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Abstract

Partial wave theory of a two-dimensional scattering problem for an arbitrary short range potential and a nonlocal Ah
Bohm magnetic flux is established. The scattering process of a “hard disk” like potential and the magnetic flux is ex
Since the nonlocal influence of magnetic flux on the charged particles is universal, the nonlocal effect in hard disk
expected to appear in quite general potential system and will be useful in understanding some phenomena in m
physics.
 2003 Elsevier B.V. All rights reserved.

PACS: 34.10.+x; 34.90.+q; 03.65.Vf

In this Letter we study the scattering amplitude and the cross section of a charged particle moving in
range potential with scattering center located at the origin, and the Aharonov–Bohm (AB) magnetic flux
z-axis [1]. The nonintegrable phase factor (NPF) [2–4] is used to couple the magnetic flux with the particle
momentum such that the partial wave method can be conveniently developed [5–9]. As a realization of the
a charged particle scattered by a “hard disk” like potential plus the magnetic flux is discussed in detail.
interesting nonlocal effects of the magnetic flux in the hard disk model are concluded as follows: (1) in th
wave length limit (equivalently, short range potential) the total cross section is drastically suppressed at q
magnetic fluxΦ = (2n+ 1)Φ0/2, wheren = 0,1,2, . . . , andΦ0 is the fundamental magnetic flux quantumhc/e.
The global influence of the magnetic flux on the cross section is manifested withΦ0 periodicity. On the other hand
the cross section approaches the flux-free case in the short wave length limit, i.e., the quantum interferenc
of the nonlocal effect gradually disappears, and the cross section approaches the classical limit. (2) If
disk is used to simulate the boson (fermion) moving in two-dimensional space, the scattering process of
particles carrying the magnetic flux shows that the total cross section is suppressed at quantized mag
Φ = (2n+ 1)Φ0 for bosons (Φ = 2nΦ0 for fermions) and exhibits the global structure with 2Φ0 periodicity. Since
the nonlocal influence of the magnetic flux on the charged particle are universal, the influences should be g
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similar systems, and may be useful in understanding some transport phenomena in mesoscopic physics an
for the quantum Hall effect [6,10].

We consider a two-dimensional model. The fixed-energy Green’s functionG0(x,x′;E) for a charged particle
with massµ propagating fromx′ to x satisfies the Schrödinger equation

(1)

{
E −

[
− h̄2∇2

2µ
+ V (x)

]}
G0(x,x′;E) = δ(x − x′),

whereV (x) is the scalar potential andx is the two-dimensional coordinate vector. In the cylindrically symme
system, the Green’s function can be decomposed as

(2)G0(x,x′;E) =
∞∑

m=−∞
G0

m(ρ,ρ′;E)
eim(ϕ−ϕ′)

2π

with (ρ,ϕ) being the polar coordinates in two-dimensional space andG0
m(ρ,ρ′;E) the radial Green’s function

The left-hand side of Eq. (1) can then be cast into

(3)
∞∑

m=−∞

{
E +

[
h̄2

2µ

(
d2

dρ2 + 1

ρ

d

dρ
− m2

ρ2

)]
− V (ρ)

}
G0

m(ρ,ρ′;E)
eim(ϕ−ϕ′)

2π
.

For a charged particle affected by a magnetic field, the Green’s functionG(x,x′;E) is different fromG0(x,x′;E)

by a global NPF [2,7,8]

(4)G(x,x′;E) = G0(x,x′;E)exp

{
ie

h̄c

x∫
x′

A(x̃) · d x̃
}
.

Here the vector potentialA(x) is used to describe the magnetic field. For an infinitely thin tube of finite mag
flux along thez-direction, the vector potential can be expressed as

(5)A(x) = 2g
−yêx + xêy

x2 + y2 ,

whereêx , êy stand for the unit vector along thex, y axis, respectively. Introducing the azimuthal angleϕ(x) =
tan−1(y/x) around the AB tube, the components of the vector potential can be expressed asAi = 2g∂iϕ(x). The
associated magnetic field lines are confined to an infinitely thin tube along thez-axis,

(6)B3 = 2gε3ij ∂i∂jϕ(x) = 4πgδ(x⊥),

wherex⊥stands for the transverse vectorx⊥ ≡ (x, y). Since the magnetic flux through the tube is defined
the integralΦ = ∫

d2x B3, the coupling constantg is related to the magnetic flux byg = Φ/4π . By using the
expression ofAi = 2g∂iϕ, the angular difference between the initial pointx′ and the final pointx in the exponen
of the NPF is given by

