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Abstract. In this paper, we propose the incremental group testing model for the gap closing problem, which
assumes that we can tell the difference between the outcome of testing a subset S, and the outcome of testing
S ∪ {x}. We also give improvements over currently best results in literature for some other models.

Keywords: contig sequencing, gap closing, group testing, multiplex PCR, detecting matrix, separating matrix,
affine plane method

1. Introduction

A long molecule, hereafter referred to as the target sequence, is typically broken (several
times) into fragments through shotgunning or restriction enzyme cutting for storage. Short
fragments with readable lengths can be merged by using the overlapping at the end of
one fragment and the head of another. Longer unreadable fragments can be sequenced
by reference to a physical mapping of the target sequence, if one exists. However, due to
insufficient design of coverage, contaminated vectors, errors and various other reasons, the
above sequencing effort may not result in a whole piece of the long molecule, but many long
pieces called contigs, with gaps in between. To sequence the target sequence, it becomes
necessary to know the ordering of the contigs, and the problem is called the gap closing
problem. The sequencing of the target sequence relies on some biological technology.

One such technology is the multiplex PCR, first reported by Burgart et al. (1992). From
each contig, two short subsequences at its two ends are collected as primers. A multiplex
PCR can test up to k primers and a PCR product will be produced if the primers in the test
contain a pair of adjacent primers at the two ends of a gap (the two primers of the same
contig are not an adjacent pair). In fact, the length of the PCR product reflects the length
of the gap between the pair of adjacent primers. Therefore if there are several gaps with
different lengths, then the test outcome will show different PCR products. Note that the
multiplex PCR yields two possible mathematical models:

1. Quantitative model: The test outcome reveals the number of distinct PCR products
(translated to number of pairs of adjacent primers).
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2. Classical model: The test outcome reveals whether there is a PCR product in the
test.

Although the quantitative model is much more powerful and requires fewer tests, it is also
more liable to error as Grebinski and Kucherov (1998) warned: “However, this information
(exact number of pairs of adjacent primers) has a limited value, as in practice only a restricted
small number of products can be distinguished and, in addition, distinct products of similar
length can be visible as a single one.”

In this paper we propose the incremental model which lies between the classical and the
quantitative model. The incremental model assumes that we can tell the difference between
the outcome of testing a subset S, and the outcome of testing S ∪ {x}, where x is a primer,
provided x contributes to a PCR product. It seems that the incremental model suits the
multiplex PCR experiment naturally. On one hand, it recognizes the information provided
by different PCR products. On the other hand, it allows error in counting the products,
as long as the error occurs in both outcomes of testing S and testing S ∪ {x}. We give a
nonadaptive algorithm under the incremental model (while none under the classical model
is known). We also improve some currently best algorithms under both the quantitative and
the classical model.

2. A nonadaptive algorithm under the incremental model

Traditionally, a group testing algorithm (see Du and Hwang (2000) for a general reference)
is used to efficiently identify all positive objects among a set N of positive and negative
objects. A group test is applicable to any subset S of N with two possible outcomes.
A positive outcome indicates that S contains a positive object and a negative outcome
indicates otherwise.

A nonadaptive group testing algorithm can be represented as a (binary) incidence matrix
M where the columns are the objects and the rows are the tests, i.e., row i is the test
consisting of all objects where corresponding bits in row i are 1’s. Suppose M has t rows.
Then the outcome of tests in M is a t-vector which is simply the boolean sum of all positive
columns. Note that the t tests can be performed parallelly.

In the gap closing problem, the objects are the primers. However, there is a twist to the
traditional group testing in the sense that we are not looking for positive primers, but pairs
of adjacent primers. Treat the primers as nodes and adjacent primers as edges, then the
problem is to identify the unknown edges instead of unknown nodes. This problem has also
been studied in the group testing literature (see Chapter 12 of Du and Hwang (2000)) as
“group testing on graphs.” A test on a subset S of nodes reveals whether S contains an edge.
It is known (p. 238 of Du and Hwang (2000)) that if the hidden graph contains a single
edge, then a traditional group test and a graph group test are equivalent.

