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Spin-current generation and detection in the presence of an ac gate
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We predict that in a narrow gap III-V semiconductor quantum well or quantum wire, an observable electron
spin current can be generated with a time-dependent gate to modify the Rashba spin-orbit coupling constant.
Methods to rectify the so generated ac current are discussed. An all-electric method of spin-current detection is
suggested, which measures the voltage on the gate in the vicinity of a two-dimensional electron gas carrying a
time-dependent spin current. Both the generation and detection do not involve any optical or magnetic media-
tor.
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One key issue in spintronics based on semiconducto
the efficient control of the spin degrees of freedom. Da
and Das1 suggested the use of gate voltage to control
strength of Rashba spin-orbit interaction~SOI!2 which is
strong in narrow gap semiconductor heterostructures.
InAs-based quantum wells a variation of 50% of the S
coupling constant was observed experimentally.3,4 Conse-
quently, much interest has been attracted to the realizatio
spin-polarized transistors and other devices based on u
electric gate to control the spin-dependent transport.5

In addition to using a static gate to control the S
strength and so control the stationary spin transport, n
physical phenomena can be observed in time-dependent
transport under the influence of a fast varying gate volta
Along this line, in this article we will consider a mechanis
of ac spin current generation using time-dependent gate.
mechanism employs a simple fact that the time variation
Rashba SOI creates a force which acts on opposite spin
trons in opposite directions. Inversely, when a gate
coupled to a nearby electron gas, the spin current in
electron gas also induces a variation of the gate voltage,
hence affects the electric current in the gate circuit. We w
use a simple model to clarify the principle of such a n
detection mechanism without any optical or magnetic med
tor. The systems to be studied will be 1D electron gas i
semiconductor quantum wire~QWR! and 2D electron gas in
a semiconductor quantum well~QW!.

We consider a model in which the Rashba SOI is
scribed by the time-dependent HamiltonianHSO(t)5\a(t)
3(kW3 n̂)•sW, wherekW is the wave vector of an electron,\sW is
the spin operator, andn̂ is the unit vector. For a QWRn̂ is
perpendicular to the wire axis, and for a QW perpendicu
to the interfaces. The time dependence of the coupling
rametera(t) is caused by a time-dependent gate.6 To explain
clearly the physical mechanisms leading to the spin-cur
generation, we will first consider the 1D electron gas in
QWR, and assumea(t) to be a constanta for t,0, and
a(t)50 for t.0. For the 1D system we choose thex direc-
tion as the QWR axis andy axis parallel ton̂, to write the
SOI coupling in the formHSO(t)5\a(t)kxsz . For t,0 the
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spin degeneracy of conduction electrons is lifted by S
producing a splittingD5\akx between sz51/2 and sz
521/2 bands, as shown in Fig. 1 by solid curves toget
with the Fermi energyEF . The spin current in this state i
zero, as it should be under thermal equilibrium.

Indeed, the spin current is defined asI s(t)5I ↑(t)
2I ↓(t), whereI ↑(t) @or I ↓(t)] is the partial current associ
ated with the spin projectionssz51/2 ~or sz521/2). Hence,

I s~ t !5
\

2L (
E(kx),EF

@v↑~kx!2v↓~kx!#, ~1!

whereL is the length of the QWR. Taking the momentu
derivative of the Hamiltonian, we obtain the velocity as

v↑,↓~kx!5\kx /m* 6a~ t !/2. ~2!

The spin current is then readily obtained as

I s~ t !5~\n/4m* !~\k↑2\k↓!1\a~ t !n/4, ~3!

where n is the 1D electron density, andk↑ ~or k↓) is the
average momentum in the↑-spin ~or ↓-spin! band.

