This article was downloaded by: [National Chiao Tung University B3z
RIBEAL]

On: 28 April 2014, At: 05:38

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number:
1072954 Registered office: Mortimer House, 37-41 Mortimer Street,
London W1T 3JH, UK

International Journal of
Production Research

Publication details, including instructions for
authors and subscription information:
http://www.tandfonline.com/loi/tprs20

Design of a rule-based
flexible manufacturing
system controller
using modified IDEFO
methodology

S. G. Chen, M.Z. Wu & R.K. Li
Published online: 15 Nov 2010.

To cite this article: S. G. Chen , M.Z. Wu & R.K. Li (1997) Design of a
rule-based flexible manufacturing system controller using modified IDEFO
methodology, International Journal of Production Research, 35:10, 2793-2820,
DOI: 10.1080/002075497194453

To link to this article: http://dx.doi.org/10.1080/002075497194453

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of

all the information (the “Content”) contained in the publications

on our platform. However, Taylor & Francis, our agents, and our
licensors make no representations or warranties whatsoever as to the
accuracy, completeness, or suitability for any purpose of the Content.
Any opinions and views expressed in this publication are the opinions
and views of the authors, and are not the views of or endorsed by
Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of
information. Taylor and Francis shall not be liable for any losses,
actions, claims, proceedings, demands, costs, expenses, damages,

http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/002075497194453
http://dx.doi.org/10.1080/002075497194453

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

and other liabilities whatsoever or howsoever caused arising directly
or indirectly in connection with, in relation to or arising out of the use
of the Content.

This article may be used for research, teaching, and private study
purposes. Any substantial or systematic reproduction, redistribution,
reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access
and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

INT. J. PROD. RES., 1997, voL. 35, No. 10, 2793-2820

Design of a rule-based flexible manufacturing system controller using
modified IDEF0 methodology

S. G. CHEN+%, M. Z. WUi and R. K. LI§"

This article proposes a new method to design a rule-based FMS controller. This
approach adopts modified IDEFO0 (MI) diagrams as a graphical representation of
the production rules. Initially, the material flows or functional requirements for
the FMS are specified by synthesizing the MI diagram primitives. The control
flows for the FMS are then created by a number of transformation rules. The
manufacturing policy, e.g. deadlock avoidance policy, is also specified and
attached. The MI diagrams are therefore transformed to the final MI (FMI)
diagrams which can be directly transformed to the production rules. Thus, a
concise rule-based FMS controller is developed. The fact that the production
rules are created by systematic transformation eliminates any redundant,
contradictory, or unnecessary rules. Two approaches can verify the consistency
of the designed FMS controller. The controlled Petri net approach can be
adopted for verifying a small system, while a simulation approach is preferable
for verifying a large system. By iterating the process, a feasible rule-based FMS
controller can be systematically developed. This method not only provides
graphical representations to construct well-organized production rules, but also
includes a systematic transformation of the control flows for an FMS controller.

1. Introduction

Developing an FMS controller is a complicated process. Such an undertaking
stipulates that various requirements be satisfied: (1) connectivity — the controller
should have the ability to connect to lower-level and upper-level devices; (2) con-
figurability — the controller must be highly configurable in software; (3) software
portability — the controller system designer should allow application software to be
reusable in the future, regardless of hardware changes; (4) optimizibility — the con-
troller should have the ability to achieve a better planning, scheduling, and control
solution for a specific application; and (5) intelligibility — the controller should have
the ability to diagnose the unpredicted errors occurring in the cell and recovery from
the errors (Xiang and O'Brien 1995). Many practitioners, users and researchers have
proposed several methods regarding these topics. These contributions include defin-
ing the controller (Franks et al. 1990), proposing the controller’s design requirements
(Bauer et al. 1991), defining the controller’s architecture (Jones and McLean 1986),
and modelling the controller’s behaviour (Zhou et al. 1992). Notably, on the imple-
mentation aspects, Jafari and Boucher (1994) presented a high-level specification

Received February 1996.

t Graduate Student, Institute of Industrial Engineering, National Chiao Tung University,
Taipei, Taiwan, R.O.C.

i Director of Technical Department, AsiaTEK Inc., Taipei, Taiwan, R.O.C.

§ Professor, Institute of Industrial Engineering, National Chiao Tung University, 1001,
Ta-Shieh Rd., Hsin Chu, Taiwan, R.O.C.

*To whom correspondence should be addressed.

0020-7543/97 $12-:00 © 1997 Taylor & Francis Ltd.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2794 S. G. Chen et al.

model to implement the ladder logic approach for the FMS controller. They applied
the IDEFO0 methodology to specify the logic of activities. Next, the interpreted Petri
nets (PNs) (David and Alla 1992) were transformed from these IDEF0 diagrams.
After analysing the PNs, the ladder diagrams were transformed from them. Their
efforts made the ladder diagrams more tractable. However, the software portability,
optimizibility, and intelligibility for the ladder logic approach are still difficult to
pursue. Murata et al. (1986) proposed the Petri net-based approach to design the
controller. Petri nets (PNs) have been applied to modelling, specification, verifica-
tion, analysis, performance evaluation, control, and simulation of automated man-
ufacturing systems (Cecil er al. 1992). These applications are typically initiated by
properly designing PN models for manufacturing systems. Next, the PN’s properties
are verified. A specific hardware for the PN-based controller should be adopted. The
designed PNs can be directly executed on the specific hardware. In view of the
potential costly analysis to verify the model’s validity for the system, Zhou et al.
(1992) proposed using a hybrid methodology to synthesize PN models for a manu-
facturing system. They developed some PN primitives for top-down and bottom-up
syntheses of the PN model for the system. Consequently, the costly analysis to the
synthesized PNs could be omitted. However, the PN formalisms were often dis-
rupted by the cluttered flow diagrams when modelling complex manufacturing sys-
tems and were dissatisfied by the heavy consumption of computational resources
when performing simulations (Cecil et al. 1992). The software portability, optimiz-
ibility and intelligibility for this approach are also difficult to fulfil.

Recently, developing an expert system to control an FMS has received increasing
attention (Sauve and Collinot 1987, Wu and Wysk 1988, Teng and Black 1989).
Others have indicated that this approach has high potential to satisfy the various
requirements to design an FMS controller (Kusiak 1990, Meyer 1990). An expert
system normally consists of a rule-based knowledge, an inference engine and a user
interface, while the rule-based knowledge is the main part of an FMS controller. The
production rules (Valette 1987, Kusiak 1990) are normally involved in designing a
rule-base knowledge. Several advantages of using this approach are as follows. First,
a rule-based controller has more flexibility and extendibility than the controller
designed by other approaches. Second, adding other knowledge bases, e.g. fault
diagnosis and troubleshooting, to the controller is relatively easy. Third, modifying
and maintaining a rule-based controller can be achieved without breaking the entire
system. However, inefficiency of program execution may be encountered when a
large set of production rules exists, which may contain too many inconsistent,
redundant, contradictory or unnecessary rules. Therefore, how to design a rule-
based controller consistently and concisely is particularly challenging.

Hong (1993), Liang and Hong (1994) proposed a knowledge acquisition process
called Hierarchy Transformation Method (HTM) or IDEF0/CPN/G2 approach,
consisting of a series of transformations from IDEF0 diagrams to the coloured
PNs and to the knowledge base of G2 (Gensym 1994) expert system. This approach
attempted to systematically construct a rule-based system. However, its application
was limited to the repetitive manufacturing system. In their study, constructing the
IDEFO diagrams was based mainly on heuristics and could not avoid redundancy.
Moreover, the transformation rules involved in the process were also too weak to be
followed, thereby limiting its use.

This study proposes a new method to design a rule-based FMS controller. This
approach adopts modified IDEF0 (MI) diagrams as a graphical representation of the

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2795

production rules. Initially, the material flows or functional requirements for the FMS
are specified by synthesizing the MI diagram primitives. The control flows for the
FMS are then created by a number of transformation rules. The manufacturing
policy, e.g. deadlock avoidance policy, is also specified and attached. The MI dia-
grams are therefore transformed to the Final MI (FMI) diagrams which can be
directly transformed to the production rules. Thus, a concise rule-based FMS con-
troller is developed. The fact that the production rules are created by systematical
transformation eliminates any redundant, contradictory or unnecessary rules. Two
approaches can verify the consistency of the designed FMS controller. The C’'PN
approach (Holloway and Krogh 1990) can be adopted for verifying a small system;
while a simulation approach is preferable for verifying a large system. By iterating
the process, a feasible rule-based FMS controller can be systematically developed.

