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Abstract

Partial wave theory of a two-dimensional scattering problem for an arbitrary short range potential and a nonlocal Aharonov—
Bohm magnetic flux is established. The scattering process of a “hard disk” like potential and the magnetic flux is examined.
Since the nonlocal influence of magnetic flux on the charged particles is universal, the nonlocal effect in hard disk case is
expected to appear in quite general potential system and will be useful in understanding some phenomena in mesoscopic
physics.

0 2003 Elsevier B.V. All rights reserved.

PACS 34.10.+x; 34.90.+q; 03.65.Vf

In this Letter we study the scattering amplitude and the cross section of a charged particle moving in a short
range potential with scattering center located at the origin, and the Aharonov—Bohm (AB) magnetic flux along
z-axis [1]. The nonintegrable phase factor (NPF) [2—4] is used to couple the magnetic flux with the particle angular
momentum such that the partial wave method can be conveniently developed [5-9]. As a realization of the method,
a charged particle scattered by a “hard disk” like potential plus the magnetic flux is discussed in detail. Several
interesting nonlocal effects of the magnetic flux in the hard disk model are concluded as follows: (1) in the long
wave length limit (equivalently, short range potential) the total cross section is drastically suppressed at quantized
magnetic flux® = (2n + 1)®o/2, wheren =0, 1, 2, ..., anddg is the fundamental magnetic flux quantéaye.

The global influence of the magnetic flux on the cross section is manifestedwjiRriodicity. On the other hand,

the cross section approaches the flux-free case in the short wave length limit, i.e., the quantum interference feature
of the nonlocal effect gradually disappears, and the cross section approaches the classical limit. (2) If the hard
disk is used to simulate the boson (fermion) moving in two-dimensional space, the scattering process of identical
particles carrying the magnetic flux shows that the total cross section is suppressed at quantized magnetic flux
@ = (2n + 1)Pg for bosons ¢ = 2nPq for fermions) and exhibits the global structure witth@periodicity. Since

the nonlocal influence of the magnetic flux on the charged particle are universal, the influences should be general in
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similar systems, and may be useful in understanding some transport phenomena in mesoscopic physics and accour
for the quantum Hall effect [6,10].

We consider a two-dimensional model. The fixed-energy Green’s functilgr, x'; E) for a charged particle
with massu propagating fronx’ to x satisfies the Schrédinger equation

12v?

{E— [—2—+V(x)]}G0(x,x’; E)=8(X—X), (1)
W

whereV (x) is the scalar potential andis the two-dimensional coordinate vector. In the cylindrically symmetric

system, the Green'’s function can be decomposed as
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with (p, ¢) being the polar coordinates in two-dimensional space@ﬁ)d,o, o’; E) the radial Green’s function.
The left-hand side of Eq. (1) can then be cast into
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For a charged particle affected by a magnetic field, the Green’s funGtienx’; E) is different fromGO(x, x’; E)

by a global NPF [2,7,8]
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Here the vector potenti#l (x) is used to describe the magnetic field. For an infinitely thin tube of finite magnetic
flux along thez-direction, the vector potential can be expressed as

—Yyéx +xéy
x2+ y2
wheree,, ¢, stand for the unit vector along thg y axis, respectively. Introducing the azimuthal angl&) =

tan1(y/x) around the AB tube, the components of the vector potential can be expresséeee@x9; ¢(x). The
associated magnetic field lines are confined to an infinitely thin tube alongdkis,

AX)=2g , (%)

B3 =2g¢€3;;0;0j¢(X) = 4w gd(X 1), (6)

where x| stands for the transverse vector = (x, y). Since the magnetic flux through the tube is defined by
the integral® = fdzx B3, the coupling constary is related to the magnetic flux by = @/4x. By using the
expression ofd; = 2¢d; ¢, the angular difference between the initial poihand the final poink in the exponent

of the NPF is given by

t t X
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whereg = dg/dz. Given two path<; andC, connectings’ andx, the integral differs by an integer multiple of
27. The winding number is thus given by the contour integral over the closed differencé€ path

