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1. Introduction

The dynamical properties of one-dimensional
subshifts of finite type (Markov shifts) are well un-
derstood. However, not much is known for a general
theory of higher dimensional subshifts. For instance,
the spatial entropy of subshifts of finite type is
known to be the logarithm of the largest eigen-
value of its corresponding transition matrix. On
the other hand, very little is known on the spa-
tial entropy of higher dimensional subshifts. Even
the “trivially” looking problem of the spatial en-
tropy of two-dimensional golden mean H = V =
(

1 1
1 0

)

remains open (see e.g. [Schmidt, 1990]).

For the difficulties associated with higher dimen-
sional Markov shifts, we refer to [Schmidt, 1990].
The two-dimensional golden mean problem cor-
responds to fill Z

2 lattice with {1, 2} with the
following rules

∗ 1

1 ∗ 2 1 ,

where ∗ indicates no restriction on what 1 can be
adjacent to. Such a pattern can also be generated
by cellular neural networks (CNNs) (see e.g. [Chua

& Yang, 1988a, 1988b; Juang & Lin, 2000] and
the work cited therein). More specifically, consider
CNNs of the form

dxij

dt
= −xij + z

+
∑

|k|≤1, |l|≤1

ak,lf(xi+k,j+l), (i, j) ∈ Z ,

xi,j(0) = x0
i,j .

Here the nonlinearity f is a piecewise-linear func-
tion of the form

f(x) =
1

2
(|x + 1| − |x − 1|) .

The numbers ak,l, |k| ≤ 1, |l| ≤ 1, k, l ∈ Z are
arranged in a 3 × 3 matrix form, which is called a
space-invariant A-template

A =







a−1,1 a0,1 a1,1

a−1,0 a0,0 a1,0

a−1,−1 a0,−1 a1,−1






.

Now, set

A =







0 aε 0

aε aε aε

0 aε 0






.
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By choosing z, a and ε approximately, say (z, a) ∈
[5, 1]ε, where aε < 0 (see Theorem 3.5 of [Juang
& Lin, 2000]), we see, via Lemma 4.1 of [Juang &
Lin, 2000], that any positively saturated cell, de-
noted by 1, can be adjacent to either positively
saturated cell or negatively saturated cell, denoted
by 2. Moreover, any negatively saturated cell must
be adjacent to at least four positively saturated
cells. These mosaic patterns are exactly generated
by two-dimensional golden mean. It is easy to see
that the entropy h of such problem satisfies the
inequality

1

2
log 2 < h < log

1 +
√

5

2
,

but the precise value of h is still not known (see
e.g. [Markely & Paul, 1981a, 1981b]). In this pa-
per, we will give a nontrivial lower bound of h. We
also note that most of the discussion of higher di-
mensional Markov shifts is restricted to examples
of special nature (see e.g. [Baxter, 1982; Kaste-
leyn, 1961; Lieb, 1967; Schmidt, 1990; Temperley &
Lieb, 1971]). We conclude this introductory section
by summarizing the organization of this paper. In
Sec. 2, we recall some needed notations, definitions
and known results. In Sec. 3, we define a class of
Markov measures associated with a transition ma-
trix A. Such class of the measures is then used to
compute the measure theoretic entropy of the shift
map σA. In Sec. 4, we combine the results from
Secs. 2 and 3 to get a nontrivial lower bound of the
spatial entropy of two-dimensional gold mean.

2. Preliminaries

To make the paper self-contained, we recall some
definitions and results. Let N be a positive integer
with N ≥ 2, let S = {1, 2, . . . , N}. Denote by Z

d

the integer lattice on R
d where d ≥ 1 is a positive

integer representing the lattice dimension. The set

of all functions u : Z
d → S is denoted by SZ

d

. For
α ∈ Z

d, we write u(α) as uα. The kth shift operator

on SZ
d

is defined by

(σku)α = uα+ek
,

where α ∈ Z
d and ek = (0, . . . , 0, 1, 0, . . . , 0) is the

usual unit vector in the direction of the kth coordi-
nate. For convenience we also write ΣN = SZ

d

. We
define a metric d on ΣN as follows.

d(u,v) =
∑

k∈Zd

δ(uk, vk)

3|k|
, (1)

where

δ(i, j) =

{

0 , if i = j ,

1 , if i 6= j ,

and |k| = max{k1, k2, . . . , kd} for k =
(k1, k2, . . . , kd) ∈ Z

d. The space ΣN with the shift
operators, (ΣN ;σ1, . . . , σd), is called the symbol
space on N symbols, or the full N-shift space.