A 1-separable matrix is a binary matrix where all columns are distinct. Clearly, if only
one object is positive, then a 1-separable matrix can identify it since the outcome vector
will be identical to the column. Let Bn denote a t × n matrix, 2t−1 < n ≤ 2t , where column
i is the t-vector representing the binary number i . Then Bn is 1-separable (Du and Hwang,
2000). Hereinafter, we assume that there are n primers in the gap closing problem.
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Set M = Bn−1. We use M to identify the unique neighbor of a given primer where the
columns of M represent the other n − 1 primers. Do the following steps:

1. Let M j (M ( j)) be obtained from M by adding a column of 1’s(0’s) and identifying the
column with node j .

2. By comparing the outcomes of test i , i = 1, . . . , t , in M j and M ( j), we find out whether
test i in M contains the neighbor of node j .

3. Since M is 1-separable, the outcomes of the t tests in M suffice to identify the neighbor
of node j .

We can do the tests in M j and M ( j) for each j = 1, . . . , n. But we can do better by
recognizing duplicated tests in the sets {M j } and {M ( j)}.

Consider the n spaces separated by the n − 1 columns of M . Let M j be constructed by
adding a column of 1’s at space j . A space is called a 1(0)-space if it neighbors a 1(0). Note
that a space can be both a 1-space and a 0-space. If a test contains a run of k 1’s, then adding
1 at any one of the k + 1 spaces separated by the k consecutive 1’s induces the same test.
Suppose test i of M has x 1’s and r runs of 1’s. Then it has x + r 1-spaces, which induce
r distinct tests. Thus the total number of distinct tests in {M j } corresponding to test i is
n − (x + r ) + r = n − x . On the other hand, using a similar argument, the total number of
distinct tests in {M ( j)} corresponding to test i is n − (n − 1 − x) = x + 1 where n − 1 − x
is the number of 0’s in test i . Summing up, a test in M induces n + 1 distinct tests. So {M j }
and {M ( j)} together induces (n + 1)t = (n + 1)�log(n − 1)� distinct tests.

3. Best results for the quantitative model

In this section, we will present the currently best results for the quantitative model from the
literature, and then give our improvement to prepare for a comparison with the incremental
model in the conclusion section.

The best sequential algorithm under the quantitative model was given by Grebinski and
Kucherov (1998). They first gave a 13n-test algorithm and then (Grebinski and Kucherov,
2000) improved it to 7n.

Call the two primers from the same contig a couple. Then Grebinski and Kucherov’s
algorithm treated the couples, instead of the primers, as nodes. Thus there are n/2 nodes to
start with, and each node has two neighbors. They gave a n-test algorithm which partitions
the n/2 nodes into three parts X , Y , Z such that nodes in the same part are not adjacent.
Therefore all edges lie in the three bipartite graphs GXY , GXZ and GYZ . Then they gave an
algorithm to identify the edges in each bipartite graph, knowing that each node is of degree
at most 2.

We will mimic their method except using the n primers as nodes. Note that each primer
has only one neighbor, while each couple has two. This difference brings three crucial
advantages: (i) Only one bipartite graph is needed. (ii) More efficient subroutine exists to
identify a single neighbor than two. (iii) Once an edge is identified, its two primers can be
removed without affecting the other edges.
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The partition of the n nodes into parts is to make sure that no edge exists between nodes
in the same part. Since each couple has two neighbors, three parts are needed to meet the
requirement. But a primer has only one neighbor, and hence two parts suffice. It takes n
tests as before to partition the n nodes into two parts X and Y each with n/2 nodes.

A binary matrix M is called separating if Ms �= Ms ′ for all vectors s �= s ′ with nonneg-
ative integral components; it is d-separating if s and s ′ are binary with at most d 1-entries.
M is called d-detecting if each component takes value in the set {0, 1, . . . , d −1}. Note that
1-separable and 1-seperating are the same; hence Bn is a 1-separating matrix. Lindstrom
(1969) constructed t ×n d-detecting matrices with t = 2n/ logd n. Grebinski and Kucherov
(2000) gave a probabilistic argument of the existence of a d-separating matrix with 4d logd n
tests.

Construct a 2-detecting matrix Mn/2 on nodes of X and a 1-separating matrix Bn/2 on
nodes of Y . Let Mn/2(i) denote the i th row of Mn/2 and Bn/2( j) the j th row of Bn/2. Define
Mn/2 ⊗ Bn/2 to be the binary matrix where each row is a concatenation of Mn/2(i) with
Bn/2( j) (denoted by Mn/2(i) ⊕ Bn/2( j)), 1 ≤ i ≤ 2(n/2)/ log(n/2), 1 ≤ j ≤ log(n/2).
Then Mn/2 ⊗ Bn/2 has n rows.