(7)ϕ − ϕ′ =
t∫

t ′
dτ ϕ̇(τ ) =

t∫
t ′

dτ
−yẋ + xẏ

x2 + y2 =
x∫

x′

x̃ × d x̃
x̃2 ,

whereϕ̇ = dϕ/dτ . Given two pathsC1 andC2 connectingx′ andx, the integral differs by an integer multiple o
2π . The winding number is thus given by the contour integral over the closed difference pathC:

(8)n = 1

2π

∮
x̃ × d x̃

x̃2 .
C
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The magnetic interaction is therefore purely nonlocal and topological [5–8,11]. Its action takes the formAmag=
−h̄µ02πn, whereµ0 ≡ −2eg/h̄c = −Φ/Φ0 is a dimensionless number with the customarily minus sign. The
now becomes exp{−iµ0(2πn+ ϕ − ϕ′)}. The Green’s functionGn(ρ,ρ

′;E) for a specific winding numbern can
be obtained by converting the summation overm in Eq. (3) into an integral overz and another summation overn

by the Poisson’s summation formula (e.g., Ref. [13, p. 469])

(9)
∞∑

m=−∞
f (m) =

∞∫
−∞

dz

∞∑
n=−∞

e2πnzif (z).

So the expression (3) when includes the NPF can be written as

(10)
∫

dz

∞∑
n=−∞

{
E +

[
h̄2

2µ

(
d2

dρ2
+ 1

ρ

d

dρ
− z2

ρ2

)]
− V (ρ)

}
Gz(ρ,ρ

′;E)
ei(z−µ0)(ϕ+2nπ−ϕ′)

2π
,

where the superscript 0 inG0
n has been suppressed to denote that the AB effect is included. Obviously, the n

n in the right-hand side is precisely the winding number by which we want to classify the Green’s fun
Employing the special case of the Poisson formula

∑
n exp{ik(ϕ + 2nπ − ϕ′)} = ∑∞

m=−∞ δ(k − m)exp{im(ϕ −
ϕ′)}, the summation over all indicesn forcesz = µ0 modulo an arbitrary integer number. Thus, we obtain

(11)
∞∑

m=−∞

{
E +

[
h̄2

2µ

(
d2

dρ2 + 1

ρ

d

dρ
− |m + µ0|2

ρ2

)]
− V (ρ)

}
G|m+µ0|(ρ,ρ′;E)

eimϕ

2π
.

We see that the influence of the AB effect to the radial Green’s function is to replace the integer quantum
m with a real one|m + µ0| which depends on the magnitude of magnetic flux. Applying the Fourier expans
δ function,

(12)δ(ϕ − ϕ′) =
∞∑

m=−∞

1

2π
eim(ϕ−ϕ′),

to the r.h.s. of Eq. (1) and definingα = |m+ µ0| for convenience, we reduce the radial Green’s function to

(13)

{
E +

[
h̄2

2µ

(
d2

dρ2 + 1

ρ

d

dρ
− α2

ρ2

)]
− V (ρ)

}
Gα(ρ,ρ

′;E) = δ(ρ − ρ′).

As a result, the corresponding radial wave equation reads

(14)

{
E +

[
h̄2

2µ

(
d2

dρ2 + 1

ρ

d

dρ
− α2

ρ2

)]
− V (ρ)

}
Rαk(ρ) = 0,

where the subscript set(α, k) with k ≡ √
2µE/h̄ denotes the state of scattering particle.

For a short range potential, sayV (ρ) vanishes asρ > a, the exterior solution is the linear combination of 1
and 2nd kind Bessel functionsJα(kρ), andNα(kρ), and may be given by

(15)Rαk(ρ) = √
k
[
cosδα(k)Jα(kρ) − sinδα(k)Nα(kρ)

]
,

where k = √
2µE/h̄ and δα(k) is the phase shift which can be used to measure the interaction stren

potential. Thus the general solutionΨk(x) of a scattering particle is given by superposition of the partial wa
Ψαk(x) = Rαk(ρ)e

imϕ , which reads

(16)Ψk(x) =
∞∑

m=−∞

√
k
[
cosδα(k)Jα(kρ) − sinδα(k)Nα(kρ)

]
eimϕ.
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Since it must describe both the incident and the scattered waves at large distance, we naturally expect it t

(17)Ψk(x)
|x|→∞−→ F∞

(
exp{ik · x}exp

{
ie

h̄c

x∫
C

A(x′) · dx′
})

+ f (ϕ)

√
i

ρ
exp{ikρ},

where exp{ik ·x} describes the incident plane wave of a charged particle with momentump = µk andF∞(·) stands
for its asymptotic form. The phase modulation of the NPF comes from the fact that the fieldA(x) of AB magnetic
flux affects the charged particle globally. The subscriptC in the integral is used to represent the nature of the N
which depends on the different paths. To find the amplitudef (ϕ) we first note that the plane wave in Eq. (17) c
be expanded in terms of the partial waves

(18)eik·x =
∞∑

m=−∞
imJm(kρ)eimϕ.