Definition 2.1. An N×N matrix A = (aij) is said
to be a transition matrix if

(i) aij = 0 or 1 for all 1 ≤ i, j ≤ N ,

(ii)
∑

i aij ≥ 1 for all 1 ≤ j ≤ N ,

(iii)
∑

j aij ≥ 1 for all 1 ≤ i ≤ N .

Definition 2.2. Given d transition matrices, Ak =
(ak

ij)N×N , k = 1, . . . , d, let

ΣA1,...,Ad
= {u ∈ ΣN |ak

uα,uα+ek

= 1, for all α ∈ Z
d, 1 ≤ k ≤ d} .

which determines all the admissible transitions be-
tween symbols 1, . . . , N . Each element in ΣA1,...,Ad

is called a pattern. The shift operators σ1, . . . , σd

restricted on ΣA1,...,Ad
are called the subshifts of

finite type for matrices A1, . . . ,Ad.

We shall write ΣA1,...,Ad
as Σd provided no

confusion arises. It is clear that Σd is closed with
respect to the metric defined in (1) and translation
invariant, that is,

σk(Σd) = Σd

for all 1 ≤ k ≤ d. To measure the complexity of
Σd, we compute the growth rate of the number of
patterns on a parallelepiped of size N1×N2×· · ·Nd

on the lattice as N1, . . . , Nd go to infinity.

Definition 2.3. The spatial entropy h(Σd) is
defined by

h(Σd) = lim
N1,...,Nd→∞

log ΓN1,...,Nd
(Σd)

N1, N2 · · ·Nd

. (2)

Here ΓN1,...,Nd
(Σd) is the number of distinct pat-

terns that one observes among the elements of Σd by
restricting one’s observation to a parallelepiped of
size N1×N2×· · ·Nd on the lattice. The limit in (2) is
well-defined and exists (see e.g. [Chow et al., 1996]).
Moreover, if Σd is replaced by U where U ⊂ ΣN and
satisfies

σ
p1

1 (U) = σ
p2

2 (U) = · · · = σ
pd

d (U) = U
for some (p1, p2, . . . , pd) ∈ Z

d, the well-definedness
and existence of the limit in (2) remain true (see
e.g. [Juang et al., 2002]).

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

4.
14

:3
09

-3
19

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/2
7/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 5, 2004 12:6 00920

On the Spatial Entropy of Two-Dimensional Golden Mean 311

Theorem 2.1 (see e.g. Theorem VIII-1.9 of
[Robinson, 1993]). For d = 1, let A be a transition
matrix on N symbols, so A is N × N . Then

h(ΣA) = log λ1

where λ1 is the dominant eigenvalue of A.

Definition 2.4. Let f : X → X be a continuous
map on the space X with metric d. For n a pos-
itive integer and ε > 0, a set S ⊂ X is called
(n, ε)-separated for f provided for every pair of dis-
tinct points x,y ∈ S, there is at least one k with
0 ≤ k < n such that d(f k(x), fk(y)) > ε.

The number of different orbits of length n (as
measured by ε) is defined by

r(n, ε, f) = max{#(S)|S ⊂ X is a (n, ε)

− separated set for f} ,

where #(S) is the number (cardinality) of elements
in S. To measure the growth rate of r(n, ε, f) as n

increases, we define

h(ε, f) = lim sup
n→∞

log r(n, ε, f)

n
.

If r(n, ε, f) = enτ , then h(ε, f) = τ . Thus, h(ε, f)
means the “exponent” of the manner in which
r(n, ε, f) grows with respect to n. Finally, we con-
sider the way that h(ε, f) varies as ε goes to zero,
and define the topological entropy of f as

h(f) = lim
ε→0

h(ε, f) .

We note that for 0 < ε1 < ε2, r(n, ε2, f) ≥
r(n, ε2, f), so h(ε, f) increases as ε decreases and,
hence, the limit defining h(f) exists. If f is C1

on a compact space, then it has been proven that
h(f) < ∞ (see e.g. [Bowen, 1971, 1988]).

The following theorem shows that h(σA) =
h(ΣA).

Theorem 2.2 (see e.g. Theorem VIII.1.9 of
[Robinson, 1993]). Let σ : ΣN → ΣN be the full
shift of N symbols (either one side of two). Assume
X ⊂ ΣN is a closed invariant subset. Let Γn be the
number of words of length n in X, i.e.

Γn = #{(s0, . . . , sn−1)|sj = xj,

for 0 ≤ j ≤ n for some x ∈ X} .