The outcome vector of the set of rows {Mn/2(i) ⊕ Bn/2( j): 1 ≤ i ≤ 2(n/2)/ log(n/2)}
gives the degree (0 or 1) of every vertex of Mn/2 with respect to the set Bn/2( j) since Mn/2 is
a 2-detecting matrix. On the other hand, knowing the degree of a vertex v of Mn/2 in Bn/2( j)
for every 1 ≤ j ≤ log(n/2) identifies the neighbor of v in Bn/2 since Bn/2 is 1-separating.

The n tests in Mn/2 ⊗ Bn/2 plus the n tests in partition gives a total of 2n tests. Further,
the partition takes n rounds and Mn/2 ⊗ Bn/2 takes one round, resulting in a (n + 1)-round
algorithm.

The best nonadaptive algorithm under the quantitative model was given by Grebinski and
Kucherov (2000) requiring 48(n/2) tests (using couples as vertices). This result is actually
a special case of the general result of identifying a graph with n/2 nodes and maximum
degree d in 24d(n/2) tests. The algorithm is similar to the sequential version except the
partition stage is skipped. M ′

n/2 ⊗ M ′′
n/2 is constructed, with

2(n/2)�log(d + 1)�
log n/2

· 4d log(n/2)

log d
≈ 8d(n/2) tests,

where M ′
n/2 is a (d +1)-detecting matrix, M ′′

n/2 is a d-separating matrix, and M ′
n/2, M ′′

n/2 are
defined on the same n/2 nodes. But the tests in M ′

n/2 ⊗ M ′′
n/2 are not legitimate since there

are edges within the two parts. A scheme is devised to translate these tests into legitimate
ones in three times of tests, resulting in 24d(n/2) tests. For d = 2, 24n tests are required.

However, for d = 2, Lindstrom (1969) gave a 2 log(n/2)-test construction of M ′′
n/2 (the

base 2 is omitted in log2). Therefore, the number of tests becomes

4(n/2)

log(n/2)
· 2 log(n/2) = 8(n/2),

which, when multiplied by 3, yields 24(n/2) tests, cutting the 48(n/2) into half. This
observation was somehow missed in Grebinski and Kucherov (2000).
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Again, by using primers instead of couples as nodes, M ′
n/2 ⊗ M ′′

n/2 can be replaced by
Mn ⊗ Bn with

2n

log n
· log n = 2n tests,

which, multiplied by 3, yields 6n tests.

4. Best results for the classical model

For the classical model, Grebinski and Kucherov (1998) proved that O(n log n) tests are
necessary for any algorithm. Beigel et al. (2001) tightened this asymptotic lower bound to
0.5 n log n and gave a sequential algorithm achieving the bound. They also gave a 7-round
algorithm with 0.75n log n expected number of tests. We now give an algorithm which
achieves the lower bound, and our simulation results show that its average number of
rounds is bounded by − log0.22(n/2)(log n + 2) + 1 for n ≤ 10000. In fact, we prove that
more than 97.5% of edges in average are identified in 3 log n + 7 rounds.

We use the affine plane method first proposed in Grebinski and Kucherov (1998) and
Tettelin et al. (1996), but in a different way. An affine plane of order p (see Hell (1996)
for general reference) is a balanced incomplete block design with p2 elements, p(p + 1)
blocks of size p such that each pair of elements appear together in exactly one block. To
describe our method, we also need the following two results. Damaschke (1994) gave an
algorithm which identifies a unique edge in a graph with n vertices in �log ( n

2 )� + 1 tests.
Johann (2002) observed that the algorithm works even if the graph has more than one edge
to be detected.

We now state our algorithm:

Step 1. Find the smallest prime p such that p2 ≥ n. Randomly permute the n vertices. Add
p2 −n dummy vertices labeled by n +1, n +2, . . . , p2 to obtain an affine plane. Remove
the dummy vertices and test every block of the affine plane. Call a block positive if its
test outcome is positive.

Step 2. Use Damaschke’s algorithm to find one edge in each positive block. Remove the
edge and test the remaining block. If positive, go to Step 2.

