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Low-temperature poly-Si lateral double-diffused metal oxide semicondytTd®®S LDMOS) with high voltage and very low
on-resistance has been achieved using excimer laser crystallization at 400°C substrate heating for the first time. The ON/OFF
current ratios were 2.9& 10° and 6.72x 10° while operating a4 = 0.1 and 10 V, respectively. The maximum current limit

was up to 10 mA and maximum power limit could be enhanced over 1 Wyat 90 V andVys = 20 V. The Ry, sp With
dimensions ofW/L, = 600 um/12 wm could be significantly decreased 6.8710° times in magnitude as compared with
conventional offset drain thin-film-transistors.
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Low-temperature poly-Si  high-voltage thin-film-transistors or 400°C substrate heating. However, conventional OD TFT was
(LTPS HVTFTs)have been widely studied to realize glass compat- crystallized by a furnace at 600°C to produce small grain sizes in its
ible driver circuits for light valves, high speed printers, liquid crystal intrinsic region. After that, a 5000 A thick field oxid€OX) at label
displays, plasma displays, €f¢.However, many issues still remain, “C” was formed by plasma-enhanced chemical vapor deposition
such as on-state degradation, gate dielectric reliability, circuit/(PECVD)at 350°C to RESURF. A 1000 A thick PECVD gate oxide
operation complexity, and surface contamination, resulting in un-and a 2000 A thick LPCVD a-Si gate were defined across the FOX
suitable implementation of integration electronic systems for futureto split the p-well/n-drift junction electric field at label “D”. 50 keV
system-on-a—panéBOP)applications°’. phosphorus and boron doses 0510 cm~? were carried out to

In this article, a LTPS lateral double diffused metal oxide semi- form an ri" drain. source, gate, and*[j)utting regions. Finally, a
conductor(LDMOS) using excimer laser crystallization has been 6000 A thick Al extended drain was defined to overlap the 5000 A
demonstrateq by combination Of.the thin-film -transistexcime.r thick passive |ayer and pass through the n_dr"‘ftﬂnain junction to
laser crystallizationand power device technologiélsDMOS archi- gt its electric field at label “E”. All steps were compatible for
tecture)for the first time. Excimer laser crystallizatidiELC) is a standard TFT fabrication and glass process with a maximum tem-
promising technology in obtaining high current capability due to perature of 600°C
large grains, fewer defects, and compatible glass substrate against
the solid-phase crystallizatiofSPC) of HVTFTs* LDMOS archi- Results and Discussion
tecture is a promising design to obtain high blocking capability due ; ‘o .
to the reduced-surface-fie(RESURF)against the only offset drain TF%I’aZ{IﬁdI “tsht: tf;fotgztg:ger f?ggactl_egagsé O(Nti?ﬁ Coopr;;/nig}m?:grg b

. . 5
(drift) reglon'of HV.TFTS' Henc_e,_ the LTPS LDMO.S. at room- temperature irradiation. The LTPS LDMOS was obtained from the
temperature irradiation can exhibit better characteristics than con;

ventional HVTFTs. Moreover, LTPS LDMOS at 400°C irradiation [oNoWing parametersw = 600um, Loy = 12pm, Lyge = 15pm,

_ e _
can perform somewhat like single crystalline siliqerSi) LDMOS. Nt = 7 X 10" cm?, tg = 0.1 pm, andtege = 1.5 pm. The
OD TFT was established from the paramet8L ., = 100 wm/16