Then

h(σ|X) = lim sup
n→∞

log Γn

n
.

We also need to recall two recursive formu-
las, which was derived in [Juang et al., 2000] for
computing the spatial entropy of two-dimensional
golden mean. In the following, we first introduce
some notations and concepts.

Given a transition matrix A = (ai,j)n×n. A
word ω = (ω0, ω1, . . . , ωk−1) of length k is called
admissible (allowable) if aωj−1,ωj

= 1 for j =
1, 2, . . . , k−1. Let A be a transition matrix. The set
of admissible words of length m whose first symbol
is ω0 is to be denoted by ω(ω0,m;A). Set

ω(m;A) = set of all admissible words of length m

=
⋃

1≤ω0≤n

ω(ω0,m;A) .

To save notation, the transition matrices A1 and A2

introduced in Definition 2.2 will be denoted by H =
(hi,j)N×N and V = (vi,j)N×N , respectively, called
horizontal and vertical transition matrices. Then
Card(ω(m;H)) =

∑n
i,j=1(H

m−1)i,j =: Nm. Here

H0 = identity matrix. Using these Nm symbols, we

may define a transition matrix T
(m)
H,V = (t

(m)
i,j ) of size

Nm × Nm as follows. We begin with giving a lex-
icographic order for elements in ω(m;H). Specifi-
cally, let s = (s1s2 · · · sm) and p = (p1p2 · · · pm) ∈
ω(m;H), and suppose that j is the smallest index
for which sj 6= pj, then we define

s < p if sj < pj. (3)

With such ordering, the sets ω(m;H) and
{1, 2, 3, . . . , Nm} can have an association that is one
to one, onto and order preserving.

Definition 2.5. If s and p in ω(m;H) are associ-
ated with positive integers k and l, where 1 ≤ k,
l ≤ Nm respectively, then we define the (k, l)-entry

or (s,p)-entry of T
(m)
H,V as

t
(m)
s,p = t

(m)
k,l = vs1,p1

· vs2,p2
· · · vsm,pm :=

m
∏

i=1

vsi,pi
,

(4)

i.e. t
(m)
k,l = 1 provided that for all 1 ≤ i ≤ m,

the words

(

si

pi

)

are admissible with respect to

V. Otherwise, t
(m)
k,l = 0. For convenience, we shall

use t
(m)
s,p to denote t

(m)
k,l . We shall call T

(m)
H,V the m-

transition matrices with respect to the horizontal
and vertical transition matrices H and V, or for
short, the m-transition matrix. If we start out with
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a lexicographic order for elements in ω(m;V), we

shall obtain the so-called m-transition matrix T
(m)
V,H

with respect to V and H.

The relationship between m-transition matrix

T
(m)
H,V and h(ΣH,V) is given in the following.

Proposition 2.1 (Proposition 2.1 of [Juang et al.,

2000]). Let T
(m)
H,V be the m-transition matrix with

respect to H and V. Let ρ(T
(m)
H,V) be the maximal

eigenvalue of T
(m)
H,V = (t

(m)
s,p ), where t

(m)
s,p are given

in (4 ). Then

h(Σ2) = lim
m→∞

log ρ(T
(m)
H,V)

m
, (5)

where Σ2 = ΣH,V.

The following recursive formula for construct-

ing T
(m)
H,V can also be found in [Juang et al., 2000].

Note first that T
(m)
H,V can be written as the following

block structure

T
(m)
H,V = (T

(m)
i,j ) , 1 ≤ i, j ≤ n , (6)

where T
(m)
i,j is a matrix of size Card(ω(i,m;H))×

Card(ω(j,m;H)). Let 1 ≤ k ≤ Card(ω(i,m;H))
and 1 ≤ l ≤ Card(ω(j,m;H)). Via the lexi-
cographic order defined in (3), there exist s ∈
ω(i,m;H) and p ∈ ω(j,m;H) whose associated
numbers are k and l, respectively. Then the (k, l)-

entry, or simply (s,p)-entry, of the matrix T
(m)
i,j is

1 provided that for all 1 ≤ r ≤ m,

(

sr

pr

)

is an ad-

missible word of size two with respect to vertical
transition matrix V. Otherwise, the entry is zero.
We are now ready to state the following result.