Using the same procedure as in Eqs. (9)–(11), we combine the nonlocal flux effect into the partial wave ex
and obtain the result

(19)eik·xe
ie
h̄c

∫ x
C A(x′)·dx′ =

∞∑
m=−∞

iαJα(kρ)e
imϕ.

Taking the asymptotic approximations of Bessel functions, and comparing both asymptotic forms of Eqs. (
(17), we find the scattering amplitude

(20)f (ϕ) = 1√
2πk

∞∑
m=−∞

ei(δα−π/4)2i sinδαe
imϕ.

It is noteworthy that if the flux is quantized for integerµ0, the result reduces to the flux-free case [12]. In m
cases, the total cross section of our major concern is defined by

(21)σt =
π∫

−π

|f (ϕ)|2dϕ.

Thus, the partial wave representation of total cross section for a charged particle scattered by a short range
plus the nonlocal AB effect is given by

(22)σt = 4

k

∞∑
m=−∞

sin2 δα.

It is obvious that the cross section is completely determined by the scattering phase shifts which are conc
the potential of different types. Furthermore, when a nonlocal AB magnetic flux exists, both the phase s
the cross section are affected globally. A relation between the total cross sectionσt and the scattering amplitude
obtained if we setϕ = 0, and then take the imaginary part. It givesσt = (2

√
2π/

√
k) Imf (0). This is the optical

theorem and is essentially a consequence of the conservation of particles. For the case of identical bosons (
carrying the magnetic flux in two dimensions, the differential cross section is given byσ(ϕ) = |f (ϕ)±f (ϕ+π)|2,
where the plus sign is for bosons as usual. The total cross sections are given by the integral

∫ π

−π σ(ϕ) dϕ, and yield

(23)σt (bosons) = 16

k

∞∑
m=−∞,even

sin2 δα,
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(24)σt (fermions) = 16

k

∞∑
m=−∞,odd

sin2 δα,

where the subscript “odd” (“even”) is used to indicate the summation over odd (even) numbers only. As a rea
of the nonlocal influence of the AB flux on the cross section, let us consider a charged particle scattered b
disk potential and a magnetic flux. The potential is given byV (ρ) = ∞, for ρ � a, andV (ρ) = 0, for ρ � a. Using
the boundary condition of the wave functionRαk(a

+) = 0, we find that the phase shift is given by

(25)tanδα(k) = Jα(ka)

Nα(ka)
,

whereJα(z) (Nα(z)) is the Bessel function of first (second) kind. Substituting this expression into Eq. (22
total cross-section is found to be

(26)σt = 4

k

∞∑
m=−∞

J 2
α (ka)

J 2
α (ka)+ N2

α(ka)
.

Note that the result will reduce to the pure disk case if the flux is quantized forµ0 = nΦ0. In this case the low
energy limitk → 0 (assuming the radiusa is finite) can be found by the asymptotic expansion of Bessel funct
and only indexm = 0 survives. So the phase shift becomes

(27)tanδ0(k) = J0(ka)/N0(ka) ≈ π

2 ln(ka/2)
.

This implies the total cross section at the low energy limit is

(28)σt ≈ 8a

π

1

ka ln(ka)
−→ ∞.

At the high energy limitk → ∞, we may use the formulas of Bessel functions of the large argument to turn Eq
into

σt = 4

k

∞∑
m=−∞

cos2
[
ka −

(
m + 1

2

)
π

2

]

(29)= lim
ka→∞

4

k

{ [ka]∑
m=−[ka],even

cos2
(
ka − π

4

)
+

[ka]∑
m=−[ka],odd

sin2
(
ka − π

4

)}
= 4a.

The value 4a explains that the quantum result does not go over to the actual classical resultσt → 2a even
though the wave length of de Broglie is much less thana. The numerical result forα with noninteger value is
plotted in Fig. 1, where the normalizationσ0 is chosen as 4a. There are two main results: (1) the cross sectionσt