This method not only provides graphical representations to construct well-
organized production rules, but also includes a systematical transformation of the
control flows for an FMS controller.

2. The design procedure for an FMS controller

Figure 1 illustrates an FMS controller’s design procedure, as expressed by the
IDEFO diagram. Initially, synthesizing the corresponding MI diagram primitives in
relation to the system’s requirements allows for the material flows and resource
utilization of an FMS to be specified. Section 3 provides details of the MI diagrams
for each FMS primitive. These diagrams construct the system specification for the
FMS. The basic control flows for each of the FMS components is created by apply-
ing the transformation rules. Section 4 outlines the transformation rules. However,
avoiding a deadlock and enhancing the system performance require additional con-
trols to manipulate the material flows in the system. These additional controls are

Specify The
e et L; material flows

M diagrams
_ Modify the system
Transform into i
. O p| requirements, or the
Marufacturing FMI diagrans — M or FMI diagrans
policy > ;i i i
if system is not valid
FMI diagrams .
— 4 Productlon\n if system is valid
rules
Trarsform into Implement as an Rule-bas:
M production rules L 2L FMS controller FM; cor:]'do]ler
4 if ok then system
fora large system Vet is valid
il
for a small system 4 » sinmulation
if not ok then system
is not valid
if ok then system
is valid
Trarsform into Verified by
| CPNs > CPNs

if rot ok then system
is not valid

Figure 1. The proposed scheme of system development.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2796 S. G. Chen et al.

considered as manufacturing policies (or strategies). A different policy would cause a
different system behaviour and performance. Thus, selecting the optimal policy
depends on the performance index used in the system. Moreover, control policy
design also depends on the system configuration employed. The same policy has a
different design for each different system configuration.

The MI diagrams are then transformed into the FMI diagrams. These FMI
diagrams provide road maps of control logic for the system and are important
documents in the life cycle of the system’s development. The control flows in the
FMI diagrams can be transformed into the production rules and the C’PNs. The
production rules can be executed on an expert system. Thus, an FMS controller is
developed. The controller’s properties can be verified by considering two
approaches. For a small system, they can be verified by the properties of C’PN.
For a large system, although the corresponding C’PN can be treated by transforma-
tion, a simulation model is preferred. This is owing to the fact that analysing a large
C-PN is costly and may be infeasible. Meanwhile, a complete testing of a simulation
model can still produce high quality implementation (Goodenough and Gerhart
1975). The modification information is then fed back to the specification or the
design stages to correct the system’s improper design. The design process is therefore
iterated until a satisfied design is achieved.

3. The design primitives for the FMS components

IDEFO is well known for its ease to use and to follow when specifying a system’s
functionality, thereby making itself a general purpose method for activities model-
ling. Each arrow and activity box has no specific formats or constraints for applica-
tion. In the context of an FMS, however, explicit definition of arrows and boxes can
clarify the specification of an FMS operation. In this article, some modifications for
the IDEFO definitions are made and an example of an MI diagram is shown in Fig. 2.
The material flows, e.g. parts, pallets, and fixtures, are depicted as the bold arrows.
The control flows for an activity are depicted as the hairline arrows. Three types of
control flows are employed: controllable expressions, controlled expressions and
external expressions. A controllable expression specifies a state equation of a vari-
able which can be altered by the function block’s activity. A controlled expression
specifies a state equation of a variable which is altered by the function block’s
activity. An external expression which is a tunnelled-tail arrow specifies a state

External Expression
T
Controllable Controlled
Expression F: Functions or Expression
Material Computations Material
Flow C: Comments Flow
— —
Ai
Resource Resource
Released Requested

Figure 2. The basic configuration of an MI diagram.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2797

equation of variables which constrain the function block’s activity. Normally, the
variables for the controllable and controlled expressions are internal system state
variables and have one-to-one correspondences. They describe the states of resources
used in the system. The variables for the external expressions are variables which
describe the states of external events, e.g. the state of a sensor, or manufacturing
policy constraints. The resources requested or released by a function block’s activity
are depicted as the hairline arrows. The activity describing a function block has two
formats: one is a string for a decomposed function block; the other is described as

F: for computations and functions,
C: for comment

and is for a primitive function block.

In an FMS, two sets of entities are identified. One is the set of active entities,
which include flexible machines, robots, AGVs, conveyors, and AS/RSs. An active
entity can be controlled by a controller and performs specific tasks. The other is the
set of passive entities, which include raw materials, pallets, fixtures, and finished
products. A passive entity is handled by the active entities and cannot be directly
controlled by a controller. Therefore, the active entities construct the resources
employed in the system, while the passive entities describe the system’s material
flows. An FMS generally consists of flexible machines and transportation vehicles,
e.g AGVs and robots. They can be classified into three categories: the shared
resources, the non-shared resources and the buffers. Each type of resource is speci-
fied in the following by the MI diagrams as the design primitives for an FMS
controller.

3.1. The non-shared resources

In a control software, each controlled entity must be identified by the controller.
Therefore, each flexible machine must be identified by a controller regardless of
whether a flexible machine’s multiplicity is more than one. A non-shared resource
is dedicated to the production of some material or operation and is not shared by the
other operations. Figure 3 (a) illustrates the MI diagram for such a resource. Assume
that several tasks for part 1 are handled by the non-shared resource. Part 1 requests
the non-shared resource, performs a series of tasks, and finally releases the non-
shared resource. A non-shared resource can be any activity entity in an FMS if it
is not shared by the other operations.

3.2. The shared resources

A shared resource is shared by several operations in any precedence. For
instance, an AGV can be shared by several production lines for transferring work-
pieces among the workstations. Therefore, the AGV is a shared resource. Figure 3
(b) depicts the MI diagram for such a resource. Assume that several tasks are
assigned to parts employing the same resource. Each line of tasks is similar to
those handled by the non-shared resource. Deadlocking (Coffman ez al. 1971) may
occur when the resource is shared by several tasks. Section 4 discusses those condi-
tions.

3.3. The buffers
Buffers are common in most manufacturing systems. Storage areas, stocks or
even conveyors are buffers. Zhou and DiCesare (1990) discussed the PN modelling of

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2798 S. G. Chen et al.

Taskl Task2 Taskn

part 1 ——py o0 —ppart 1
Al \ A2 An

T part 1 part 1 ‘

non-shared resource

(@)

part 1 Taskl11 Task12 oo Taskln | ypart 1
All ; Al2 Aln
part 1 part 1
[]
[]
[]
Taskml Taskm?2
part m—s| as| oo Taskmn |y part m
Aml ; Am?2 Amn
[e -

shared resource
(b)

Figure 3. (a)The MI diagram for a non-shared facility. (b) The MI diagram for a shared
facility.

buffers including simple, safe and generalized ones. Here, the buffer specifications are
explored by MI diagrams. Buffers may either have control elements or not; however,
they all have capacity constraints. If having control elements, the buffers can be
manipulated by the controller. That is, such a buffer would be accompanied with
a resource entity. If not having control elements, they are the constraints to the
controller. The buffers are classified here according to the nature of current devices:
the simple buffer, the ordered buffer and the generalized buffer. Each can be shared
or non-shared by different operations. Only the shared buffer for each category is
discussed here since a non-shared buffer is a special case of a shared buffer.

3.3.1. A simple buffer

A simple buffer is simply a buffer for temporary storage where each element in
the buffer has no precedent relations between each other. For instance, a storage area
or an AS/RS is a simple buffer. Figure 4 (a) depicts the MI diagram for such a buffer.
Two parts, part 1 and part 2, with four tasks share a simple buffer ‘buffer 1’ which
has three capacities. The diagram closely resembles those for a shared resource
except that the buffer has a capacity denotation.

