Z_{\left(k_{j}\right)}$	$d\left(k_{j}\right)$	$Z_{k_{j}, \rho}^{0.05}$	$p^{\prime}\left(k_{j}\right)$	$p\left(k_{j}\right)$
$J P$	1	5	2.727	3	2.23	0.0138	0.0138
	2	2	2.320	2	1.92	0.0190	0.0190
	3	1	0.886	1	1.645	0.1867	0.1867
$J H$	1	5	2.412	3	2.32	0.0394	0.0394
	2	2	2.334	2	1.95	0.0197	0.0394
	3	1	0.886	1	1.645	0.1867	0.1867

Therefore, we estimate that the MED is the second dose level at $\alpha=0.05$, where the corresponding p-value of this conclusion is $p(2) \approx 0.0190$.
(II) Procedure $J H$. At the first step, $k_{1}=5$ and $z_{(5)}=z_{3}=2.412$ (with adjusted p-value $=p(5)=p^{\prime}(5) \approx 0.0394$). Since $z_{(5)}>Z_{5, \rho=0.5}^{0.05}=2.32$ (or $p(5)<0.05)$, we go to the second step with $k_{2}=3-1=2$. Note that $z_{(2)}=z_{2}=2.334\left(\right.$ with $p^{\prime}(2) \approx 0.0197$ and hence $p(2) \approx \max \{0.0394$, $0.0197\}=0.0394$) and $z_{(2)}>Z_{2, \rho=0.5}^{0.05}=1.95$ (or $\left.p(2)<0.05\right)$, so we go to the third step with $k_{3}=2-1=1$. Now $z_{(1)}=z_{1}=0.886$ (with $p^{\prime}(1)=0.1867$ and so $\left.p(1) \approx \max \{0.0394,0.0197,0.1867\}=0.1867\right)$, since $z_{(1)}<Z^{0.05}=1.645$ (or $p(1)>0.05$) and hence we stop testing. Thus, MED is also estimated with the second dose level at $\alpha=0.05$, where the corresponding p-value of this conclusion is $p(2) \approx 0.0394$. These results for the proposed $J P$ and $J H$ tests are summarized in Table 3.

For these data, at the $\alpha=0.05$ level, both the proposed procedures $J P$ and $J H$ estimate the second dose level as the MED, which agree with the finding of Chen's test (Chen, 1999); however, Chen and Wolfe's test (Chen and Wolfe, 1993) with an estimation of the umbrella peak fails to identify the second dose level. In fact, they conclude that the third dose level is the only one that is more effective than the zero-dose control.

4. SIMULATION STUDY

We conducted a Monte Carlo study to compare the relative level and power performances of the proposed procedures $J P$ and $J H$ with the parametric analogues $T P$ and $T H$ suggested by Tamhane et al. (1996). In the study, the number of dose levels k considered, excluding control, was 4 and 5 . The common sample size n was assumed to be 5 in each
dose level. Using $\alpha=0.05$, the critical constants for $T P$ and $T H$ were also taken from Hochberg and Tamhane (1987).

Some alternative configurations, both monotone, including step and linear responses, and nonmonotone (umbrella pattern) cases were considered. The complete null configuration was also included in the simulation study. In this case, none of the doses are effective compared to control, so that the true MED is defined to be $k+1$. In each of these settings, the independent random variables with distributions $N\left(\mu_{i}, 5\right)$, Cauchy $\left(\mu_{i}, 1\right)$, and $\operatorname{Exp}\left(\mu_{i}\right)$ were generated using the RANNOR, RANCAU, and RANEXP functions in SAS, respectively. Here μ_{0} is zero for normal and Cauchy models, and one for exponential model. The study was replicated 10,000 times for each of the configurations. Tables 4 and 5 present the estimates of the FWE and power of the four tests for $k=4$ and 5, respectively. For the complete null configuration, the estimates of the power are not listed in the tables since the main purpose of including this case in the study is to verify control of the error rate for small sample sizes. For configurations with true $\mathrm{MED}=1$ in which no type I error is involved, the entry of estimated $\mathrm{FWE}=0.0000$ is omitted for all procedures. The respective average powers for true $\mathrm{MED}=1$, true $\mathrm{MED}>1$, and for all cases are also included in the tables.