Theorem 2.3. Let T
(m+1)
H,V and T

(m)
H,V be,

respectively, (m + 1)- and m-transition matrix with
respect to horizontal and vertical transition matrices
H = (hi,j) and V = (vi,j). Let α(i) = {q ∈ N : 1 ≤
q ≤ n, hi,q = 1} and Card(α(i)) = αi. Moreover,
we set α(i) = {i1, i2, . . . , iαi

} with the following or-

der i1 ≤ i2 ≤ · · · ≤ iαi
. Then T

(m)
H,V can be defined

recursively as follows:

T
(1)
H,V = V ,

and T
(m+1)
H,V = (T

(m+1)
k,l )n×n, 1 ≤ k, l ≤ n .

(7a)

Here the block matrices T
(m+1)
k,l are of following

form

T
(m+1)
k,l = vk,l

















T
(m)
k1,l1

T
(m)
k1,l2

· · · T
(m)
k1,lαl

T
(m)
k2,l1

T
(m)
k2,l2

· · · T
(m)
k2,lαl

...
...

. . .
...

T
(m)
kαk,l1

T
(m)
kαk,l2

· · · T
(m)
kαk,lαl

















,

(7b)

where ki ∈ α(k), li ∈ α(l), T
(m+1)
k,l and T

(m)
kv ,lq

,

1 ≤ v ≤ αk and 1 ≤ q ≤ αi, are defined as
in (6 ).

We next recall some basic definitions and well-
known results from ergodic theory. Let (X,B,m) be
a measure space. Here B denotes the σ-algebra of all
measurable sets in X and m denotes the measure
on X. Let f : X → X be a measurable function.
f is said to be measure preserving with respect to
the measure m if m(S) = m(f−1(S)) for all S ∈ B.
Here m is called an invariant measure for f .

Definition 2.6. Let f be measure preserving on
(X,B,m). A set S ∈ B is called f-invariant if
f−1(S) = S. f is said to be ergodic if every f -
invariant set has measure 0 or full measure.

We are now ready to state a well-known theo-
rem in ergodic theory.

Theorem 2.4 (Birkhoff Ergodic Theorem (see
e.g. [Mane, 1983]). Let f be measure preserving on
(X,B,m) and g be in L1(X).

(1) There exists an integrable function g∗ such that

lim
n→∞

1

n

n−1
∑

k=0

g(fk(x)) = g∗(x) (8)

for almost every point x ∈ X.
(2) For all k ∈ N,

g∗(fk(x)) = g∗(x) a.e .

(3) If m(X) = 1, then
∫

X

gdm =

∫

X

g∗dm . (9)

Here the left side of (8) is called the ergodic av-
erage. In the following corollary we see that under
the condition of ergodicity, the ergodic average is
equal to the “Riemann sum” of

∫

X
gdm.
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Theorem 2.5 (see e.g. [Mane, 1983]). If f is er-
godic and m(X) = 1,

lim
n→∞

1

n

n−1
∑

k=0

g(fk(x)) =

∫

X

gdm a.e . (10)

The next part of our preliminaries is about the
measure theoretic entropy.

Definition 2.7. Let (X,B,m) be a measure space
and P be a partition of X, the entropy of partition
P is defined to be

H(P) = −
∑

P∈P
m(P ) log m(P ) .

Let f : X → X be measure preserving. The entropy
of f with respect to P is defined by

h(f,P) = lim
n→∞

1

n
H





n−1
∨

j=0

f−j(P)



 . (11)

Here the notation
∨n−1

j=0 f−j(P) denotes the parti-
tion whose elements are of the form A0∩· · · ∩An−1

for Ai ∈ f−j(P), i = 0, . . . , n − 1, satisfying
m(A0 ∩ · · · ∩ An−1) 6= 0. The measure theoretic
entropy of f is then given by

hm(f) = sup
P : partition

h(f,P) .

Proposition 2.2 (Proposition IV.3.2 of [Mane,
1983]). The limit in (11) is well defined and exists.

Let A be an n×n transition matrix. P = (pij) ∈
Mn×n(R) is said to be a stochastic matrix associated
with A if

1. pij = 0 if and only if aij = 0 for 1 ≤ i, j ≤ n.
2. 0 ≤ pij ≤ 1 for all 1 ≤ i, j ≤ n.
3.
∑

j pij = 1.

Clearly, there exists a left eigenvector q =
(q1, . . . , qn)T satisfying the following:

qTP = qT , (12a)

and
n
∑

i=1

qi = 1 . (12b)

We define a Markov measure µ = µP,q associ-
ated with (P,q) by

µ(C(i0, i1, . . . , ik)) = qi0pi0,i1 · · · pik−1,ik , (13)

where C(i0, i1, . . . , ik) = {(j0, j1, . . .) ∈ ΣA|j0 =
i0, . . . , jk = ik} is called a cylinder.