3.3.2. An ordered buffer

An ordered buffer is one in which the elements have precedent relations. A
conveyor is normally an ordered buffer in a manufacturing system, except that the
conveyor is a flexible conveyor where several workstations share this conveyor, and

2799

Design of a rule-based FMS controller

‘sanoedes 2211}
Sey UONEBOO[YOBI 2I9YM SUOIIBOO[331U} M [I9gnq Pazijerdudd & Surkjoads 10y weiderp TN oYL (0) sired om) £q pareys ST yomym aa1y) Ayoedeo

yum [Iognqg paroplo ue Surkjoads 1o welsep [N YL (q) -9a1y) Aoedes yum [1gng siduns pareys e Suijroads 1o werderp [N YL (8) ¢ amsig
©)
(€)go0I-112ynq (€)zooI-11aynq (€)[201-[Ja13nq
wed
a4 / (444 tad
Zued *00] JXSU *00[1%3U e red
oISy o1 yus 7 ; o} yIys 1758
1ued Tued
PV av 11V
{1 7ed C— "00] J¥U *20] JXoU 1 [11ed
718 0 y1us 01 JIys 11358}
(@ ®)
£901-1124nq To0t-1aYynq 190]- [304nq (g)1124nq
(o | | 3o |] v _ .
34 V £V / wy “_M 17y @ ‘ ta/ﬁ_. v
7 ved €——tb < —— 7 11ed
e — < 20| 1xou [0] JXU [zyred o 1215 e
oise o) Yuys 0 yIys 17345®
1yed [ared {wred
iV EIV 434 1y o _m,da H
P d ¢—p < —
[— < -00] 3xou [€ *20] JXoU <+ [ued e Z1se [1452} 1ued
z1se | o1y | 01 y1ys 113452

¥T0Z 1Mdy g2 8¢:50 e [Aisieaiun Buny celyd reuoieN] Ag pepeojumoq

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2800 S. G. Chen et al.

the parts can be avoided or passed from some of the workstations (Dupont-
Gatelmand 1982). Such flexible conveyors are considered as simple buffers since
no precedent relations can be derived from the parts upon the conveyors. Figure 4
(b) depicts the MI diagram for such an ordered buffer. Two parts, part 1 and part 2,
transport on a normal conveyor alternately. This conveyor is an ordered buffer with
three capacities. Each capacity is denoted as a location in this buffer. If a location is
occupied by one part, the next part must wait until the location is released.

3.3.3. A generalized buffer

A generalized buffer is a combination of a simple buffer and an ordered buffer.
For instance, a tow-line conveyor which drags several carts of small parts is a
generalized buffer in manufacturing systems. The carts on the conveyor have pre-
cedent relations; however, the parts in the cart do not have any. Figure 4 (c) depicts
the MI diagram for such a buffer. An ordered buffer 1 with three locations (where
each location has three capacities) serves the manufacturing of two parts, part 1 and
part 2. The circles in the diagram denote the inhibition of activities. When the
capacities of the location of buffer 1 are not all requested, the cart is not allowed
to shift to the next location.

3.4, An illustrative example of a robotic FMC

This section applies the above design primitives for the FMS components to
illustrate the synthesizing process for the functional specification of the robotic
FMC example. Figure 5 provides its layout. The robot serves two machines, a
lathe and a mill, with one loading station, one unloading station and a simple
buffer with one capacity. Four types of products are to be manufactured as depicted
in Fig. 5. Each type has a different production route. The functional specification for
such a manufacturing system can be readily available by synthesizing the design
primitives of shared resources and buffer. Figure 6 displays the MI diagrams for
the FMC. The A0 page is an overview of the functional specification. The part is

mmmm buffer

-

L

robot

lathe mill
input ﬂ N output
Products Routes
I L0
2 I-M-O
3 FL(BYMO
4 -M-(B)-L-O

I : Input loading

O: Output unloading

L : Lathe operation

M: Mill operation

B : Buffer storage (option)

Figure 5. The layout of a robotic FMC and its products.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2801

Load part Lathe part Unload part o]
Workpicce :-,;,;::pm ‘ < Fomlathe Finished part
. ning pa ®| turned part A5
t J
¥
lathe
Y (
Wi prom—
Load part [Millpan | Unload part
frombuffer frommill
- m1ling part | milled pan M
II [f_, X7
J 7]
T
mill
I EE—
bux‘er(l)
<
stored part
(a) The AO page
F: raw part F
Workpiece ——p{C8tPAT — Cloadlake -} ——— $turning part
ALl V A
I ! ' X
b
1 \ f
| ERTI
! [L - ___
robot Ul tathe -«
AN i
AN ! |
N | \
\\ | X 2:1 d mill
1 | . |Cload mil JESRITT y
= __’______,'mllmgpalt
N) AlZ
N) T 1
N - -
N ~ :- = f
N il

robot

(b) The A1l page
Figure 6. The MI diagrams for the FMC: (a) The A0 page. (b) The A1 page.

initially loaded from the input station and then machined by a mill or lathe depend-
ing on its type. Next, it may be finished, moved on to the next operation, or stored in
a buffer waiting for the machine to be ready. The A1 page describes that the robot is
shared by two flows of tasks: for turning and for milling. With respect to an FMS, a
branch of material flow refers to selecting the manufacturing routes. In this case, a
part loaded from the input station woud be machined exclusively by a lathe or mill.

4. The transformation rules
Three kinds of transformations are proposed here, i.e. for the FMIs, for the
production rules and for the C’PNs. They are detailed in the following.

4.1. The transformation for the FMIs
An FMS controller’s control flows can be created by transforming the synthe-
sized MI diagrams. Five rules are employed to perform such transformations.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2802

S. G. Chen et al.

e Rule 1. Creating control flows for the resource is based on the resource utiliza-
tion cycles which are formed by connecting the requesting resource arrows, the
material flows and the releasing resource arrows.

For instance, the dashed cycles in Fig. 6 (b) which denote A11 and A12 or All
and A13 form the resource utilization cycles for the robot. A12 forms a part of the
resource utilization cycle for the lathe. A13 forms a part of the resource utilization
cycle for the mill. Each cycle is replaced by a state-transition cycle which describes
the state transition of the variable representing the machine status. That is, the
machine-status variable controls the machine’s transitions (the operations of the
machine). Figure 7 (a) denotes that the dashed cycles, A11 and A12 or A1l and

robot.status=ready

. robotstatus=busy ____~ " T 7 |
- HF: -y --i---4F - - - ==
C:get part A T P C:load lathe | .
i $-turning part
Workpiece —y o T ; plathe status=loaded
rawpaj,——. - S i s Bl
| I 1
lathe status=unloaded e !
- —p ! : :
I i
| ¢
v .
|]
1 |
I !
|]
] 1
: A F: |-
- == ==~~~ —"=|Cload mill mllllng pan
— | —
mill.status=unloaded e ™, —T-__’—Tbmillistatus#oaded
(@
robot.request=0 lathe.request=0
robot.request=1 ()
b robot.status=ready (|)
J—
robot.status'=busy
Firobot.request=1 v Firobot.request=0
Ciget pant * 2 ': plurning part
Workpiece —————d{ > P C:load lathe plathe.status=loaded
AlL raw pa Al
lathe.status=1mloaded—]
mill.request=(

mill.status=unloaded

1y

. |Firabot.request=0

e ——

and mill,
tC:load mill

. — T
= e pmilling part
3 mill.status=loaded

Al3

(b)

Figure 7. The transformation of control information for Fig. 6 (b): each applying (a) rule 1,

(b) rule 2.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller

robot.request=0

o robot.request=1

robot.status=ready (|)

2803

L obot.status=bus
Firobot.request=1 / Frobot.request=p
. Caget part > Cload Jathe » turning part
Workpiece— w a » lathe status=loaded
raw p
lathe.status=unloaded
Furobotrequest=4
L Cesdmll] » milling part
mill.status=unloaded s — mill status=loaded
©
(((input_station.part_type=1 and
lathe,) or
(input_station.part_typé=2 and
mill.sensor=ready) or
(input_station.part_type=3 and
lathe. and
(buffer.sensor=ready or
(buffer. and {(robot.part_type=1 or
mill.part_type=2))) or robot.part_type=3) and
(input_station.part_type=4 and robot. progranfinished and
mill.sensor=ready and lathe.sensor=busy)
(buffer.sensor=ready or robot.request=0 |
ffer. sensor=busy and (—
lathe.pert_type=1)))) and (" robot.request=1
input_station. J (P
) robot.status=ready
v
i l robot.status=busy i !
F:robot.request=1 and F:robot.request=0
robot.pert_type= and lathe.part_type=
Workpi i;gn_mm_type raw part mba.g%(t)ype and —p tUrning part
€Ce —pland start 1 P stop 1 » .
Faybpec . P 2 » lathe.status=loaded
lathe.status=unloaded
((robot.part_type=2 or
robot.part_type=4) and
.progranfinished and
mill.sensor=busy)
op
F:robot.request=0 and
¥ mill.pat_type= —
> lsouz)lpaﬂ_type ad |y milling part
mill.status=unloaded Cload mill A3 I mill.status=loaded

(@

Figure 7 (continued).

The transformation of control information for Fig. 6 (b): each

applying (c) rule 3, (d) rule 4, and rule 5, respectively.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2804 S. G. Chen et al.