First, the estimates of the FWE reveal that the proposed procedures $J P$ and $J H$ have excellent control of the FWE under all configurations (Since they are all less than $0.05+1.96[(0.05)(0.95) / 10000]^{1 / 2}=$ 0.0543); while the existing procedures $T P$ and $T H$ fail to do so for exponential model, in which they are too liberal under the complete null hypothesis, and, on the other hand, too conservative under the partial null configurations.

Next, from the estimates of the power, we observe the general result that the pairwise-type tests are better than the Helmert-type tests when true $\mathrm{MED}=1$, otherwise the result is reversed. Moreover, as expected, the parametric procedures $T P$ and $T H$ outperform the proposed nonparametric procedures $J P$ and $J H$ in the normal model. However, these new tests $J P$ and $J H$ are found to be quite competitive for true $\mathrm{MED}=1$ and MED >1, respectively. Furthermore, they both perform uniformly better for heavy-tailed Cauchy distribution. They remain to be the best tests in the exponential model when true MED are lower doses, e.g., true $\mathrm{MED}=1$ or 2 . It may seem that their performances in power degrade somehow for higher doses of true MED. For example, tests $T H$ and $J H$ have better power for true MED $=k-1$, while $T H$ and $T P$ become the best tests when true $\mathrm{MED}=k$. However, it should be noted that the parametric procedures $T P$ and $T H$ fail to control the FWE strongly in the case of exponential model.

μ_{1}	μ_{2}	μ_{3}	μ_{4}	MED	$T P$	TH	$J P$	JH	$T P$	TH	$J P$	JH
Normal Distribution												
0	0	0	0	5	0.0536	0.0508	0.0456	0.0355				
0	0	0	5	4	0.0496	0.0530	0.0426	0.0455	0.8305	0.9218	0.6063	0.9089
0	0	5	5	3	0.0501	0.0514	0.0470	0.0534	0.8448	0.9224	0.6482	0.8941
0	5	5	5	2	0.0505	0.0500	0.0488	0.0467	0.8671	0.9138	0.7136	0.8640
5	5	5	5	1	-	-	-	-	0.9471	0.8982	0.8854	0.6836
4	4	4	4	1	-	-	-	-	0.8101	0.7164	0.7112	0.4831
0	0	4	5	3	0.0498	0.0498	0.0493	0.0519	0.6804	0.8288	0.4964	0.7676
0	3	4	5	2	0.0488	0.0409	0.0452	0.0345	0.4785	0.5707	0.3668	0.4970
2	3	4	5	1	-	-	-	-	0.3484	0.2738	0.2927	0.1822
0	4	5	4	2	0.0444	0.0412	0.0425	0.0375	0.7255	0.8149	0.5726	0.7343
0	4	5	3	2	0.0516	0.0483	0.0466	0.0401	0.7170	0.8059	0.5577	0.7261
0	4	5	2	2	0.0439	0.0418	0.0434	0.0380	0.7251	0.8135	0.5592	0.7260
3	4	5	4	1	-	-	-	-	0.6211	0.5280	0.5364	0.3553
3	4	5	3	1	-	-	-	-	0.6261	0.5352	0.5376	0.3503
3	5	4	3	1	-	-	-	-	0.6351	0.5674	0.5514	0.3843
3	5	4	2	1	-	-	-	-	0.6390	0.5711	0.5573	0.3830
3	5	3	2	1	-	-	-	-	0.6425	0.5723	0.5510	0.3774
Average power for true MED $=1$									0.6587	0.5828	0.5779	0.3999
Average power for true MED >1									0.7336	0.8240	0.5651	0.7648
Average power for all cases									0.6961	0.7034	0.5715	0.5823

Table 4. Continued.