Proposition 2.3 (see e.g. Theorem I-10.1 of
[Mane, 1983]). µ = µP,q is an invariant measure
of the Markov shift σA.

Theorem 2.6. Let A be an n × n transition ma-
trix and µP,q = µ be the invariant Markov measure
defined by (P,q) associated with A. Then

(i) (see e.g. p. 221 of [Mane, 1983 ]) hµ(σA) =
−
∑

ij qipij log pij.

(ii) [Parry, 1964] If σA is topological mixing, then
for any invariant measure µ′,

hµ′(σA) ≤ log λ1

where λ1 is the dominant eigenvalue of A.
Moreover, there is a unique measure such that
the equality attains.

It has been shown in Theorem 2.1 that
htop(σA) = log λ1. Theorem 2.6 states that for
topological mixing Markov shifts, the topological
entropy is the maximal of measure theoretic en-
tropy. This is also true for a general class of maps
[Misiurewicz, 1976].

3. Shift Map and Entropy

Let A be an n × n transition matrix, and let P be
a set of vectors satisfying the following

P =

{

x = (x1, x2, . . . , xn)T :

xi > 0 for all i and

n
∑

i=1

xi = 1

}

. (14)

Given x ∈ P, we set

si :=
(Ax)i

xi

,

where (Ax)i is the ith-component of vector Ax.
Since diag(s−1

1 , . . . , s−1
n )Ax = x, there exists a left

eigenvector y satisfying the following.

yT diag(s−1
1 , . . . , s−1

n )A = yT (15a)

and

yT x = 1 . (15b)

We note that if, in addition, A is symmetric, then

yT =
xTA

xTAx
.
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Now, if we set

Px = (diag Ax)−1Adiag x , (16a)

where diag Ax = diag((Ax)1, . . . , (Ax)n) and
diag x is also defined similarly, and

qT
x =yT diag x

(

=
xTA(diag x)

xTAx
if A is symmetric

)

.

(16b)

Clearly, Px is a stochastic matrix associated with
A and qx is the left eigenvector of Px satisfying
(12). We are now ready to state the main result of
this section.

Theorem 3.1. Let A be an n × n transition ma-
trix which is irreducible. Let x ∈ P, and Px and
qx

T are defined as in (16a) and (16b), respectively.
Let µPx,qx

= µx be the Markov measure given as in
(13). Then
(1)

hµx
= yT log diag(s1, s2, . . . , sn)x . (17a)

If, in addition, A is symmetric, then

hµx
=

xTA log diag(s1, s2, . . . , sn)x

xTAx
. (17b)

(2)

hµx
≤ log λ for any x ∈ P . (18)

Here λ is the maximal eigenvalue of A. The
equality can be achieved by choosing x to be the
left eigenvector of A associated to eigenvalue λ

with
∑n

i=1 xi = 1.

Proof. We first prove (17). Let P = (pij), and so

(pij) = (
xj

(Ax)i
aij). Set P̃ = (pij log pij), and e =

(1, . . . , 1)T , it follows from (16a), (16b) and Theo-
rem 2.6(i) that

hµP,q
(σA) = −qT P̃e

= −yT (diag x)P̃e . (19)

Now,

P̃e =

(

xj

(Ax)i

aij log

(

xj

(Ax)i

aij

))

n×n

e

= (diag Ax)−1

(

aij log

(

xj

(Ax)i

aij

))

n×n

diag(x1, . . . , xn)e

= (diag Ax)−1

(

aij log

(

xj

(Ax)i

aij

))

n×n

x . (20)

Moreover, we have that

−
(

aij

(

log
xj

(Ax)i

aij

))

n×n

= −(aij log aij)n×n + (aij log(Ax)i)n×n

−(aij log xj)n×n . (21)

Since either aij = 0 or aij = 1, we see that
aij log aij = 0. We also note that

(aij log(Ax)i)n×n = log(diag Ax)A

and

(aij log xj)n×n = A log diag x .

Substituting (21) into (20), we get that

−P̃e = (diag Ax)−1 log(diag Ax)Ax

− (diag Ax)−1A(log diag x)x . (22)

Here logA = (log aij). To further simplify (19), we
note that

yT diag x(diag Ax)−1A = yT (23)

and

yT diag x(diag Ax)−1 log(diag Ax)Ax

= yT log(diag Ax)(diag x)(diag Ax)−1Ax

= yT log(diag Ax)(diag x)e

= yT log(diag Ax)x . (24)

It then follows from (22)–(24) and (19) becomes

hµP,q
(σA) = yT log(diag Ax)x − yT (log diag x)x

= yT log(diag(s1, . . . , sn))x .