= fﬂ (®)

n=—
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The magnetic interaction is therefore purely nonlocal and topological [5-8,11]. Its action takes thdfgges
—huo2rn, whereug = —2eg/hic = —® /g is a dimensionless number with the customarily minus sign. The NPF
now becomes eXp-i uo(2rn + ¢ — ¢’)}. The Green’s functios, (o, p’; E) for a specific winding number can

be obtained by converting the summation owein Eq. (3) into an integral over and another summation over

by the Poisson’s summation formula (e.g., Ref. [13, p. 469])

3 fom = / de Y g, ©

m=—0o0 n=—oo
So the expression (3) when includes the NPF can be written as

2 1d 722 ol (=10 9+ 217 —¢)
/dz Z {EJF[ ( +————2)]—V(p)}Gz(p,p’; E) : (10)
n=—00 dlo pdp p 2T

where the superscript 0 iﬁg has been suppressed to denote that the AB effect is included. Obviously, the number
n in the right-hand side is precisely the winding number by which we want to classify the Green’s function.
Employing the special case of the Poisson formulaexplik(¢ + 2nw — @)} = o 8(k —m)explim(p —

¢")}, the summation over all indicesforcesz = o modulo an arbitrary integer number. Thus, we obtain

]
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We see that the influence of the AB effect to the radial Green’s function is to replace the integer quantum number
m with a real ongm + | which depends on the magnitude of magnetic flux. Applying the Fourier expansion of
3 function,

o
n_ 1 ime—¢)
So—oh= ) e : (12)
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to the r.h.s. of EqQ. (1) and defining= |m + uo| for convenience, we reduce the radial Green'’s function to

E+ il d2+1d Ay V(p) {Galp, p's E)=8(p — p) (13)
2u\a2 T oap T 02)] p)(Galp, ps E)=48(p—p)-
As a result, the corresponding radial wave equation reads
(h2 (d?> 1d  a?\]
E+|—|-—s+-——-5S)|-V(IR =0, 14
{ +_2M(dp2+pdp pz)_ ") | Rk () (14)

where the subscript sék, k) with k = /2w E /i denotes the state of scattering particle.
For a short range potential, s&(p) vanishes a® > a, the exterior solution is the linear combination of 1st
and 2nd kind Bessel function (kp), and N, (kp), and may be given by

Rai(p) = vk [COSS4 (k) Jo (k) — SinBa (k) N (kp)]. (15)

wherek = /2uE/h and §,(k) is the phase shift which can be used to measure the interaction strength of
potential. Thus the general solutign (x) of a scattering particle is given by superposition of the partial waves
Wi (X) = Ryr(p)e'™?, which reads

W (X) = Z Vi [c0884 (k) Jo (kp) — SiNSy (k) N (ko) Je™™? . (16)

m=—0oQ



210 D.-H. Lin/ Physics Letters A 320 (2003) 207-214

Since it must describe both the incident and the scattered waves at large distance, we naturally expect it to become

W) 2 (exp{ik~x}exp{% /A(x/) -dx’}) + f(<p)\/ll;exp{ik,o}, (17)
C

where expik - x} describes the incident plane wave of a charged particle with momentamk andF () stands

for its asymptotic form. The phase modulation of the NPF comes from the fact that tha fieldf AB magnetic
flux affects the charged particle globally. The subsafiph the integral is used to represent the nature of the NPF
which depends on the different paths. To find the amplitfide) we first note that the plane wave in Eq. (17) can
be expanded in terms of the partial waves

oo

X =N i Ty (kp)e™. (18)

m=—00
Using the same procedure as in Egs. (9)—(11), we combine the nonlocal flux effect into the partial wave expansion,
and obtain the result

ie X / ! as ]
oKX pfe Jo AX)-dx' _ Z i%Jy (kp)e™? . (29)
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Taking the asymptotic approximations of Bessel functions, and comparing both asymptotic forms of Egs. (16) and
(17), we find the scattering amplitude

oo

1 . .
f@ = 3 T sing e, (20)
Nz

It is noteworthy that if the flux is quantized for integeg, the result reduces to the flux-free case [12]. In most
cases, the total cross section of our major concern is defined by

o = / £ ()P de. (21)