A13, form the state transition cycles for the robot by replacing the original resource
utilization cycles. These can also be applied to the state-transition cycles for the lathe
and mill, respectively. Similar diagrams can be found in the subpages of A2, A5 and
A6. The states for the robot are ready and busy states. The states for the lathe or mill
are unloaded, loaded, started, and stopped states.

e Rule 2. The control for the sharing of resources is based on flags. Each resource
utilization cycle of the same resource with all different activity boxes is
assigned a unique requesting number for the same flag.

Thus, a resource is employed by a resource utilization cycle, and it can be
released only after the flag is reset to zero. In the case of a buffer, however, this
scheme is only applied for the ordered buffers where each location of the buffer is
viewed as a resource. For the simple buffer, different flags are required for each
resource utilization cycle, where each flag records the number of capacities of the
buffer requested. For the generalized buffer, different flags are also required for each
resource utilization cycle; however, they are simultaneously reset to zero when the
capacities for the location of the buffer are exhausted. For instance, when applying
rule 2, Fig. 7 (a) evolves into Fig. 7 (b). The state-transition cycles A11 and A12 or
A1l and A13 employ the flag ‘robot.request’ with the number 1, since both cycles use
the same A1l activity box, the requesting number for the flag is the same. The flag
‘robot.request’ is shared with the other subpages of A2, A5 and A6 where the
numbers 2, 3 and 4 are assigned, respectively. When the flag is 0, the A11 can be
enabled and the flat is set to 1. When the flag is 1, the A12 or A13 can be enabled and
the flag is set to 0. Moreover, A12 and A 13 are mutually exclusive during operation.

e Rule 3. The redundancy flags for the resource sharing control can be removed
when the corresponding utilization cycles are mutually exclusive.

This is owing to the fact that the mutually exclusive cycles never occur simulta-
neously, making the control flags no longer necessary. For instance, in Fig. 7 (c),
A12 and A13 are mutually exclusive, the flags ‘lathe.request’ and ‘mill.request’ are
removed.

e Rule 4. The manufacturing policies can be listed in a table which describes the
conditions in which each activity box is to be enabled.

These conditions include the acknowledgment of sensors, the interlock of
machines or robots, the type of parts and the status of the entire systems.
According to this table, these conditions are assigned to each corresponding activity
box to handle the deadlock problems. For instance, Table 1 lists the deadlock
avoidance policies for the Al page. Figure 7 (d) denotes the conditions attached
to All, A12, and A13. Assume that each device has a sensor to indicate the existence
of a part on it. The activity boxes can be enabled when the deadlock avoidance
policies hold. The policies can be confirmed by the corresponding C’PN or simply by
simulation.

e Rule 5. The animation procedures can be initiated at each activity box if it is
desired to create an animation corresponding to the actual manufacturing
system.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2805

Activity Part

box type The deadlock avoidance policy to enable the activity box
All 1 lathe.sensor= ready and input_station.sensor= busy
2 mill-sensor= ready and input_station.sensor= busy
3 lathe.sensor= ready and (buffer.sensor= ready or (buffer.sensor= busy

and mill-part_type= 2)) and input_station.sensor= busy

4 mill-sensor= ready and (buffer.sensor= ready or (buffer.sensor= busy
and lathe.part_type= 1) and input_station.sensor= busy

Al12 1 lathe.sensor= busy and robot.program= finished

Al3 mill.sensor= busy and robot.program= finished

- S B

Table 1. The deadlock avoidance policies for the A1 page.

For instance, the animation procedure of start movement for the robot with
route 1 is described in A1l (Fig. 7 (d)), the start_robot(1). The procedure of stop
movement for the robot is described in A12 or A13, the stop_robot().

By the five rules above, the complete control flows for the system can be created
according to the functional specifications. This finding suggests the possibility of
systematically constructing the control flows of a manufacturing system controller.

4.2. The transformation for the production rules

The FMI diagrams created from the above transformation are important docu-
ments for maintaining the underlying system. These diagrams can be directly trans-
formed to the production rules as a knowledge base for an expert system. Only one
rule performs such a transformation, i.e.

e Each activity box forms a rule, where its external and controllable expressions
construct the rule’s antecedent, its primitive computations or functions and the
controlled expressions construct the rule’s conclusions.

By this rule, Figure 7 (d) can be transformed to three production rules as
described in the following.

(1) if the status of robot is ready and the request of robot= 0 and (((the part_type
of input_station= 1 and the sensor of lathe is ready) or (the part_type of
input_station= 2 and the sensor of mill is ready) or (the part_type of input_
station= 3 and the sensor of lathe is ready and (the sensor of buffer is ready
or (the sensor of buffer is busy and the part_type of mill= 2))) or (the part_-
type of input_station= 4 and the sensor of mill is ready and (the sensor
of buffer is ready or (the sensor of buffer is busy and the part_type of
lathe= 1)))) and the sensor of input_station is busy)
then conclude that the part_type of robot= the part_type of input_station
and conclude that the request of robot= 1 and start start_robot(1) and con-
clude that the status of robot is busy.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2806 S. G. Chen et al.

(2) if the status of robot is busy and the status of lathe is unloaded and ((the
part_type of robot= 1 or the part_type of robot= 3) and the sensor of lathe is
busy and the program of robot is finished) and the request of robot= 1
then conclude that the part_type of lathe= the part_type of robot and start
stop_robot() and conclude that the status of robot is ready and conclude that
the status of lathe is loaded.

(3) if the status of robot is busy and the status of mill is unloaded and ((the
part_type of robot= 2 or the part_type of robot= 4) and the sensor of mill is
busy and the program of robot is finished) and the request of robot= 1
then conclude that the part_type of mill= the part_type of robot and start
stop_robot() and conclude that the status of robot is ready and conclude that
the status of mill is loaded.

The above production rules are coded in G2 (Gensym 1994) syntax. G2 is a real-
time expert system for monitoring and control in a manufacturing system. From the
FMI diagrams, the forward reasoning scheme of the three production rules can be
easily inspected. That is, rule A11 would chain rule A12 or A13; while rule A12 or
A13 would chain rule A1l. They chain each other in turn.

4.3. The transformation for the controlled Petri nets

The FMI diagrams can also be transformed to the C/PNs. The C’PN is used to
verify the dynamic properties, e.g. liveness and boundedness, of the designed con-
troller. A C’PN is defined as a six-tupe ®@ = {P, T,1,B,D, mo} (Holloway and Krogh
1990), where P is the finite set of state places, T is the finite set of transitions,
I=(Px T) U(T % P) is a set of directed arcs connecting state places and transitions,
B is the finite set of control places, D = (B x T) is the set of directed arcs associating
control places and transitions. mg : P — NP is the initial marking of the system, N is
the set of positive integers. The set of places which are inputs to a transition t €T is
denoted by)t The set of places which are outputs to a transition t €T is denoted
by) A" transition t €T is said to be enabled under a marking m(p) if for all
p P, m(p) > 1.

Three rules are used to transform an FMI diagram to the corresponding C’PN.

e Rule 1. Each activity box in an FMI diagram is a transition in the C/PN.

e Rule 2. Each simple arrow in an FMI diagram is replaced by a state place with
input and output arcs, or by a control place with an output arc in the C’/PN. A
simple arrow in an FMI diagram is an arrow such that no branch or join
occurs in this arrow.

e Rule 3. Each arrow with a branch or joint in an FMI diagram is replaced by a
common state place with an input arc and multiple output arcs or multiple
input arcs and an output arc.