The inequality in (18) is a direct consequence of
Theorem 2.6(ii). A direct calculation would yield
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the last assertion of the theorem. We thus complete
the proof of the theorem. �

4. Two-Dimensional Golden Mean

In this section, we study the two-dimensional golden
mean, that is, the two-dimensional subshifts of finite

type with H = V =

(

1 1
1 0

)

. Recall in Sec. 2 that

T
(m)
H,V, (resp. T

(m)
H,V) represents the m-transition ma-

trices with respect to H and V (resp. V and H).

Since H = V, we see that T
(m)
V,H = T

(m)
H,V(:= T(m)).

Applying Theorem 2.3, T(m) can be written recur-
sively as follows:

T(1) =

(

1 1

1 0

)

=





T
(0)
1,1 T

(0)
1,2

T
(0)
2,1 T

(0)
2,2





and

T(m+1) =









T
(m)
1,1 T

(m)
1,2

T
(m)
2,1 0

T
(m)
1,1

T
(m)
2,1

T
(m)
1,1 T

(m)
1,2 0









. (25)

Let an be the size of T(n), then an satisfies the fol-
lowing recursive formula.

an+1 = an + an−1 (26a)

and

a1 = 2, a2 = 3 . (26b)

Proposition 4.1. For each n ≥ 1, T(n) is sym-
metric and irreducible.

Proof. It is easy to see that T(n) is symmetric for
all n ≥ 1. We next prove that each T(n) is even-
tually positive. Since T(1) and T(2) are eventually
positive, we assume that T(n−1) and T(n) are even-
tually positive for some n. Then there exists m > 0
such that

(T(n))m > En and (T(n−1))m > En−1 .

Here En = (1)an×an . We observe in (25) that

T
(n+1)
11 = T(n), thus the matrix multiplication gives

(T(n+1))m+1 >











En En

(

T
(n)
11

T
(n)
21

)

(

T
(n)
11 T

(n)
12

)

En En−1











> 0 .

An inductive argument then leads to the assertion
of the proposition. �

Letting en = (1, . . . , 1)T ∈ R
an , then hµen

as
defined in (17b) becomes

hµen
= λn =

eT
nT(n) log(diag eT

nT(n))en

eT
nT(n)en

. (27a)

Moreover, if we let eT
nT(n) =: v(n) = (v

(n)
i ) ∈ R

an

and sn =
∑an

i,j=1(T
(n))ij be the sum taken over all

entries of T(n). Then

λn =

an
∑

i=1

v
(n)
i log v

(n)
i

sn

. (27b)

We remark that sn satisfy the following recursive
formulas:

sn+1 = 2sn + sn−1 (28a)

and

s1 = 3, s2 = 7 . (28b)

Applying Theorem 3.1 and (27), and Proposi-
tion 2.1 we obtain the following lower bound for
h(ΣH,V) of two-dimensional golden mean.

Theorem 4.1

h(ΣH,V) ≥ lim sup
n→∞

an
∑

i=1

v
(n)
i log v

(n)
i

nsn

. (29)

The remainder of the section is to compute the sum
of the infinite series as given in (29).

We first observe that

v(1) = (2, 1)

v(2) = (3, 2, 2)

v(3) = (5, 3, 4, 3, 2)

v(4) = (8, 5, 6, 6, 4, 5, 3, 4)

v(5) = (13, 8, 10, 9, 6, 10, 6, 8, 8, 5, 6, 6, 4).
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To derive a recursive formula for v(n), we first write
v(n) as

v(n) = (u(n+1),u(n)) .

Here u(n+1) and u(n) are row vectors whose dimen-
sions are 1×an−1 and 1×an−2, respectively. For in-
stance, v(4) = (u(5),u(4)), where u(5) = (8, 5, 6, 6, 4)
and u(4) = (5, 3, 4). Clearly, u(n+1) can be recur-
sively defined as

u(n+1) = (u(n) + v(n−2), 2u(n−1))

= (u(n) + (u(n−1),u(n−2)), 2u(n−1)) (30)

with

u(1) = 1 , u(2) = 2 , u(3) = (3, 2) .

For example,

u(6) = (u(5) + (u(4),u(3)), 2u(4))

= ((8, 5, 6, 6, 4) + (5, 3, 4, 3, 2), 2(5, 3, 4))

= (13, 8, 10, 9, 6, 10, 6, 8) .