_ M, Lgie = 20 pm, tg = 0.3 um, andtyyige = 2 wm.E The com-
Experimental parison of LTPS LDMOS without and with ELC was reported by
The fundamental structure of LTPS LDMOS under room- Changet al” As shown in Table I, the OD TFT exhibited a low
temperature or 400°C irradiation is shown with the labels of threshold voltage \(y) of 0.5 V due to the intrinsic well region
RESURF design from “A”to “E” in Fig. 1. The conventional offset ~ which makes the device more sensitive to signal noises. The LTPS
drain (OD) TFT structure is also exhibited for comparison. First, a LDMOS presented a higher threshold voltage of 4 V at room-
1.5 um thick wet oxide was grown on a silicon wafer. Then, temperature irradiation due to the dose 0f310" cm™?2 p-well
amorphous-silicorta-Si), 0.1um thick, was deposited on the wafer region which operated stably. With respect to the subthreshold swing
by low-pressure chemical vapor depositiGhPCVD) at 550°C. (SS), the LTPS LDMOS at room-temperature irradiation had a
Next, as shown in label “A’, the 50 keV phosphorus dose of smaller value of 1.18 V than the OD TFT value of 1.92 V. The
7 X 10 cm~2 was implanted into the above a-Si drift region to on-state currentl(y) and off-state currentl rr) of ON/OFF cur-
reduce the current path resistance. However, conventional OD TFTent ratio were defined at the gate biases of 35 ai@ V, respec-
lacked this drift implantation so as to possess the large on-resistancévely. The LTPS LDMOS at room-temperature irradiation displayed
with its intrinsic region. At label “B”, the high energy of 60 keV  betterl o/l o current ratios of 2.1 10* and 1.23x 10° than
boron dose of 3x 10" cm 2 was created as the buried p-well OD TFT ones of 3x 10° and 5 10° at the drain biases of 0.1 and
region to increase the depletion width in the n-drift region without 10 V. The breakdown voltagé8V) of LTPS LDMOS at room tem-
adding threshold voltage. Laser crystallization was performed usingerature irradiation was also higher at 240 V than conventional OD
KrF excimer laser X = 248 nm)with energy densities from 400 to TFT with a breakdown voltage of 155 V. Thus, in terms of the
470 mJ/cr and 99% overlapped shot density at room temperatureon-state {y,, SS,lon/lore) and off-state(BV) characteristics, the
proposed LTPS LDMOS at room-temperature irradiation was better
than the conventional OD TFT.
* Electrochemical Society Active Member. Figure 2 shows the transfer characteristics of LTPS LDMOS for
2 E-mail: u8811515.ee88g@nctu.edu.tw optimal room temperature and 400°C irradiation. The anomalous
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Figure 2. Transfer characteristics of LTPS LDMOS for optimal room-
Figure 1. LTPS LDMOS structure fabricated by excimer laser crystalliza- temperature and 400°C irradiation.
tion under room temperature or 400°C irradiation. The broken circles repre-
sented the RESURF design and the solid circles indicated the drift with/
without doping for reducing the resistance of drift region in LTPS LDMOS

and OD TFT devices. pressed up to 90 V drain voltage with two times drain current from