For a parabolic band\k↑52m* a/2 and \k↓5m* a/2.
Although\k↑2\k↓ gives a finite contribution toI s(t) in Eq.
~3!, for t,0 wherea(t)5a, this contribution is compen-
sated by the contribution\an/4 due to the SOI. Hence, th
total spin currentI s(t)50 for t,0. However, when the SO
is switched off att50, a(t)50 and so the spin current i
finite, because the average electron momenta retain the s
as they were att,0. As time goes on, the electron momen
relax with a relaxation time t. Therefore, I s(t)
52(\an/4)exp(2t/t) for t.0.

It is instructive to make a Fourier transform ofI s(t) to
obtain a Drude-like expression

I s~V!5F t\n

2m* ~ iVt21!
G Fm*

2
iVa~V!G . ~4!

Since the units of our spin current is\/2, the above expres
sion is a complete analogy to the electric conductivity.
stead of an electric driving forceeE, here we have an
©2003 The American Physical Society07-1
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equivalent driving force (m* /2)@da(t)/dt#, the Fourier
component of which is (m* /2)iVa(V). Under this driving
force we have the classic equation of motion

m*
dv↑,↓

dt
56

m*

2

da~ t !

dt
. ~5!

This force acts in opposite directions on electrons with
posite spin projections. When such a force creates a
current, it does not induce an electric current.

The above conclusion of spin-current generation can
demonstrated with a rigorous linear response analysis, w
will be performed on a 2D electron gas~2DEG!. The simple
Drude expression~4! will then appear as a general result. L
the 2DEG be in thexy plane with the unit vectorn̂ along the
z axis, which is the spin-quantization axis. We will use t
equation of motion for the spin-density operator to gene
ize the 1D expressions~1!, ~2! for the spin current. For a
homogeneous system the spin-current density operators
be expressed in terms of the electron creation operatorckW ,g

†

and destruction operatorckW ,g , whereg labels the spin pro-
jection onto thez axis. This current is then derived as

J j
i 5Jj

i 1Jj ,SOI

i , ~6!

where the superscripti 5x,y,z specifies the direction of spin
polarization, and the subscriptj 5x,y refers to the direction
of the spin-current flow. The partial current

Jj
i 5(

kW
(
gb

\2kj

m*
ckW ,g

†
sgb

i ckW ,b ~7!

is the ordinary kinematic term and

Jj ,SOI

i 5« i jz\an/4 ~8!

is the contribution of SOI.7 Here« i jz denotes the Levy-Civita
symbol. The SOI induced current resembles the diamagn
current of electrons under the action of an external elec
magnetic vector potential.

We note that the SOI Hamiltonian can be convenien
written in terms of the kinematic current as

HSO~ t !5@m* a~ t !/\#~Jy
x2Jx

y!. ~9!

FIG. 1. The dashed curve is the electron energy band with
SOI. The SOI splits the energy band into the↑-spin and the↓-spin
bands, as shown by the solid curves, with corresponding ave
wave vectorsk↑ andk↓ .
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When an ac bias with frequencyV is applied to the front or
the back gate of a 2DEG,3,4 the Rashba coupling constan
contains two termsa(t)5a01da(t), wherea0 is constant
in time andda(t)5daeiVt. We assume that the only effec
of the ac bias is to add a time-dependent component to
SOI coupling constant, although in practice it is not simple
avoid the bias effect on the electron density.4 The SOI
Hamiltonian is separated correspondingly into two pa
HSO(t)5HSO

0 1HSO8 (t). The time-independent partHSO
0 does

not produce a net spin current in the thermodynamica
equilibrium state. However, as pointed out in the abo
analysis on the 1DEG system, the time-dependentHSO(t)
can give rise to a spin current.

We will incorporate HSO
0 into our unperturbed Hamil-

tonian and treatHSO8 (t) within the linear response regime
The so-generated ac spin current^J j

i (t)& has the form

^J j
i ~ t !&5

i

\E2`

t

dt8^@HSO8 ~ t8!,Jj
i ~ t !#&1« i jz\da~ t !n/4.

~10!