Step 3. Stop.

Note that in Step 1, we add dummy vertices and then remove them, thus the sizes of
blocks vary. For example, for vertices 1, 2, . . . , 6, we add 7∗, 8∗, and 9∗, then apply the
affine plane method of order p = 3 to obtain p2 + p = 12 blocks: {1, 2, 3} {4, 5, 6}
{7∗, 8∗, 9∗} {1, 5, 9∗} {1, 8∗, 6} {1, 4, 7∗} {4, 8∗, 3} {4, 2, 9∗} {2, 5, 8∗} {7∗, 2, 6} {7∗, 5, 3}
{3, 6, 9∗}. After removing the dummy vertices, we have {1, 5} {1, 8} {1, 4} {4, 3} {4, 2}
{2, 5} {2, 6} {5, 3} {3, 6} {1, 2, 3} {4, 5, 6}, where there are 9 of them of size 2, and 2 of
them of size 3 ({7∗, 8∗, 9∗} no longer exists).

For general n and the smallst prime p such that p2 ≥ n, let z ≡ n(modp), we will have

(1) (p − z)p blocks of size 
n/p�,
(2) zp blocks of size �n/p�,
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(3) 
n/p� blocks of size p, and
(4) one block of size z (if z is nonzero)

at Step 1. For convenience, we assume that p divides n in the analysis, which means we
deal with p2 blocks of size n/p and n/p blocks of size p in our analysis. Note that we
always assume n even in the gap closing problem.

It can be shown (see Appendix A) that for all n there exists a prime p such that �log n� ≤
�log p2� ≤ �log n� + 1. Thus in Step 2, Damaschke’s algorithm on Bi takes at most
�log ( p

2 )� + 1 ≤ �log n� + 1 rounds to identify an edge.
First we count the number of tests. The first round consumes p(p + 1) tests, where

p2 ≤ 2n for n ≥ 62 (see Appendix A) and 2n1/2 ≥ p ≥ n1/2 (by Chebyshev’s theorem,
see p. 19 of Tenebaum (2000)). Afterwards, each edge requires at most log n + 1 tests to
be identified and an additional test to check for any other edge in the remaining block. So
it takes a total of p(p + 1) + 0.5n(log n + 2) ≤ 2n + 2n1/2 + 0.5n log n + n ≈ 0.5n log n
tests for n large.

We now show that in average more than 97.5% of edges are identified in the first 3
loopings of Step 2. The probability that a random block of k vertices contains exactly i
edges is

P(i, n, k) =
(n/2

i

)(n/2−i
k−2i

)
2k−2i(n

k

)
since the number of ways of getting i edges is that the k vertices contain the i pairs of
adjacent vertices (which can be chosen in ( n/2

i ) ways), and one vertex in k − 2i of the
remaining n/2 − i pairs. Note that

P(i, n, k)

P(i − 1, n, k)
= 1

i
· (k − 2i + 1)(k − 2i + 2)

4(n/2 − k + i)
.

For the p2 blocks of size n/p, by Appendix B,

P(i, n, n/p)

P(i − 1, n, n/p)
≤ 1

2i
for i ≥ 2.

Let Pi denote P(i, n, n/p) and define αi = 2i Pi/Pi−1, then 0 ≤ αi ≤ 1 for i ≥ 2 because
Pi/Pi−1 ≤ 1/2i . Further,

expected number of edges internal to the p2 subsets of size n/p identified in the first 3 loopings

expected number of edges internal to the p2 subsets of size n/p

= 1P1 + 2P2 + 3P3 + 3P4 + 3P5 + · · ·
1P1 + 2P2 + 3P3 + 4P4 + 5P5 + · · ·

≥ 1P1 + 2P2 + 3P3 + 3P4 + 3P5

1P1 + 2P2 + 3P3 + 4P4 + 5P5 + · · ·

= 1P1 + 2P1 · 1
4α2 + 3P1 · 1

24α2α3 + 3P1 · 1
192α2α3α4 + 3P1 · 1

1920α2α3α4α5

1P1 + 2P1 · 1
4α2 + 3P1 · 1

24α2α3 + 4P1 · 1
192α2α3α4 + 5P1 · 1

1920α2α3α4α5 + · · ·
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≥ 1 + 2 · 1
4 + 3 · 1