We are ready to state the following useful proposi-
tion.

Proposition 4.2.

u(n) =(an−1, an−2u
(1), . . . , an−i−1u

(i), . . . , a1u
(n−2)) .

(31)

Proof. Let n = 3, we see that 31 is clearly satis-
fied. Suppose 31 is true for k = 3, . . . , n. Then

u(n) + (u(n−1),u(n−2)) = (an−1, an−2u
(1), . . . , an−i−1u

(i), . . . , a2u
(n−3), a1u

(n−2))

+ (an−2, an−3u
(1), . . . , an−i−2u

(i), . . . , a1u
(n−3),u(n−2))

= (an, an−1u
(1), . . . , an−iu

(i), . . . , a3u
(n−3), (1 + a1)u

(n−2))

= (an, an−1u
(1), . . . , an−iu

(i), . . . , a3u
(n−3), a2u

(n−2)) .

Thus,

u(n+1) = (u(n) + (u(n−1),u(n−2)), 2u(n−1))

= (an−1, an−2u
(1), . . . , an−i−1u

(i), . . . , a2u
(n−2), a1u

(n−1)) . �

To investigate
∑

i v
(n)
i log v

(n)
i , we define L :

R
N → R, as

L(x) =

N
∑

i=1

xi log xi ,

where x = (x1, . . . , xN )T . Clearly, for any c ∈ R, we
have that

L(cx) =

(

N
∑

i=1

xi

)

c log c + cL(x) . (32)

Let u(n) = (u
(n)
1 , u

(n)
2 , . . . , u

(n)
an−1

). We set

αn =

an−1
∑

i=1

u
(n)
i , (33a)

βn = an log an , (33b)

Ln = L(u(n)) , (33c)

pn =
n−2
∑

i=1

an−i−1Li , (33d)

qn = βn−1 +

n−2
∑

i=1

βn−i−1αi . (33e)

Applying (32) and (33a), we have that

L(u(n)) = an−1 log an−1 +

n−2
∑

i=1

L(an−i−1u
(i))

= pn + qn . (34)

Proposition 4.3. αn, pn and qn satisfy the follow-
ing recursive formulas

(i) αn+1 = 2αn + αn−1 , α1 = 1 , α2 = 2 , (35a)

(ii) pn+1 = pn + 3pn−1 + pn−2 + 2qn−1

+ qn−2 , (35b)

(iii) qn+1 = 2qn + qn−1

+(βn − βn−1 − βn−2) . (35c)
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Proof. Clearly, α1 = 1, α2 = 2, α3 = 5. Hence
α3 = 2α2 + α1. Assume that αk+1 = 2αk + αk−1

holds for 2 ≤ k ≤ n − 1. Then

αn+1 =

an
∑

i=1

u
(n)
i = αn + 3αn−1 + αn−2 . (36)

We have used (30) to justify the last equality in
(36). Using the inductive hypothesis, we get that
αn+1 = 2αn +αn−1. The proof of the first assertion
of the proposition is thus complete. To prove (ii),
we see that

pn+1 − pn

= (an−1L1 + . . . + a3Ln−3 + a2Ln−2 + a1Ln−1)

−(an−2L1 + . . . + a2Ln−3 + a1Ln−2)

= an−3L1 + . . . + a1Ln−3 + Ln−2 + 2Ln−1

= pn−1 + Ln−2 + 2Ln−1

= pn−1 + pn−2 + qn−2 + 2(pn−1 + qn−1)

= 3pn−1 + pn−2 + 2qn−1 + qn−2 .

This proves (ii). To prove (iii), we note that

2qn + qn−1 = 2βn−1 + 2α1βn−2 + 2α2βn−3 + . . .

+ 2αn−2β1 + βn−2 + α1βn−3 + . . .

+ αn−3β1

= 2βn−1 + 3βn−2 + α3βn−3 + . . .

+ αn−1β1 ,

and

qn+1 = βn + βn−1 + 2βn−2 + α3βn−3 + . . .

+ αn−1β1 .

Hence,

qn+1 − 2qn − qn−1 = (βn − βn−1 − βn−2)

as asserted. �

Proposition 4.4. Let λn be the quantity as given
in (27b), then

λn =
L(v(n))

sn

=
(pn+1 + pn) + (qn+1 + qn)

sn

.