μ_{1}	μ_{2}	μ_{3}	μ_{4}	True MED	FWE				Power			
					$T P$	TH	$J P$	JH	$T P$	TH	$J P$	JH
Cauchy Distribution												
0	0	0	0	5	0.0348	0.0358	0.0444	0.0397				
0	0	0	5	4	0.0285	0.0281	0.0437	0.0390	0.2960	0.3690	0.4351	0.6926
0	0	5	5	3	0.0332	0.0260	0.0446	0.0443	0.2907	0.3604	0.4536	0.6587
0	5	5	5	2	0.0321	0.0239	0.0466	0.0373	0.3019	0.3369	0.4888	0.6010
5	5	5	5	1	-	-	-	-	0.3582	0.3049	0.5830	0.4950
4	4	4	4	1	-	-	-	-	0.2821	0.2319	0.5078	0.4097
0	0	4	5	3	0.0307	0.0234	0.0447	0.0416	0.2232	0.2808	0.3932	0.5778
0	3	4	5	2	0.0259	0.0166	0.0458	0.0325	0.1615	0.1818	0.3382	0.4307
2	3	4	5	1	-	-	-	-	0.1250	0.0896	0.3073	0.2391
0	4	5	4	2	0.0328	0.0220	0.0449	0.0352	0.2347	0.2689	0.4253	0.5365
0	4	5	3	2	0.0288	0.0189	0.0412	0.0324	0.2310	0.2659	0.4215	0.5461
0	4	5	2	2	0.0326	0.0204	0.0479	0.0370	0.2326	0.2669	0.4196	0.5368
3	4	5	4	1	-	-	-	-	0.2150	0.1698	0.4376	0.3514
3	4	5	3	1	-	-	-	-	0.2157	0.1662	0.4425	0.3553
3	5	4	3	1	-	-	-	-	0.2212	0.1745	0.4520	0.3670
3	5	4	2	1	-	-	-	-	0.2219	0.1779	0.4510	0.3690
3	5	3	2	1	-	-	-	-	0.2117	0.1692	0.4392	0.3584
Average power for true MED $=1$									0.2314	0.1855	0.4526	0.3681
Average power for true MED > 1									0.2465	0.2913	0.4219	0.5725
Average power for all cases									0.2389	0.2384	0.4372	0.4703

Exponential Distribution											
1	1	1	5	0.0579	0.0723	0.0452	0.0363				
11	1	6	4	0.0023	0.0036	0.0440	0.0409	0.7629	0.8790	0.3722	0.6183
$1 \quad 1$	6	6	3	0.0002	0.0002	0.0468	0.0446	0.4673	0.5994	0.3864	0.5769
$1 \quad 6$	6	6	2	0.0002	0.0000	0.0421	0.0302	0.3121	0.3895	0.4207	0.5365
6 6	6	6	1	-	-	-	-	0.2350	0.1694	0.5607	0.3536
5	5	5	1	-	-	-		0.1983	0.1436	0.4770	0.2919
$1 \quad 1$	5	6	3	0.0002	0.0002	0.0455	0.0416	0.3765	0.4990	0.3366	0.5053
14	5	6	2	0.0000	0.0000	0.0423	0.0270	0.1398	0.1850	0.2867	0.3714
$3 \quad 4$	5	6	1	-	-	-	-	0.0377	0.0222	0.2840	0.1578
15	6	5	2	0.0000	0.0000	0.0412	0.0290	0.2523	0.3138	0.3553	0.4630
15	6	4	2	0.0000	0.0000	0.0402	0.0272	0.2814	0.3470	0.3529	0.4546
15	6	3	2	0.0002	0.0002	0.0419	0.0277	0.3264	0.3941	0.3536	0.4548
45	6	5	1	-	-	-	-	0.0985	0.0624	0.4075	0.2317
45	6	4	1	-	-	-	-	0.1103	0.0680	0.3942	0.2263
46	5	4	1	-	-	-	-	0.1257	0.0786	0.4138	0.2380
46	5	3	1	-	-	-	-	0.1515	0.0960	0.4036	0.2301
$4 \quad 6$	4	3	1	-	-	-	-	0.1717	0.1155	0.4029	0.2305
Average power for true MED $=1$								0.1411	0.0945	0.4180	0.2450
Average power for true MED >1								0.3648	0.4509	0.3581	0.4976
Average power for all cases								0.2530	0.2727	0.3880	0.3713

Table 5. Estimated FWE and power for $\alpha=0.05, k=5$, and $n=5$.

μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}	True MED	FWE				Power			
						$T P$	TH	$J P$	JH	$T P$	TH	$J P$	JH
Normal Distribution													
0	0	0	0	0	6	0.0494	0.0528	0.0417	0.0400				
0	0	0	0	5	5	0.0526	0.0515	0.0488	0.0407	0.8254	0.9265	0.5596	0.9102
0	0	0	5	5	4	0.0465	0.0527	0.0421	0.0435	0.8380	0.9243	0.5998	0.9054
0	0	5	5	5	3	0.0507	0.0520	0.0448	0.0495	0.8500	0.9222	0.6365	0.8875
0	5	5	5	5	2	0.0512	0.0509	0.0494	0.0466	0.8700	0.9154	0.7009	0.8601
5	5	5	5	5	1	-	-	-	-	0.9483	0.8876	0.8698	0.6729
4	4	4	4	4	1	-	-	-	-	0.8158	0.7001	0.6959	0.4788
0	0	0	4	5	4	0.0503	0.0497	0.0459	0.0429	0.6467	0.8225	0.4503	0.7712
0	0	3	4	5	3	0.0455	0.0413	0.0391	0.0383	0.4264	0.5801	0.3142	0.4905
0	2	3	4	5	2	0.0394	0.0283	0.0382	0.0221	0.2345	0.2828	0.1722	0.2164
1	2	3	4	5	1	-	-	-	-	0.1355	0.0940	0.1139	0.0610
2	3	4	5	4	1	-	-	-	-	0.3462	0.2705	0.2938	0.1777
2	3	4	5	3	1	-	-	-	-	0.3564	0.2745	0.2996	0.1808
2	3	4	5	2	1	-	-	-	-	0.3525	0.2726	0.2881	0.1739
0	3	4	5	4	2	0.0468	0.0400	0.0451	0.0349	0.4909	0.5875	0.3596	0.4837
0	3	4	5	3	2	0.0469	0.0402	0.0444	0.0316	0.4791	0.5721	0.3547	0.4741
0	3	4	5	2	2	0.0458	0.0395	0.0427	0.0307	0.4903	0.5913	0.3660	0.4891
3	4	5	4	3	1	-	-	-	-	0.6322	0.5280	0.5407	0.3484
3	4	5	4	2	1	-	-	-	-	0.6305	0.5277	0.5340	0.3432
0	3	5	3	2	2	0.0465	0.0398	0.0436	0.0332	0.4946	0.5944	0.3725	0.5113
0	3	5	3	1	2	0.0459	0.0391	0.0431	0.0334	0.4930	0.6014	0.3721	0.5208