For instance, by the rules described above, the C’PNs for the FMC example can
be illustrated in Fig. 8, where (a) ~ (f) are the C’PNs corresponding to the Al ~ A6
FMI diagrams, respectively. The shaded places are the control places where enabling
conditions are described as their labels. The places with the same number are indi-
cated as the same places. There are 18 transitions, 12 state places, and 19 control
places for the FMC example. The markings of the 19 control places depend on the
markings of the 12 state places and the four types of parts. Thus, there are
Ci* *4 = 1980 possible markings to verify since the multiplicity for the robot,

2807

Design of a rule-based FMS controller

‘€Y 10J(0) TV 10J(q) ‘TV 10J(e) axoym ‘odwrexs DN Y 10J Nd.D PawIojsuen oy g dImgig
©)

H_.HNQ ﬁOF—EAI
Qe b— pred Sum
paddoys = styeis-aype Y .
9 _ @
oy sty
paystuy=ureisoid-yye| Papeo] = Stye)s oupe]
@ (®)
— . a0y
Popeo] = Qﬁﬁm@ uﬁm—_ [xa4] POl mﬁﬂou PopRO[= STE)S U o,wﬂ._o.ﬂa%_mm AI@ PIPEOTUN = SIZIS I
wod Sy 4——] O Sowpe popeon — SyEIS o] i | P ¢
A =le — 47
oddj 1edaper:] wnuon_mu“éa._onom.._
)
J: 3
145
(Asnq=sosuasTru
(pausuy = umBoud yoqos s P it st
. . ~ _ . —adAy 1ed"
e e B e | | B
= / = dm B0 av ayze) prop))| meif 11y wed 108,
= i . o popeoy = syess s (D il e wdwiol
Popeo] = sneis [[Iu 4 - - OUBPIG=OuR [¢—— yed pauois ed B e s 000 P [T et oo
wv
Cde 11U peory) P (7)10000 ers l—gd —adky"ued sy pm mVAn YT
wed ME::». < e &%@Mﬂhhﬁ d pue &bﬁb&—.ﬁ fOIuoo Ipun g=1sonbarjoqar j Ksng=sners10qos | pue j—isonb:
- L 14— =04 1ed pqolle— _ Guoederpng 5 g
wd =04y ymd ppur pue z=Isonbarioqor,y ; O
(O % ;OQ % ﬁ\ - o %
1 L)
— > N ¥ -
e s 9 o S
. Z=sonbarioger PE———— & P o)
0 APRRI=I0S1tIS" 13)
(Asnq=Josuas" ayre| v:ﬂ »v@u_ugcvw“___ﬂu
(> [N pue E__mméw%:amoh.ﬁe pue Y&bﬂ&.ﬁﬁwwné
pue (g=ad41” 1red 10qox 10 (((7=04 edu
I TQ (454 @ 30 | =2dKy ued wqo1)) PUE ASNQ—IOSUSS I[N)
(poystuy = wrsSaid-joqar (0 < Anondes’sgng 0 %M_wg:ouqo.c:f
U fsnq = Josuds [U 451 = JOSUS 331 _odkr oo i)
e ¢ =0 et 0000) P ((Apea o5 e P e Cpronesonsova
pue = odky wed gng) pue z=adAy jreduone)s Tndu)
30 (Apeas = JOSURS [2 (Apeas=1osuss'ayye;
pue ¢ = odAy wred png))) pue |=ad4 " wred-vones ndu)))

¥T0Z 1Mdy g2 8¢:50 e [Aisieaiun Buny celyd reuoieN] Ag pepeojumoq

S. G. Chen et al.

2808

'safed 9y 10J(J) pue Gy 10J(d) ‘py I0J(p) a10ym ‘Odwrexs DN 9y} 10 Nd-D pawiojsuen oy, (ponunuos) g am3ig

® €))
Popeo] = snpis Xe| o PApRO] = SRS TR
- 49— "loqaidors prel®—(OPopeofm= SIS o] De—"" Jpene a®
Surma—] 0129 ® 3 |) o e
e e B 000 pepeoun = s e
ol
19 A%Bnbmbm,..wlw«_r
PO = SRS’ pue pagsmy = wesdoxd
ENMHQ fr pue y = od4) red-j0q01) _ -
[onuos opun = Apeded.apng v red at0187) _ I . pn = A i [oquoo th:/u- edeolnyng v wred 21018
ors- Rl i w e 10w Rgng="ouagnq| O
yed pauoys PuE (yogar dors yeed pasors pue (jiogou dors W ¥
pue adkT e 10q0s paio] o s ool [onuos I5pun = Awedes pyng
&M, mu%f o = odAy ped mymg:y -
{(popeorm = st ()04 a | yed pouimy
pu Asnq = s g A e popru ((popeopyn - SHesfymanon]
Pl | > Appede agng 61 poddons — sners P ASq = Josuas T Asna, 0 rem— R
. 2 ol . o apomol, o P | > Rpetio ot | v mdmarog a7 (©noqor s pue* 0
el U 4 = adA] yrady0qd) v ed dno:) | (phogos s pue Pue poyst A Q.oﬂ:nauﬁ_ml.[m{ Ay yred upe| = (@—— 1red poumy
PoEH _O1ogar dogs — 4 yred e =l ued pOIRU g porgeng pe ¢ = 3047 v oq0) odki predioqos = adk adki " uexdoq0) pug
pue odiy :smgo._‘u adky™pred-10q01 pue o 1 ped uoners ndmo: 4| & mﬂggumq
oAy peduoes yudmo:y mm%vA vn«ﬁ_co._gew._q % e)
i > 51 AppaLSTES IO 70 ¢
—— o e @ O) 0
el) 0 o=tsanbarogol o
3@ o () - @ .
f=1sanbarogos 910 g=Isonbarjoqar i ({(Apear = Josms U
| ((Apear = Josuss xpe| (peystuy = uriFoxd g0 pue ¢ = ok yed ape])
L& PuB = odA) Lred Tuur) puE Asnq = JoSUes DogRIs ndyrio 0 Saw_ = ISR RgIq
(Asnq = Josuss oS Jdino 30 (Apea = Josuos Rynq pue (p = 5443 ped-joq0s ﬁﬂm WB&M%WW wﬁ
pue pustuy = weidoxd g0 U A5nq = Josus et 30 | = adAf e 10q00) 20 (Gpear s Touos o
Pt MM@«.H& S%Ww 0 (Apeas gsmﬁvu&bg@%%& Pz (= okl edougey
nT= = T —
¢ o pue (¢ = odAT ped 10 | =od& jed o))
107 = A ed)
(r)
wy e
ed pojmu +——— ow <
paddoss = stpes T Gde— _. VY red Sumu
- dogs: | 4l N
.) f—
| Bumr—soyms o @ wed S
§I0 UL S <
paystug=tureiSord PApRO] = SMEIS TIIu

¥T0Z 1Mdy g2 8¢:50 e [Aisieaiun Buny celyd reuoieN] Ag pepeojumoq

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2809

lathe, mill and buffer are all ones. An exhaustive search for these markings is nearly
impossible. The P-invariants property of the C’PN can be employed to inspect the
dynamic properties of the underlying systems. Four P-invariants are available, i.e.,

pl + p2+ p3 + pll = 1, (for the lathe)
p5+ p6 + p7+ pl2 = 1, (for the mill)
p4+p8=1, (for the buffer)
p9+ plo= 1. (for the robot)

Proof of safeness: The possible tokens for the 12 state places are all ones, this can be
inspected by the four P-invariants above. The possible tokens for the 19 control
places are also ones, by definition. Therefore, this C’PN is safe.

Proof of liveness: We examine that at least one transition is enabled in all of the
reachable markings. This can be inspected by the following cases.

Case 1. pl+p2+p3+pll+p5+p6+p7+pl2+pd+p8=23 Assume that
p9 = 1. The enabled transition is A1l if no part is in the system, or is A21 if a
part is in the buffer and the lathe or mill is idle, or is AS51 if a part is finished in
the lathe and the output station, mill or buffer is idle, or is A61 if a part is finished in
the mill and the output station, lathe or buffer is idle. Assume that pl0 = 1. The
enabled transition is A12 (or A23, A64) if a part is loaded on the lathe, or is A13 (or
A22, A54) if a part is loaded on the mill, or is A52 (or A62) if a part is loaded on the
output station, or is A53 (or A63) if a part is loaded on the buffer.

Case 2. pl+ p2+ p3+pll+p5+p6+ p7+pl2+p9+ pl0=3. Assume that
p4 = 1. The enabled transition is A53 (or A63) if a part is loaded on the buffer.
Assume that p8 = 1. The enabled transition is A21 if a part is in the buffer and the
lathe or mill is idle.

Case 3. pl + p2 + p3+ pll + p4+ p8 + p9 + pl0 = 3. Assume that p5 = 1. A4l is
enabled. Assume that pl12 = 1. A42 is enabled if the milling program is finished.
Assume that p6 = 1. A61 is enabled if a part is finished in the mill and the output
station, lathe or buffer is idle. Assume that p7 = 1. A13 (or A22, A54) is enabled if a
part is loaded on the mill.

Case 4. pS+ p6 + p7+ pl2+ pd+ p8§+ p9 + pl0 = 3. Assume that pl = 1. A3l is
enabled. Assume that pl1 = 1. A32 is enabled if the turning program is finished.
Assume that p2 = 1. A51 is enabled if a part is finished in the lathe and the output
station, mill or buffer is idle. Assume that p3 = 1. A12 (or A23, A64) is enabled if a
part is loaded on the lathe.

The controller for the FMC cannot be deadlocked.

Verifying the FMS controller design can be costly if the transformed C’PN is too
large. Moreover, designing the deadlock avoidance policy would be too complex for
the C’PN to handle. An efficient way of verification is by simulation.