1.5 to 3 mA. Nevertheless, the latch-up voltagénk voltage) at
) ] Vgs = 16 V was slightly decreased about 0.95 times from 95 to 90
| orr leakage current may be restrained by the drift redioffiset v The maximum voltage limitbreakdown voltagewas reduced
region) at negative gate voltages regardless of the drain voltageapout 0.75 times from 240 to 180 V in Fig. 3b. The reason may be
increase even up tdgs = 10 V8 The | oer at 400°C substrate heat-  that the impact ionization path and effective ionization atewere
ing was lightly lower than that at room temperature due to the smallraised by the fewer intra/inter gain defects so that the breakdown
reduction in the defect trap statéJhe threshold voltage was not voltage dropped below that of room-temperature irradiatfoRut,
changed at 4 V for 400°C and room temperature due to similaron the whole, the safe operating at&DA) could be still improved
p-well concentrations. The subthreshold swing was reduced fromabout twice(1.5 times)with two times enhancement of the maxi-
1.15 V at 400°C irradiation to 1.18 V at room temperature irradia- mum current and 0.75 times degradation of maximum voltage by the
tion. It revealed finite improvement of 2.5% by 400°C irradiation. 400°C irradiation relative to that at room-temperat(R&) irradia-
The I on/l opr current ratios through 400°C irradiation were further tion.
increased from 2.1% 10* to 2.96x 10° at Vg = 0.1 V and Figure 4a shows the relationships between the specific on-
1.23% 10° to 6.72X 10° at Vg = 10 V, which were indicated resistance and laser energy density for LTPS LDMOS at RT/400°C
about 14 and 5 times improvement one room-temperature ratiosifradiation together with OD TFT, variable doping sl&DS) TFT,
respectively. and c-Si LDMQOS. The variable doping sld¢DS) TFT had a con-
Figure 3a and b shows the output characteristics of LTPStinuous shallow doping profile to reduce the on-state resistance and
LDMOS for optimal room temperature and 400°C irradiation. While split the potential drop across the offset regfofine specific on-
the substrate was heated to 400°C, the maximum current limit wagesistancesR,,, ) of all structures was defined ¥ = 20 V and
increased about two times from 5 to 10 mAW§; = 20 V. The Vgs = 20 V. The grain growth regimes were divided into three parts:
maximum power limit, where the LTPS LDMOS was burned out, partial melting, super lateral growtl$LG) (the expected regime for
was great in 1.11 W6852 W/crﬁ) atlge= 12.3 mA, Vg = 90V, the largest grain sizeand ablation of Si film regimes. As a result,
andVy = 20 V. The latch-up current afys = 16 V could be sup- the LTPS LDMOS at room-temperature irradiation exhibited better
Ron,spOf 1.78 Q-cn? by the ELC process and RESURF design than
the conventional OD TFT of 36Q-cn? andVps TFT of 10 Q-cn?
by offset region and SPC procesblevertheless, thB,n spOf room-

Table I. Summary of the transfer characteristics for conven-

: ; ; temperature irradiation still fell about 18 times behind the QL0
ﬁ';’gﬁ'_tgﬁngufg?”i‘;a‘t’i’c,on‘f°sed LTPS LDMOS with optimal cn? of ¢-Si LDMOS from Taurus and Athena/Atlas simulatts?
Fortunately, while crystallizing at 400°C, thR,,s, of room-
Conventional Room-temperature temperature irradiation may be further reduced about three times
OD TFT LTPS LDMOS from 1.78 to 0.540-cn? at the optimal laser conditions of 470 and
Threshold 05 4 435 mJd/crf, respectively. TheRg,sp Of LTPS LDMOS may be
voltage (V) greatly decreased from 18 times only five times higher than that of
c-Si LDMOS. It was concluded that the solidification velocity at
Subthreshold 1.92 1.18 400°C irradiation could be reduced to about one-fifth and the crys-
swing (V/dec) tallinity colusl(leimprove as compared to that at room temperature
irradiation:=
Max. lon/l ore 3 x 10° 2.19% 10° Figure 4b compares the breakdown voltages for the LTPS
atVgs = 0.1V LDMOS at RT/400°C irradiation together with OD TFT, VDS TFT,

and c-Si LDMOS. The Si atoms in the crystalline solids were or-

m@ij':g”iloof; 5 X 10° 123X 10° derly arranged unlike the segment order of polyerystalline solids.
Consequently, the impact ionization path and effective ionization

Breakdown 155 240 rate(a) of c-Si LDMOS is the longest and largest, which resulted in

voltage (V) minimum breakdown voltage of 145 V for comparison with poly-
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Figure 3. Output characteristics of LTPS LDMOS for optimal room- Figure 4. (a). Relationships of the specific on-resistance and laser energy

temperature and 400°C irradiatioa) The circle indicates the maximum density for LTPS LDMOS at RT/400°C irradiation together with OD TFT,

power limit point of 1.11 W(b) Breakdown voltages were measured by the VDS TFT, and c-Si LDMOS. Optimal laser conditions are located at 470 and

protective current limits of 0.1 and 0.05 mA for room-temperature and 400°C435 mJ/crf for room temperature and 400°C, respectivély. Comparison

irradiation, respectively. of the breakdown voltages for the LTPS LDMOS at RT/400°C irradiation
together with OD TFT, VDS TFT, and c-Si LDMOS.
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