	pow	tr	ED							0.5272	0.4444	0.4545	0.3046
	pow	r tr	ED							0.5949	0.6934	0.4382	0.6267
	pow	r a								0.5678	0.5938	0.4447	0.4979
	Dist												
0	0	0	0	0	6	0.0420	0.0452	0.0451	0.0395				
0	0	0	0	5	5	0.0357	0.0349	0.0459	0.0360	0.2351	0.3190	0.3887	0.6883
0	0	0	5	5	4	0.0320	0.0276	0.0435	0.0416	0.2381	0.3103	0.4204	0.6714
0	0	5	5	5	3	0.0326	0.0260	0.0482	0.0465	0.2375	0.2977	0.4201	0.6178
0	5	5	5	5	2	0.0339	0.0231	0.0448	0.0349	0.2647	0.2993	0.4718	0.6025
5	5	5	5	5	1	-	-	-	-	0.3124	0.2501	0.5719	0.4886
4	4	4	4	4	1	-	-	-	-	0.2395	0.1865	0.4972	0.4050
0	0	0	4	5	4	0.0306	0.0248	0.0436	0.0363	0.1664	0.2365	0.3438	0.5826
0	0	3	4	5	3	0.0270	0.0193	0.0412	0.0352	0.1114	0.1503	0.2848	0.4269
0	2	3	4	5	2	0.0261	0.0134	0.0389	0.0232	0.0614	0.0699	0.2054	0.2638
1	2	3	4	5	1	-	-	-	-	0.0511	0.0287	0.1427	0.0931
2	3	4	5	4	1	-	-	-	-	0.1103	0.0694	0.3106	0.2358
2	3	4	5	3	1	-	-	-	-	0.1117	0.0728	0.3103	0.2344
2	3	4	5	2	1	-	-	-	-	0.1041	0.0682	0.3091	0.2355
0	3	4	5	4	2	0.0293	0.0140	0.0421	0.0284	0.1280	0.1444	0.3309	0.4235
0	3	4	5	3	2	0.0275	0.0151	0.0452	0.0319	0.1226	0.1410	0.3310	0.4201
0	3	4	5	2	2	0.0289	0.0155	0.0421	0.0291	0.1288	0.1493	0.3228	0.4240
3	4	5	4	3	1	-	-	-	-	0.1854	0.1307	0.4407	0.3534
3	4	5	4	2	1	-	-	-	-	0.1805	0.1303	0.4403	0.3599
0	3	5	3	2	2	0.0314	0.0183	0.0440	0.0332	0.1248	0.1466	0.3233	0.4344
0	3	5	3	1	2	0.0291	0.0154	0.0426	0.0322	0.1268	0.1522	0.3335	0.4439

Jan and Shieh
Table 5. Continued.

μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}	MED	$T P$	TH	$J P$	JH	TP	TH	$J P$	JH
Average power for true MED $=1$										0.1619	0.1171	0.3779	0.3007
Average power for true MED > 1										0.1621	0.2014	0.3480	0.4999
Average power for all cases										0.1620	0.1677	0.3600	0.4202
Exponential Distribution													
1	1	1	1	1	6	0.0599	0.0766	0.0428	0.0417				
1	1	1	1	6	5	0.0041	0.0054	0.0451	0.0388	0.7845	0.8968	0.3288	0.5885
1	1	1	6	6	4	0.0004	0.0005	0.0428	0.0371	0.5178	0.6653	0.3527	0.5754
1	1	6	6	6	3	0.0000	0.0002	0.0453	0.0440	0.3574	0.4847	0.3712	0.5405
1	6	6	6	6	2	0.0000	0.0000	0.0477	0.0333	0.2528	0.3144	0.4090	0.5272
6	6	6	6	6	1	-	-	-	-	0.2036	0.1372	0.5426	0.3571
5	5	5	5	5	1	-	-	-	-	0.1768	0.1223	0.4430	0.2884
1	1	1	5	6	4	0.0006	0.0007	0.0431	0.0373	0.4057	0.5555	0.3091	0.5129
1	1	4	5	6	3	0.0001	0.0001	0.0405	0.0342	0.1680	0.2562	0.2523	0.3752
1	3	4	5	6	2	0.0000	0.0000	0.0352	0.0189	0.0423	0.0573	0.1873	0.2439

2	3	4	5	6	1	-	-	-	-	0.0037	0.0014	0.1423	0.0757
3	4	5	6	5	1	-	-	-	-	0.0263	0.0138	0.2814	0.1596
3	4	5	6	4	1	-	-	-	-	0.0342	0.0187	0.2726	0.1560
3	4	5	6	3	1	-	-	-	-	0.0387	0.0219	0.2703	0.1551
1	4	5	6	5	2	0.0001	0.0000	0.0390	0.0245	0.1035	0.1391	0.2650	0.3631
1	4	5	6	4	2	0.0000	0.0000	0.0431	0.0278	0.1270	0.1635	0.2742	0.3599
1	4	5	6	3	2	0.0000	0.0000	0.0382	0.0240	0.1472	0.1878	0.2702	0.3617
4	5	6	5	4	1	-	-	-	-	0.0960	0.0574	0.3925	0.2372
4	5	6	5	3	1	-	-	-	-	0.1087	0.0642	0.3732	0.2289
1	4	6	4	3	2	0.0002	0.0000	0.0402	0.0252	0.1770	0.2294	0.2763	0.3697
1	4	6	4	2	2	0.0000	0.0000	0.0412	0.0260	0.2007	0.2482	0.2779	0.3671
Average power for true MED $=1$							0.0860	0.0546	0.3397	0.2073			
Average power for true MED >1													
Average power for all cases													