5. The testing guidelines

Simulation is a testing process. When the analytical model of a system is infea-
sible for verification, using a simulation model to approximate the verification results
is a promising alternative. A simulation model for a controller is a model that, by
providing the simulated input data and system reacting signals, the underlying

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2810 S. G. Chen et al.

system’s behaviour can be inspected or predicted. Goodenough and Gerhard (1975)
presented a method for test data selection. They emphasized the importance of the
program testing even though the theoretical proof for this program is available.
Normally, good data selection would enhance the efficiency of program testing.
However, this may be a non-termination process to pursue. Five guidelines are
available when performing such a simulation test.

(1) Generating the test cases from the system specification. Meeting the system
specification is the priority concern. Therefore, the testing cases must be
derived from the system specification. For instance, 64 product mixes are
available to test the FMC controller since a maximum of three products
can be simultaneously loaded in the system.

(2) Using animation to visualize the simulation results if possible. The system’s
slightest abnormal behaviour can often be detected by visual inspection.
Animation is also an effective approach to illustrate the complex simulation
results.

(3) Reducing the time scale to speed up the simulation process. A proportional
reduction of time scale is normally valid for the simulation process. This can
accelerate a time consuming process and improve the simulation perfor-
mance.

(4) Constructing the simulation calendar if the simulation process is extremely
large. Deriving a systematically constructed calendar for a large simulation
process is crucial. The completeness of a simulation process can be guaran-
teed if all these schedules in the calendar are followed.

(5) Comparing the simulation performance if alternative approaches are avail-
able. Different approaches can be compared in the simulation process,
thereby providing an effective approach to obtain the optimum design of a
manufacturing system.

For instance, the testing data based on the specification of the FMC example can
be generated as 64 (43), cases of a part mix. Thus, an optimal (shortest) schedule to
test the FMC controller can be obtained as a string:

1424222132111341144212433241311224441412313344312143423432232333 14

where each number represents the type of parts. Only 66 data entries are necessary to
test the entire 64 cases. The worst schedule needs 192 data entries, the concatenation
of 64 cases each having three data entries. The FMC example was implemented on a
Pentium PC running Windows NT. The simulation process was created by a G2
expert system (Gensym 1994). Figure 9 illustrates the resources timing chart, the
loading sequence of the jobs and the performance comparison of alternative
approaches. Four alternative designs were compared: (1) a deadlock prevention
approach where only one part is allowed to enter the system in a fixed period; (2)
a deadlock avoidance approach with a one-capacity buffer; (3) a deadlock avoidance
approach with a two-capacity buffer; (4) a deadlock avoidance approach with a five-
capacity buffer. Those results indicate that the performance improves significantly
when the deadlock avoidance policy is employed instead of using the deadlock
prevention policy. However, the number of buffer capacity only slightly affects the
performance.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2811

Lathe
mit| I\ L N I W R W B W
rovot|[J ULV TV UTU S LU L
™ M
Buffer / f 1
-05:00 -04:00 -03:00 -02:00 -01:00 04:19
(a)
Type 4
Type 3
Type 2
Type 1+ l
!
-05.00 -04:00 -03:00 -02:00 | -01.00 04:19
(b)
o The deadlock p ion approach
100% — « == « The deadlock avoidance approach with |-capacity buffer
...... The deadlock avoidance approach with 2-capacity buffer
80% — — - The deadlock avoidance approach with S-capacity buffer
8
E 60%
i
3 .
£ 40% |
]
[
20% }/i
0% .
R

100 |
150 |
200

.
4 .
& Time(min)

©

Figure 9. The statistics for the FMC simulation: (a)the resources timing chart, (b) the load-
ing sequence of the jobs, (c)the performance comparison of alternative approaches.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2812 S. G. Chen et al.

6. The FMS example

This section provides a complete FMS example. Zhou and DiCesare (1993)
introduced this FMS, as developed at Rensselaer Polytechnic Institute, USA. The
following demonstrates that the method proposed here is feasible for such an FMS.

The system takes two types of raw stock, machines them into desired shapes, and
then assembles these two finished parts into a product. Assume that two product
types are to be manufactured. Each has two different parts (block and peg). The type
of parts are numbered one to four. Figure 10 illustrates the FMS layout. The major
components of the system are one CNC mill and drill machine, one CNC lathe, a
Microbot robot to load and unload the materials between the lathe and conveyor 3
(C3), and between the mill and C2, and AS/RS with 19 usable pallet-storage bins for
buffering the raw materials and intermediate parts, four two-way conveyors with
sensors (sensorl and sensor2) at each end, a Gantry robot for transferring the
materials between the four conveyors, and a Scorbot robot to assemble the parts.
Therefore, the main routes for the block and peg are

— CI(—> AS/RS > Cl) -
B—>C4--mmmmmmmmmm e - ->C2>M-—>

— Cl(—> AS/RS > Cl) -
R e EE L L —->C4—>A—>F

and

FLEXIBLE MANUFACTURING SYSTEM

Micrabot Robot

CNC Mil CNC Lathe

Gantry
Robot

Storage
Peg
Storage

Scorbot
Robot

| The number of finished products | 20 |

[The number of inputs [57 |

Part 1 Part 2
& Product 1 | [[] (Type 1) | @ (Type 2)
Finished Product
Storage Product 2 | [l (Type 3) | @ (Type 9)
Pallet
Storage

Assembly
Station

The Production Schedule:
214131224244431144143211133323243
442223411212412334331421“42313221

Figure 10. The FMS layout.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2813

— CI(—>AS/RS > Cl1) >
P>C4--mmmmmmmme 2 ->C3>L-—>

— Cl(—> AS/RS > Cl) -

C3 mmmmmmmm e —->C4—>A->F
where B is the block storage, P is the peg storage, Cn is the conveyor, M is the CNC
mill, L is the CNC lathe, A is the assembly station, and F is the final product
carousel.

The material flow in the FMS is stated as in the following (Zhou and DiCesare
1993).

(1) The Scorbot robot moves an empty pallet from the gravity fed storage to
C4.

(2) The Scorbot robot takes a raw block from the block storage and places it in
the empty pallet on C4.

(3) C4 moves the loaded pallet to the Gantry robot.

(4) the Gantry robot moves the pallet from C4 to C2 (C3).

(5) C2 (C3) moves the pallet to the CNC machine.

(6) The Microbot robot takes the raw block from the pallet and loads it into the
CNC machine.

(7) The CNC machine fixes the raw block and machines the part.

(8) The Microbot robot unloads the finished part from the CNC machine to the
pallet on C2 (C3).

(9) C2 (C3) moves the pallet to the Gantry robot.

(10) The Gantry robot moves the pallet from C2 (C3) to C4.

(11) C4 moves the pallet with the finished part to the Scorbot robot.

(12) The Scorbot robot takes the finished part and places it in the assembly cell.
If two relative parts are present, it assembles the final product.

(13) The Scorbot robot moves the finished product to the output carousel.

(14) The Scorbot robot moves the empty pallet from C4 to the pallet storage.

The system can process concurrent works simultaneously.

The functional specification for the FMS is next constructed. Figure 11 (a) illus-
trates the MI diagram for the functional specification of the FMS. The material
flow’s flexibility is easily inspected. When the CNC machines are busy, the raw
parts can be stored in the AS/RS. While the assembly station is busy, the machined
parts can also be stored in the AS/RS for buffering. When the AS/RS is full, the C1
can hold an additional one part for buffering. Figure 11 (b) presents the FMI dia-
gram for the FMS. The control information is created by the transformation rules
discussed in the previous section. Figure 11 (c) to (g) highlights the details of A1 to
A5 pages. The deadlock avoidance policies are described as in the external expres-
sions of each activity box. Table 2 only illustratively lists the transformed rules for
the A1 page of the FMS controller.