Proof. It follows directly from Theorem (17b) and
(34). �

To evaluate lim supn→∞
(pn+1+pn)+(qn+1+qn)

nsn
,

we need the following proposition:

Proposition 4.5. Let λ = 1+
√

2. Then the follow-
ing holds.

(i) λ, − 1
λ

and −1 are the characteristic roots of γn.
Here γn+1 = γn+3γn−1+γn−2 with γ2 = γ1 = 1
and γ2 = 0.

(ii) There are constants cs, ds, cα, dα, cγ , dγ , eγ

for which

sn = csλ
n + ds

(

− 1

λ

)n

,

αn = cαλn + dα

(

− 1

λ

)n

,

and

γn = cγλn + dγ

(

− 1

λ

)n

+ eγ(−1)n .

Here sn and αn are defined in (28) and (33),
respectively.

Proposition 4.6. The following limit exists.

lim
n→∞

qn

λn
= cα

(

q4

λ3
+

q3

λ4
+

∞
∑

i=4

ki

λi

)

=: q∗

where ki = βi − βi−1 − βi−2, and cα is defined as in
Proposition 4.5 (ii).

Proof. Let A =

(

2 1
1 0

)

. Using (35c), we get that

(

qn+1

qn

)

= A

(

qn

qn−1

)

+

(

kn

0

)

with initial conditions

(

q4

q3

)

. Note that

An =

(

αn+1 αn

αn αn−1

)

,

where we assume α0 = 0. Using the variation of
constant formula, we then obtain that

(

qn

qn−1

)

= An−4

(

q4

q3

)

+

n−1
∑

i=4

An−1−i

(

ki

0

)

.

Hence,

qn = (αn−3q4 + αn−4q3) +
n−1
∑

i=4

αn−iki .

Applying the ratio tests, we conclude that

∞
∑

i=4

ki

λi
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converges. The proof of the proposition is thus
complete. �

Remark 4.1. We note that ki > 0 for all i ≥ 4.

Hence the partial sum q∗n := cα

(

q4

λ3 + q3

λ4 +
∑n

i=4
ki

λi

)

converges upward to q∗.

Corollary 4.1

(i) Given ε > 0, there exists N ∈ N such that

(q∗ − ε)λn < qn < (q∗ + ε)λn (37)

whenever n ≥ N .
(ii) limn→∞

qn

nsn
= 0 and, hence,

lim
n→∞

L(v(n))

nsn

= lim
n→∞

pn+1 + pn

nsn

.

Proposition 4.7.

lim
n→∞

pn

nλn
= q∗cγ(2λ−1 + λ−2) ,

where cλ is defined as in Proposition (4.5) (ii).

Proof. Let gn = 2qn−1 +qn−2 and B =

(

1 3 1
1 0 0
0 1 0

)

.

We see via the induction that Bn =

(

γn+1 · ·

γn · ·

γn−1 · ·

)

.

Then




pn+1

pn

pn−1



 = B





pn

pn−1

pn−2



+





gn

0

0



 .

Now we let ε > 0 be fixed and N = N(ε) > 0 be
given as in Corollary , then for n > N ,




pn

pn−1

pn−2



=Bn−N





pN

pN−1

pN−2



+

n−1
∑

i=N







γn+1 · ·
γn · ·

γn−1 · ·






gi ,

(38)

where we set γ−1 = 0. Using (38), we obtain that

pn = O(λn) + cγ

n−1
∑

i=N

λn−igi .

It follows from (37) and (38) that, we have

cγ

n−1
∑

i=N

λn−i(q∗ − ε)(2λ−1 + λ−2)λi + O(λn)

≤ pn ≤ cγ

n−1
∑

i=N

λn−i(q∗ + ε)(2λ−1 + λ−2)λi

+O(λn) .

Hence,

(q∗ − ε)cγ(2λ−1 + λ−2)

≤ lim
n→∞

pn

nλn
≤ (q∗ + ε)cγ(2λ−1 + λ−2)

Since ε is arbitrary, the assertion of the proposition
holds. �

We are ready to state the main result of this
paper.

Theorem 4.1. Let H = V =

(

1 1
1 0

)

, then

h(ΣH,V) ≥ q∗cγ(2λ−1 + λ−2)
1

cs

(λ + 1)

≥ q∗ncγ(2λ−1 + λ−2)
1

cs

(λ + 1) =: hn.

The second inequality holds for all n ≥ 4.

We remark that the known lower and upper

bounds of h(ΣH,V), where H = V =

(

1 1
1 0

)

, are

log 1+
√

5
2 (≈ 0.481212) and 1

2 log 2(≈ 0.346574), re-
spectively. Our estimate in (39) gives

h(ΣH,V) ≥ h5000 ≈ 0.404089 .
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