is drastically suppressed at the low energy limit (equivalently, the short range potential), sayka � 1, at quantized
magnetic fluxΦ = (2n + 1)Φ0/2, n = 0,1,2, . . . , with Φ0 periodicity as shown in Figs. 1 and 2. (2) A mo
interesting consideration is given by the scattering of identical particles simulated by the hard disks carr
magnetic flux. In Fig. 3, we plot the total cross sections of identical bosons carrying the magnetic flux via E
The outcome shows that the cross section approaches zero (σt → 0) when the valueka → 0 if the magnetic flux is
at quantized value(2n + 1)Φ0. On the contrary, if the magnetic flux is equal to 2nΦ0, the cross section becom
maximum and the effect of magnetic flux disappears. Since the decay rate of a currentj traveling a distancex is
given byj(x) = j(0)exp(−σtn0x), wheren0 is the number of the scattering center, the total cross sectionσt → 0 at
the low energy limit atΦ = (2n + 1)Φ0 means that the resistanceR → 0 and results in the persistence of curre
This phenomenon is consistent with the picture of composite boson in fractional quantum Hall states locat
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Fig. 1. The total cross section for a charged particle scattered by
a hard disk with radiusa and a magnetic flux along thez-axis.
The normalizationσ0 = 4a has been selected. Due to the existence
of magnetic flux, at the limit of the long wave (equivalently, the
short range potential), sayka � 1, the total cross section is drastic
suppressed at quantized magnetic fluxΦ = (2n + 1)Φ0/2, where
n = 0,1,2, . . . , with Φ0 periodicity, see Fig. 2. The magnetic flux
effect disappears when the flux is quantized atΦ = nΦ0.

Fig. 2. Periodic structures of total cross sections of a charged
particle scattered by a hard disk plus a magnetic flux along the
z-axis. At quantized values of magnetic fluxΦ = (2n + 1)Φ0/2,
n = 0,1,2, . . . , the cross section reduces to the minimum for
ka � 0.5.

Fig. 3. Total cross sections for identical bosons carrying the m
netic flux with variousµ0. The cross section at the long wa
length limit (equivalently, the sufficient short range potentia
say ka � 0.5, approaches zero at the quantized magnetic
Φ = (2n + 1)Φ0. On the contrary, the cross section becomes m
imum and the effect of magnetic flux disappears whenΦ = 2nΦ0.
The periodic structure is 2Φ0 as shown in Fig. 4.

Fig. 4. Periodic structures of cross sections of identical bos
carrying the magnetic flux. The cross section approaches zero
the magnetic flux is quantized atΦ = (2n + 1)Φ0 for ka � 0.5.

filling factor with odd denominator such asν = 1/3. The composite boson is pictured by an electron carrying
quantized magnetic fluxΦ = (2n+ 1)Φ0. It dictates the quantized Hall states which exhibit the perfect condu
in the longitudinal direction, i.e., the resistance originated from the collisions between composite bosons d
[10]. The global structure of the total cross section is given by 2Φ0 periodicity as shown in Fig. 4. In the case
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Fig. 5. Total cross sections of identical fermions carrying the
magnetic flux with variousµ0. The cross section approaches zero
for ka � 0.5 when the flux becomes 2nΦ0. The magnetic flux effect
disappears when the magnitude of flux is at(2n+ 1)Φ0. The global
periodic structures in cross sections is 2Φ0 as shown in Fig. 6.

Fig. 6. Periodic structures of total cross sections for ident
fermions carrying the magnetic flux. The cross section approa
zero when the magnetic flux is quantized atΦ = 2nΦ0 for ka � 0.5.

identical fermions, the total cross sectionσt → 0 is found at the quantized magnetic fluxΦ = 2nΦ0 as shown in
Fig. 5. Such effect is consistent with the model of composite fermion in the quantum Hall state located at th
factor with even denominatorν = 5/2. The composite fermion is described by an electron carrying the quan
magnetic fluxΦ = 2nΦ0. In Ref. [14], a quantitative explanation of quantum Hall state at the filling factorν = 5/2
is given by the existence of a shorter range potential between the composite fermions than the case of t
factor ν = 1/2. Here we can see that, in Fig. 5, a sufficiently short range potential, sayka < 0.5, between the
fermions carrying the quantized magnetic fluxΦ = 2nΦ0 will cause negligible cross section and thus agree w
the composite fermions model. Similar to the boson case, the oscillating period is given by 2Φ0 as shown in Fig. 6

In this Letter, we study the partial wave method of scattering theory for a short range potential and a m
flux. As an illustration, the hard disk potential plus a magnetic flux is calculated in detail. The nonlocal infl
of the magnetic flux is discussed. Since the nonlocal effect of magnetic flux on the charged particle is unive
effect should be general in similar systems. Although we assume that the potential must beV (ρ) = 0 for ρ > a, we
do not specify the radiusa beyond whichV (ρ) = 0. Hence we expect that the method given in this Letter sh
be valid for a very general potential as long as the potential decreases rapidly enough whenr → ∞. On the other
hand, though in our discussion the magnetic flux is placed at the origin, it can be moved to the other points
as it still locates in the potential region. This is due to the fact that the final outcome just relates to the
homotopy classes. We hope the discussions would be helpful in understanding mesoscopic systems an
correlated systems.
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