24 + 3 · 1
192 + 3 · 1

1920

1 + 2 · 1
4 + 3 · 1

24 + 4 · 1
192 + 5 · 1

1920 + 6 · 1
23040 + · · ·

≥ 1 + 1
2 + 1

8 + 1
64 + 1

640

1 + 1
2 + 1

8 + 1
48 + 1

384 + 1
3840 + 1

3840 · 1
121 + 1

3840 · 1
122 + · · ·

≥ 6306

6331.091
≈ 0.996037

For the n/p blocks of size p, by Appendix B,

P(i, n, p)

P(i − 1, n, p)
≤ 1

i
for

{
i = 2, n �= 50, 52

i ≥ 3
.

By a similar method, we conclude that averagely more than 97.6% of edges internal to the
n/p blocks of size p are identified in the first 3 loopings (and more than 97.5% for n = 50
and 52). Thus we conclude that averagely more than 97.5% of edges are identified in the
first 3 loopings of Step 2. Actually, in our simulation results (for n ≤ 10000), more than
99.7% of edges are identified in the first 3 loopings (see figure 1), which means at most
3 log n + 7 rounds.

Another question we may consider is the maximum number of loopings of Step 2. We
give a rough estimation as an upper bound from two observations: (1) By a similar method
as above, we can prove that averagely more than 78% of undetected edges are detected
in each looping for the edges internal to the p2 blocks of size n/p (see Appendix 5). (2)
The expected number of edges internal to the n/p blocks of size p is no more than p/2
(Beigel et al., 2001), where (p/2)/(n/2) = p/n → 0 as n → ∞ . Thus we just omit the
edges internal to the n/p blocks of size p and take logarithm with base 1/(1 − 78%), that
is, − log0.22(n/2) to count the number of loopings in the p2 blocks. Our simulation results
show that this estimation works well as an upper bound for n ≤ 10000 (see figure 2).

Figure 1. Simulation results for the percentage of edges identified in the first 3 loopings of Step 2, every point
of data is computed from 10000 simulations.
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Figure 2. Simulation results for the average number of loopings of Step 2, every point of data is computed from
30000 simulations.

5. Conclusions

Three criteria have been used in the literature (Beigel et al., 2001; Grebinski and Kucherov,
1998; Lindstrom, 1969) to evaluate an algorithm:

1. Number of tests. This represents the total cost.
2. Number of rounds. All tests in a round can be tested simultaneously. So the number of

rounds represents the total time required.
3. Number of pipetting operation. This is relevant as long as hand pipetting, a significant

source of errors, is used (we will not be concerned with this criterion in this paper since
robotic pipetting is expected to prevail).

We propose the incremental model which seems to be quite practical for the gap closing
problem. We give a n log n-test nonadaptive algorithm which matches the best sequential
algorithm under the classical model (no nonadaptive algorithm is known within a factor of
2). We also reduce the number of tests by 3.5 times for the best sequential algorithm and 4
times for the best nonadaptive algorithm for the quantitative model.

The n log n tests of the incremental model compares favorably with the currently best
24n-test nonadaptive algorithm under the quantitative model. For example

n log n ≤ 24n for n ≤ 224 ≈ 16000000.

However, it does not compare well with the 6n-test nonadaptive algorithm proposed here
unless n ≤ 26.
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Actually, the number of contigs is expected to be small if the cutting stage is designed
to cover the target sequence well. For instance the example of “bacillus subtilis” quoted in
Grebinski and Kucherov (1998) has 64 primers, and the example used throughout in Tettelin
et al. (1996) has 48 primers. So our incremental model can be competitive sometimes with
respect to the number of tests. But the more important thing is that its result is more reliable
since it assumes much less than the quantitative model.

Another contribution of this paper is giving an algorithm under the classical model
whose test number achieves the lower bound. While this bound is also achieved in Beigel
et al.(2001), our method achieves in much fewer expected number of rounds. Moreover,
our simulation results and the estimation suggest that the affine plane method is a good tool
to divide a large gap closing problem to many smaller ones. A smaller problem has fewer
edges, thus less likely to have PCR products with similar lengths. Consequently, it is less
risky to use the more powerful quantitative or incremental model.