To test the controller, total test cases are 4% /4]9 = 64, since the AS_RS is a
simple buffer. An optimal (shortest) test schedule can be available as indicated in
the following,

214131224244431144143211133323243442223411212412334331421342313221,

where each number denotes the part type of each product. Only 66 cases are required
to test the controller. Figure 12 illustrates the inventories of input, output and AS/
RS, and the machine utilization for the Scorbot, Gantry and Microbot robot of this

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2814 S. G. Chen et al.

machined parts

raw parts
load mill
ol) e S e
lathe parts
—>1 AS_‘
A
Taw
AS/RS
. machined parts
sioepats] to ABRS
inAS RS -
parts M| parts
I
1
g robot
(@
g _robot.status=ready
g_robot.statusTbusy g_robot.status=]
load parts mill parts |—— 4| assemble let
work eogz Al —3 n P s pel
raw parts T finished products
M lathe parts |—J— machined parts
—> A3
machined parts
rawpartsfrom| | [1
AS/RS to AS/RS
store parts
in ASRS,,
parts parts
()

(((CA tprl or CA. type=3) and
(C2.sensor] =ready and

C4.sensor2=ready and

Cl.sensor]=ready and

Cl.sensor2=ready and

C2.sensor]=veady and CA.sensor1=busy and
C3.sensor1=ready and s_robot

assambly_station.sansor=ready
((C).part=machined and C1.type/=] and
Cl.type/=3) or C1 status=ready)) or
station. =
E(assmﬂc ly ¢ thylwzm s_robpt.request=1
cI typd=4|)erCl saorady) 4

o ls robot. status=busy
F:s_robot.request=1 F:s_robot request=0 g robot.request=0
L i |
start s .] L
Pollet |t ed pallet gy - A
CA.fype=5 and CA sensorl=busy and
input_storage.sensor=tusy and perfini
éﬂﬁwlaﬁdyaﬂ s robat, 0 shed
1.gensor2=ready
robot.request=2
3 d pat Ly, raw parts
s_robot. request=0 o\
(l)
Fs mbamm'—'Zalﬂ F:s_robot.request=0 and

:ﬂ)ﬁnp.n Upd C4.type=s_robot.type
et etype robot.part and C4.part=s_robot.part

=raw and start_s_robot(2) | C:put workpieces on
C:load work A3

H

g robot.status=husy
work pieces

Figure 11. The MI diagram for the FMS, (a) the functional M1 diagram, (b)the augmented
MI diagrams, (c), (d), (), (f), and (g) are the details of the Al to A5 pages.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2815

g_tobot.part=raw and
g_tobot.pgrmfinished and C2.sensor2=busy and
mill.sensor=ready and g_robot.request=1 or mill. sensor=ready
(g_robot.type=l or g robot.request=2 0 m_robot.request=0
g_robot.type=3) and -:)2 =) C2.request=1(|)
& =busy 7y Cosatusready b
Q) (((C1.sensor] =ready and
l - l Cl.senstr2=veady) and
raw parts T requesi=] ard . Ot(C2.type=1 or C2.type=3) and
C2.type=g_robot.type and 1 robot. 1 (C4.sensoc]=ready and
&m?'g;)p;d - s C4.sensr2=ready) and o
mﬁ_wmwr N 2 ézassurbly_lstanmsamqeady))
raw parts from Cstat 2 A2 Cstop AR -sensor | =busy
{|> C2.sensor]=readyand
C2.sensor2=ready and
mill.pgmfinished
g_tobot.status=busy)
@ robot.gatus=ready f_ il tatusrbady
m_robot.status=busy
&rg:‘;rzw'mm m;:ibm.wZ sochined pat || | &10% 2 r:m=2
] Grepes P
I : P — ¢
Y v ¥ Clsatusreadyy pined parts
m_robot.status=busy 'gn_mmquwﬂ a;id F:g'&ro;ammFB and
.type=mn_robot - type=C2.
Qg‘:s;z and Q.part= Fﬁd td%mq\m'ﬁ
m_f B
start €2.2 and start g robot (3) machined
t_comeyor (c2.2) 25 P dx_ ml e parts
C2 status=busy g robot. status=busy

{({C1.sensarl=ready and C| .sensor2=ready) and
not((C4.sensor 1 =ready and C4.sensor2=ready) and
((assembly_station.type=1 and C3.type=2) or
(assebly_station.type=3 and C3.type=4)))) or
{(C4.sensor] =ready and C4.sensor2=ready) and
((assembly_station.type=1 and C3.type=2) or
(assembly_station.type=3 and C3.type=4))))

raw parts C3.sensori=busy

. m_robot.status=ready o

C3.sensorl=ready and

C3.sensor2=ready and M_robot.request=0

lathe.pgn=finished 0
)

(e)

Figure 11 (continued).

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2816

AS RSno. >0
Cl.sensor2=busy

S. G. Chen et al.

ICeAS RS
((C.part=raw and C4.sensor2:

=veady and
(((C2 smrlqmdy and C2. sumlqmdy) and

and C3.sensort=ready and
3))cr((C$ su-scr]qm:lyand

lathe. sensor=ready and
CZsaxrlqmdym‘l(C WZGCWPF"))))(‘

(Ctyp:.=lorC

C.part=machined
&mlﬁudyands robot.

md
((ly mmsﬂmmdyu'd(oftsawlqmdyam

Cl.sersor]=ready and C1
(

)
Cl.request=1
1

CA sensor2=ready) and((assembly_stati
Ctype=2)ar (ammﬂy mmtpr3 md C type=4)))))» ad

)

Cl.part=raw and
&(CZ smsu'laeady and
C2 sersor2=ready) and

mil).sensor=ready and
(Cl.type=t or C1 Iype=3))ct
((C3.sensor1=ready and
C3.sensor2=ready) and
lathe:

sensor=ready and
(Cl.ype=2 or Ci typc#)))) o

Cl.status=ready ((C453mr =lmr:l)ym..d
A%, waﬁwjy
)RS ((AS RSo. <=0 ((3ssembly_station.type=] and
and Cl.request=1) . 2 or
Cl. ar Cl request=2) (absermb “ ly_station.type=3 and
Y) ¢ type=4»»»m
robot. C).sensor
@ —(')
3 Fq;rét“:::mmt 1_z§peamc1
m,gm ’

—C1.prt and st an‘(z) >
CstpCt

A4

g robot.request=2 or
g robat.request=3 or
g robot.request=4
. ¢ C4.sensorl=busy and
g robot.pgrfinished and ((asserbly_station sensor=ready and
g_robot.part=machined and (CAtype=T or CA.type=3)) ox
%WSOIQ%&S}' and (assembly_station.type=1 and C4.type=2) or Ca. S and
assembly_station.sensor=ready angssembly station.type=3 and CA.type=4 type
(g _robot.type=1 or V- N o) s_robot.pgrefinished
grobot.type=3)) or (s_robot.type=1 or s_robot. type=3) and ([
(asserbly_station.type=1 and asserrbly_station. sensor=busy and S] request=0
g robot.type=2) or s_tobot.pgFfinished () s _robot.request=5
(assembly_station.type=3 an s fobot.request=3 . robof pgmfinished
£ robot.type=4))C4, request= @ssembly_station. m%’bot
| ! | statupriy
Fﬂ*reqxest—w}zm F mmmmm Fs_robot.request=5 F robot.
LA = ‘S _1
pined > Chype=g robotype wdChtypesand | and u ad | pallet
e el S L M |
and start_comeyor(cé;2) Cloadboot . A3 [’ it i B 4]
r Cstan
robok. =2 or
g1 usy L4y and
g robot.status=ready
s_robat.status=ready
s_robot.pgnfinished
and assambly_station.
ot [~ sensor=teady
LS !)
ble parts, 57 E}f‘mp fpcts
s_robpt.request—=4
vy O
Fs_robot.request=0 and
bly_station. _—
(2) Coamanamg |, finished
Asg| " products

Figure 11 (continued).

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2817

Activity box

Rules

All

Al12

Al3

Al4

Al5

Al6

if the sensor of input_storage is busy and the sensorl of ¢4 is ready and the
sensor2 of ¢4 is ready and the sensorl of cl is ready and the sensor2 of cl is
ready and the sensorl of c2 is ready and the sensorl of c3 is ready and ((the
sensor of assembly_station is ready and ((the part of cl is machined and the
type of c1/= 1 and the type of cl/= 3) or the status of cl is ready)) or (the
sensor of assembly_station is busy and ((the part ¢l is machined and the type
of ¢1/= 2 and the type of c1/= 4) or the status of cl is ready))) and the request
of s_robot= 0 and the status of s_robot is ready then conclude that the request
of s_robot=1 and conclude that the type of s_robot=35 and start
start_s_robot(1) and conclude that the status of s_robot is busy

if the sensorl of ¢4 is busy and the pgm of s_robot is finished and the request
of s_robot= 1 and the status of s_robot is busy and the status of c4 is ready
then conclude that the request of s_robot= 0 and conclude that the type of
c4= the type of s_robot and conclude that the status of s_robot is ready and
conclude that the status of ¢4 is loaded

if the type of c4= 5 and the sensor of input_storage is busy and the sensorl of
cl is ready and the sensor2 of cl is ready and the request of s_robot= 0 and the
status of s_robot is ready then concude that the request of s_robot= 2 and
conclude that the type of s_robot= the type of input_storage and conclude
that the part of s_robot is raw and start start_s_robot(2) and conclude that the
status of s_robot is busy.