CONCLUSIONS

In this paper we propose two nonparametric procedures $J P$ and $J H$ for identifying MED in a one-way layout setting with general doseresponse relationship. It is noted that both procedures control the FWE very well under all configurations considered, while the parametric analogues $T P$ and $T H$ fail to control the Type I error rate strongly for exponential distribution. Moreover, when the normality assumption is violated, we observe that the proposed nonparametric procedures $J P$ and $J H$ are better than the parametric analogues $T P$ and $T H$ except for exponential distribution with high doses of true MED. However, from the considerations of both error rate control and power performance, the tests $J P$ and $J H$ are recommended over tests $T P$ and $T H$ at identifying the MED for nonnormal data. On average, the powers for $J P$ and $J H$ tests are about $100-400 \%$ of the powers for $T P$ and $T H$. In the normal model, $T P$ and $T H$ perform better than $J P$ and $J H$ as expected. However, $J P$ and $J H$ are quite competitive and they achieve averagely about $70-90 \%$ of the power for $T P$ and $T H$. Finally, we note that this study has restricted to the equal sample size case, and its conclusions need to be generalized to the unequal sample size case, in which the limiting correlations are unequal for pairwise contrasts. However, this can be easily solved since the required critical constants and p-values can be obtained approximately by replacing all correlations with their average.

ACKNOWLEDGMENTS

The authors thank an anonymous referee for very helpful comments. The work of the first author was supported in part by National Science Council under the grant NSC-90-2118-M-033-002.

REFERENCES

Ames, B. N., McCann, J., Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the salmonella/microsome mutagenicity test. Mutation Res. 31:347-364.
Chen, Y. I. (1999). Nonparametric identification of the minimum effective dose. Biometrics 55:126-130.
Chen, Y. I., Wolfe, D. A. (1993). Nonparametric procedures for comparing umbrella pattern treatment effects with a control in a one-way layout. Biometrics 49:455-465.

Hettmansperger, T. P. (1984). Statistical Inference Based on Ranks. New York: Wiley and Sons.
Hochberg, Y., Tamhane, A. C. (1987). Multiple Comparison Procedures. New York: Wiley and Sons.
Kruskal, W. H., Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. J. Am. Statist. Assoc. 47:583-621.
Mann, H. B., Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist. 18:50-60.
Ruberg, S. J. (1989). Contrasts for identifying the minimum effective dose. J. Am. Statist. Assoc. 84:816-822.
Shirley, E. (1977). A nonparametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. Biometrics 33:386-389.
Simpson, D. G., Margolin, B. H. (1986). Recursive nonparametric testing for relationships subject to downturns at high doses. Biometrika 73:589-596.
Tamhane, A. C., Hochberg, Y., Dunnett, C. W. (1996). Multiple test procedures for dose finding. Biometrics 52:21-37.
Williams, D. A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose level. Biometrics 27:103-117.
Williams, D. A. (1972). The comparison of several dose levels with a zero dose control. Biometrics 28:519-531.
Williams, D. A. (1986). A note on Shirley's nonparametric test for comparing several dose levels with a zero-dose control. Biometrics 42:183-186.
Wright, S. P. (1992). Adjusted p-values for simultaneous inference. Biometrics 48:1005-1013.

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/ Order Reprints" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Request Permission/Order Reprints

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081SAC200040305