Appendix A

By Nagura (1952), it is known that, for two consecutive prime number p and q (p2 ≥
n > q2), p ≤ 1.2q < 1.2n1/2 if q ≥ 29 (the 10th prime number). Thus we know that for
n ≥ 292 = 841, there always exists a prime number p such that n ≤ p2 ≤ 1.44n < 2n.
With some exhaustive search for n ≤ 840, the following claim is true:

Claim. For n even, let p be the smallest prime such that p2 ≥ n. Then p2 ≤ 2n for n ≥ 62.
Moreover, �log p2� ≤ �log n� + 1 for all n positive.

Appendix B

To prove

P(i, n, n/p)

P(i − 1, n, n/p)
≤ 1

2i
for i ≥ 2,

it is sufficient to prove

(k − 2i + 1)(k − 2i + 2)

2(n/2 − k + i)
≤ 1 for k = n/p.

The inequality is equal to (k2 − n) + (−4i + 5)k + (4i2 − 8i + 2) ≤ 0, where k2 − n =
(n/p2)n − n ≤ 0. For i = 2, (k2 − n) + (−4i + 5)k + (4i2 − 8i + 2) ≤ −3k + 2 ≤ 0. For
i ≥ 3, (k2 − n) + (−4i + 5)k + (4i2 − 8i + 2) ≤ (−2ik + 4i2) + (5 − 2i)k + (−8i + 2) ≤ 0
since k ≥ 2i (the meaning of i is the number of edges in a block of size k). Thus we conclude
that

P(i, n, n/p)

P(i − 1, n, n/p)
≤ 1

2i
for i ≥ 2.
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By a similar method and the fact that p2 ≤ 2n for n even but not in {2, 10, 12, 50, 52,
54, 56, 58, 60} (by the exhaustive search in Appendix A), it is easy to prove that

P(i, n, p)

P(i − 1, n, p)
≤ 1

i
for i ≥ 2 (where k = p).

For n in {2, 10, 12, 50, 52, 54, 56, 58, 60}, just solve the inequality (k2 −2n)+ (−4i +7)k +
(4i2 −10i +2) ≤ 0 for integer i . For example, for n = 50, k = 11, by solving the inequality
(121−100)+ (−4i +7)11+ (4i2 −10i +2) ≤ 0, we have 2.25 ≤ i ≤ 11.25 ⇒ i = 3, 4, 5
(since k ≥ 2i , we don’t include 6, 7, . . . , 11). Thus we conclude that

P(i, n, p)

P(i − 1, n, p)
≤ 1

i
for

{
i = 2, n �= 50, 52

i ≥ 3

Appendix C

In the x-th looping of Step 2, the average percentage of edges identified from remaining
edges after (x − 1)st looping is

Expected number of edges identified in x th looping of Step 2

Expected number of unidentified edges after (x − 1)st looping of Step 2

= Px + Px+1 + Px+2 + Px+3 + Px+4 + · · ·
1Px + 2Px+1 + 3Px+2 + 4Px+3 + 5Px+4 + · · ·

≥
1

2x−1x! + 1
2x (x+1)! + 1

2x+1(x+2)! + · · ·
1

2x−1x! + 2
2x (x+1)! + 3

2x+1(x+2)! + · · ·
Let

Q(k, x) =
1

2x−1x! + 1
2x (x+1)! + · · · + 1

2x+k−1(x+k)!
1

2x−1x! + 2
2x (x+1)! + · · · + k+1

2x+k−1(x+k)!

,

if we treat Q(k, x) as taking average from

1

2x−1x!
of

1

1
,

2

2x (x + 1)!
of

1

2
, . . . ,

and
k + 1

2x+k−1(x + k)!
of

1

k + 1

it is easy to observe that

Q(k, x + 1) =
1

2(x+1) × 1
2x−1x! + 1

2(x+2) × 1
2x (x+1)! + · · · + 1

2(x+k+1) × 1
2x+k−1(x+k)!

1
2(x+1) × 1

2x−1x! + 1
2(x+2) × 2

2x (x+1)! + · · · + 1
2(x+k+1) × k+1

2x+k−1(x+k)!

≥ Q(k, x)

since the larger ratios get more weights.
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With the fact that Q(k, 1) ≥ 0.78 for k = 1, 2, . . . , we conclude that averagely more
than 78% of unidentified edges are identified in each looping of Step 2 for edges internal
to the p2 blocks of size n/p.
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