if the sensorl of ¢4 is busy and the pgm of s_robot is finished and the request
of s_robot= 2 and the status of s_robot is busy then conclude that the request
of s_robot= 0 and conclude that the type of c4= the type of s_robot and
conclude that the part of c4= the part of s_robot and conclude that the
status of s_robot is ready

if the type of c4/= 5 and the type of c4/= 0 an the part of ¢4 is raw and the
sensorl of ¢4 is busy and the sensor2 of ¢4 is ready and the request of c4= 0
and the status of ¢4 is loaded then conclude that the request of c4=1 and
conclude that the status of ¢4 is busy and start start_conveyor(c4, 1)

if (((the type of c4= 1 or the type of c4= 3) and (the sensor1 of ¢2 is ready and
the sensor2 of ¢2 is ready) and the sensor of mill is ready) or((the type of c4= 2
or the type of c4= 4) and (the sensor]l of ¢3 is ready and the sensor2 of ¢3 is
ready) and the sensor of lathe is ready) or ((the sensor] of cl is ready and the
sensor2 of ¢l is ready) and not ((((the type of ¢4= 1 or the type of ¢4= 3) and
(the sensorl of ¢2 is ready and the sensor2 of ¢2 is ready) and the sensor of mill
is ready) or ((the type of c4= 2 or the type of c4= 4) and (the sensorl of ¢3
is ready and the sensor2 of ¢3 is ready) and the sensor of lathe is ready)))))
and the sensor2 of ¢4 is busy and the request of c4= 1 and the status of ¢4 is
busy and the request of g_robot= 0 and the status of g_robot is ready then
conclude that the type of g robot= the type of c4 and conclude that the
request of g_robot= 1 and conclude that the request of c4= 0 and conclude
that the part of g_robot= the part of c4 and conclude that the status of ¢4 is
ready and conclude that the status of g robot is busy and start
start_g_robot(1).

Table 2. The transformed rules for the A1 page of the FMS controller.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2818 S. G. Chen et al.

STATISTICS

1000 Inpu t
300}
600 O
ey utput —t

400 o]
200| : g AS/RS

0.0 ,,d"—":::

am. 6:36:00 am.)

The Inventory of Input, Output and ASHS

10 Scorbot Robot —h—
Gantry Robot —_
i e e—— .
0.0 Microbot Robot
T am 6:36:00am. 1

The Utilization of Scorbot, Gantry and
Microbot Robot

Figure 12. The inventory and machine utilization chart.

simulation testing. The steady state for the FMS results in an inventory of AS/RS as
14 parts. The Gantry robot gains a maximal machine utilization. Those statistics
reveal that the FMS controller is very stable.

7. Conclusion

In summary, this work has presented a systematical method of designing a rule-
based FMS controller. The functional specification of the FMS controller is firstly
synthesized by the individual MI diagram primitives. The control flows can be
created by transforming the resource utilization cycles. The manufacturing policies
are also specified and attached. The FMI diagrams can be created by the transfor-
mation and attachment. The FMI diagrams can be transformed to the production
rules which can be executed on an expert system. The rule-based FMS controller is
therefore constructed.

To verify this controller, two approaches are proposed. For a small system, the
C’PN model is suggested. This model can be created by transforming the FMI
diagrams. Properties of the C’PN model, e.g., the safeness and liveness, can then
be inspected by the P-invariants method, or the reachability tree. For a large system,
however, simulation testing is recommended instead since the analytical C”"PN model
may not be feasible. Some general guidelines for the simulation process are pro-
posed. Two examples are employed to illustrate the method provided here. The first
example is the common FMC with one robot, two machines and one buffer. The
other is the famous FMS example introduced by Zhou and DiCesare (1993), where

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

Design of a rule-based FMS controller 2819

one AS/RS, two machines, three robots, four conveyors and an assembly cell are
employed. Both examples demonstrate the usefulness and rapid prototyping cap-
ability of the proposed method.

The fault diagnosis problem for the approach may be an area of future research.
Results in this study can hopefully contribute toward the design of an intelligent
FMS controller.

References

Bauer, A., Bowpen, R., BRowNE, J., DuccaN, J., and Lyons, G., 1991, Shop Floor Control
Systems — From Design to Implementation (London: Chapman & Hall).

Ceci, J. A., SrmiaRrI, K., and Emerson, C. R., 1992, A review of Petri-net applications in
manufacturing. International Journal of Advanced Manufacturing Technology, 7, 168—
177.

CorrmaN, Jr, E. G., ELpHIick, M., and Suosuani, A., 1971, System deadlocks. Computer
Surveys, 3 (2), 67-78.

Davip, R., and Avrra, H., 1992, Petri Nets & Grafcet — Tools for Modeling Discrete Event
Systems (Englewood Cliffs, NJ: Prentice Hall).

DupronD-GateLMmanD, C., 1982, A survey of flexible manufacturing systems. Journal of
Manufacturing Systems, 1 (1), 1-16.

Franks, 1., Lorrus, M., and Woob, N. T. A., 1990, Discrete cell control. International
Journal of Production Research, 28 (9), 1623-1633.

GensyM™, 1994, G2 Reference Manual, Version 4.0 (USA: Gensym Corporation).

GoopeNouGH, J. B., and Geruarrt, S. L., 1975, Towards a theory of test data selection.
IEEE Transactions on Software Engineering, SE-1 (2), 156-173.

Horrowavy, L. E., and KroucHh, B. H., 1990 Synthesis of feedback control logic for a class of
controlled Petri nets. IEEE Transactions on Automatic Control, 35 (5), 514-523.
Hone, H. M., 1993, IDEF/CPN/G?2 approach to the implementation of real-time shop floor

control system. MS thesis, National Chiao Tung University, Taiwan.

Jarari, M. A., and BoucHer, T. O., 1994, A rule-based system for generating a ladder logic
control program from a high-level systems model. Journal of Intelligent Manufacturing,
5, 103-120.

Jones, A. T., and McLean, C. R., 1986, A proposed hierarchical control model for auto-
mated manufacturing systems. Journal of Manufacturing Systems, 5 (1), 15-25.

Kusiak, A., 1990, Intelligent Manufacturing Systems (Englewood Cliffs, NJ: Prentice Hall).

Liang, G. R., and Ho~g, H. M., 1994, Hierarchy transformation method to manufacturing
system specification, design, verification, and implementation. Computer-Integrated
Manufacturing Systems, 7 (3), 191-205.

MEever, W., 1990, Expert Systems In Factory Management — Knowledge-Based CIM (London:
Ellis Horwood).

MuraTta, T., Komopa, N., Matsumoro, K., and Haruna, K., 1986, A Petri net-based
controller for flexible and maintainable sequence control and its applications in factory
automation. IEEE Transactions on Industrial Electronics, 1E-33 (1), 1-8.

Sauve, B., and CorrivoT, A., 1987, An expert system for scheduling in a flexible manufac-
turing system. Robotics and Computer-Integrated Manufacturing, 3 (2), 229-233.
Teng, S., and Brack, J. T., 1989, An expert system for manufacturing cell control. Computers

in Industrial Engineering, 17 (1-4), 18-23.

Varertg, R., 1987, Nets in production systems. In Advances in Petri Nets: Petri Nets
Applications and Relationships to Other Models of Concurrency, Lecture Notes in
Computer Science, 255 (New York: Springer), pp. 191-217.

Wu,S.Y.D.,and Wysk, R. A., 1988, Multi-pass expert control system — a control/scheduling
structure for flexible manufacturing cells. Journal of Manufacturing Systems, 7 (2), 107
120.

Xiang, D., and O’Brien, C., 1995, Cell control research — current status and development
trends. International Journal of Production Research, 33 (8), 2325-2352.

Downloaded by [National Chiao Tung University] at 05:38 28 April 2014

2820 Design of a rule-based FMS controller

Zuou, M., and Dicesarg, F., 1990, Modeling buffers in automated manufacturing systems
using Petri nets. Proceedings of Rensselaer’s Second International Conference on Com-
puter Integrated Manufacturing, pp. 265-272.

Zuou, M., DiCesarg, F., and DesrocHErs, A. A., 1992, A hybrid methodology for synthesis
of Petri net models for manufacturing systems. IEEE Transactions on Robotics and
Automation, 8 (3), 350-361.

Zuou, M., and DiCesarg, F., 1993, Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems (Boston, MA: Kluwer Academic Publishers).