Thus, the partial wave representation of total cross section for a charged particle scattered by a short range potential
plus the nonlocal AB effect is given by

a,zg > sira. (22)

m=—0oQ

It is obvious that the cross section is completely determined by the scattering phase shifts which are concluded by
the potential of different types. Furthermore, when a nonlocal AB magnetic flux exists, both the phase shift and
the cross section are affected globally. A relation between the total cross sgcéind the scattering amplitude is
obtained if we sep = 0, and then take the imaginary part. It gives= (227 /+/k) Im £ (0). This is the optical

theorem and is essentially a consequence of the conservation of particles. For the case of identical bosons (fermions’
carrying the magnetic flux in two dimensions, the differential cross section is givety= | f (¢) £ f (¢ + )3,

where the plus sign is for bosons as usual. The total cross sections are given by thefﬂ[;gg(a;l) dg, andyield

o,(boson$=176 > sinfda, (23)

m=—00,even
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and
: 16 <
o; (fermiong = — Z Sin? 8, (24)
k
m:—O0,0dd

where the subscript “odd” (“even”) is used to indicate the summation over odd (even) numbers only. As a realization
of the nonlocal influence of the AB flux on the cross section, let us consider a charged particle scattered by a hard
disk potential and a magnetic flux. The potential is givertvigy) = oo, for p < a, andV (p) =0, for p < a. Using
the boundary condition of the wave functi®jy, (a*) = 0, we find that the phase shift is given by

Jo(ka)
No(ka)’

where J, (z) (Ng(z)) is the Bessel function of first (second) kind. Substituting this expression into Eq. (22), the
total cross-section is found to be

tans, (k) = (25)

4 i J2(ka)

k J2(ka) + NZ(ka)’ (26)

Oy =
m=—00
Note that the result will reduce to the pure disk case if the flux is quantizeddges ndg. In this case the low

energy limitk — 0 (assuming the radiusis finite) can be found by the asymptotic expansion of Bessel functions,
and only indexn = 0 survives. So the phase shift becomes

v/
tando(k) = Jo(ka)/No(ka) ~ ———. 27
o(k) = Jo(ka)/No(ka) 2inka/2) (27)
This implies the total cross section at the low energy limit is
8a 1
o~ (28)

N )
7w kaln(ka)

At the high energy limik — oo, we may use the formulas of Bessel functions of the large argumentto turn Eq. (26)
into

4 & 2 1\ 7
O'tZ% Z CcO |:ka—(m+§>§i|
m=—0o0
. 4 [ka] T [ka] . b
:kl'inooi{ Z cosz(ka—z>+ Z Slnz(ka—z)}z%z. (29)
m=—/[ka],even m=—/[ka],odd
The value 4 explains that the quantum result does not go over to the actual classicalaestlRa even
though the wave length of de Broglie is much less thaifhe numerical result fo with noninteger value is
plotted in Fig. 1, where the normalizatieg is chosen asd There are two main results: (1) the cross section
is drastically suppressed at the low energy limit (equivalently, the short range potential}, say, at quantized
magnetic flux® = (2n + 1)®o/2,n =0, 1, 2, ..., with &g periodicity as shown in Figs. 1 and 2. (2) A more
interesting consideration is given by the scattering of identical particles simulated by the hard disks carrying the
magnetic flux. In Fig. 3, we plot the total cross sections of identical bosons carrying the magnetic flux via Eq. (23).
The outcome shows that the cross section approacheszere @) when the valuéa — 0 if the magnetic flux is
at quantized valué2n + 1)@g. On the contrary, if the magnetic flux is equal ted?, the cross section becomes
maximum and the effect of magnetic flux disappears. Since the decay rate of a ¢uraeeting a distance is
given byj (x) =j (0) exp(—aoynoX), whereng is the number of the scattering center, the total cross segtien 0 at
the low energy limit atb = (2n + 1)@ means that the resistan®— 0 and results in the persistence of current.
This phenomenon is consistent with the picture of composite boson in fractional quantum Hall states located at the
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Fig. 1. The total cross section for a charged particle scattered by Fig. 3. Total cross sections for identical bosons carrying the mag-
a hard disk with radius: and a magnetic flux along theaxis. netic flux with variousug. The cross section at the long wave
The normalizatiorsg = 4a has been selected. Due to the existence length limit (equivalently, the sufficient short range potential),
of magnetic flux, at the limit of the long wave (equivalently, the say ka < 0.5, approaches zero at the quantized magnetic flux
short range potential), say: < 1, the total cross section is drastic @ = (21 + 1)®q. On the contrary, the cross section becomes max-
suppressed at quantized magnetic fibix= (2n + 1)@g/2, where imum and the effect of magnetic flux disappears whiee: 2n®.
n=0,1,2,..., with &g periodicity, see Fig. 2. The magnetic flux  The periodic structure is@y as shown in Fig. 4.

effect disappears when the flux is quantizedat ndg.
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Fig. 2. Periodic structures of total cross sections of a charged Fig. 4. Periodic structures of cross sections of identical bosons
particle scattered by a hard disk plus a magnetic flux along the carrying the magnetic flux. The cross section approaches zero when

z-axis. At quantized values of magnetic fldx = (2n + 1)®¢/2, the magnetic flux is quantized &= (2n + 1)@ for ka < 0.5.
n=20,12,..., the cross section reduces to the minimum for
ka <0.5.

filling factor with odd denominator such as= 1/3. The composite boson is pictured by an electron carrying the
quantized magnetic flu® = (2n + 1) Po. It dictates the quantized Hall states which exhibit the perfect conduction

in the longitudinal direction, i.e., the resistance originated from the collisions between composite bosons disappear

[10]. The global structure of the total cross section is given &y Beriodicity as shown in Fig. 4. In the case of
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Fig. 5. Total cross sections of identical fermions carrying the Fig. 6. Periodic structures of total cross sections for identical
magnetic flux with variougig. The cross section approaches zero fermions carrying the magnetic flux. The cross section approaches
for ka < 0.5 when the flux becomes:@(. The magnetic flux effect zero when the magnetic flux is quantizedfat 2n g for ka < 0.5.
disappears when the magnitude of flux i$2t + 1)@g. The global

periodic structures in cross sections #xas shown in Fig. 6.

identical fermions, the total cross section— 0 is found at the quantized magnetic fléx= 2n®g as shown in

Fig. 5. Such effect is consistent with the model of composite fermion in the quantum Hall state located at the filling
factor with even denominator=5/2. The composite fermion is described by an electron carrying the quantized
magnetic flux® = 2n®g. In Ref. [14], a quantitative explanation of quantum Hall state at the filling facte6/2

is given by the existence of a shorter range potential between the composite fermions than the case of the filling
factorv = 1/2. Here we can see that, in Fig. 5, a sufficiently short range potentiaksay0.5, between the
fermions carrying the quantized magnetic fléx= 2n®q will cause negligible cross section and thus agree with

the composite fermions model. Similar to the boson case, the oscillating period is givénp lag 28hown in Fig. 6.

In this Letter, we study the partial wave method of scattering theory for a short range potential and a magnetic
flux. As an illustration, the hard disk potential plus a magnetic flux is calculated in detail. The nonlocal influence
of the magnetic flux is discussed. Since the nonlocal effect of magnetic flux on the charged particle is universal, the
effect should be general in similar systems. Although we assume that the potential mdgtbke0 for p > a, we
do not specify the radius beyond whichV (p) = 0. Hence we expect that the method given in this Letter should
be valid for a very general potential as long as the potential decreases rapidly enough-when On the other
hand, though in our discussion the magnetic flux is placed at the origin, it can be moved to the other points as long
as it still locates in the potential region. This is due to the fact that the final outcome just relates to the flux via
homotopy classes. We hope the discussions would be helpful in understanding mesoscopic systems and strongly

correlated systems.
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