In the above equation the first term can be written in
form da(t)R j

i (V). For zero temperature and withV.0,
the response functionR j

i (V) can be represented as the Fo
rier transform of the correlator

R j
i ~ t !52 i

\2

m*
(

kW8a8b8
kj8sa8b8

i

3(
kWab

hW kW•sWab^T$ckW8a8
†

~ t !ckWb%&^T$ckW8b8~ t !ckWa
†

%&,

~11!

where hW kW5kW3 n̂. In the above equation, the bar over th
product of two one-particle Green functions means an
semble average over impurity positions.

We will use the standard perturbation theory9 to calculate
this ensemble average, which is valid when the elastic s
tering timet due to impurities is sufficiently long such tha
EFt@\. We will assume that the electron Fermi energyEF
is much larger than both\V and\a0hkW . To the first-order
approximation, we neglect the weak localization correctio
to the correlator~11!, since these corrections simply reno
malize the spin-diffusion constant.8 Consequently, the con
figuration average of the pair product of Green functions
expressed in the so-called ladder series.9 We found that since
hW kW52hW 2kW many of such ladder diagrams vanish after ang
lar integration in Eq.~11!, similar to suppression of ladder
in the electric current driven by the vector potential.9 At the
same time, some of nondiagonal on spin indice diagrams
not turn to 0 after the angular integration. Employing t
analysis of similar diagrams done in it can be shown t
they cancel each other.8 Hence, the configuration average
Eq. ~11! decouples into a product of average Green functio
and Eq.~11! becomes

ut
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R j
i ~V!52 i

\2

m*
(
l ,n

« lnz(
kW

kjkn

3E dv

2p
Tr@slG~kW ,v!siG~kW ,v1V!#, ~12!

whereG(kW ,v) is the average Green’s function which co
tains fully the effect ofHSO

0 . This function is represented b
the 232 matrix

G~kW ,v!5@v2EkW /\2a0hW kW•sW1 iG sgn~v!#21, ~13!

whereG51/2t, andEkW is defined with respect toEF . Sub-
stituting Eq.~13! into Eq. ~12!, and then into Eq.~10!, we
obtain the spin current

^J j
i ~V!&5« i jz

\

4
dan

V

V12iG
. ~14!

It is important to point out that the spin density under t
gate area is zero. This is the reason why even in a 2DEG
D’yakonov-Perel spin relaxation10 does not appear in Eq
~14! for the generated spin current, although this spin curr
is determined by the response function~12! which involves
spin degrees of freedom. Hence, in the homogeneous sy
with zero spin density, only electron momentum relaxat
occurs in the process of spin-current generation by a ti
dependent gate.

Unlike the spin current~4! in a 1D system, in a 2DEG the
current given by Eq.~14! has no specific direction. To clarify
the spatial distribution of the spin flux induced by an ac ga
let us take the chiral componentJchir(t) of the spin current

Jchir~ t !5@^J y
x~ t !&2^J x

y~ t !&#/2. ~15!

It is easily seen that this chiral projection has the same fo
as the expression~4! for a 1D system, ifn represents the
electron density of the 2DEG. In Fig. 2 we illustrate t
spin-current distribution for a circular gate which is mark
as the gray area. The spin polarization at any point under
gate has two components parallel to the 2DEG. For any
rection specified by the unit vectorNW , the two spin-polarized
fluxes with polarization directions parallel and antiparallel
NW will oscillate out of phase by the amount ofp along the
direction perpendicular toNW . Such out of phase oscillation i
schematically plotted in Fig. 2. The amplitude of the sp
density flow in each of the opposite directions, as marked
the dashed-line arrows, is justJchir(t). In the 2DEG outside
the gate area, the spin current can be supported only by
diffusion. Therefore the chiral ac spin polarization is acc
mulated in the vicinity of the circumference of the gate, a
from where diffuses away from the gate area. It can a
diffuse under the gate. For small gates such back diffus
can diminish the efficiency of the spin generation. On
other hand, for large gates with the size larger than the s
diffusion length the diffusion counterflow does not redu
much the total spin current.

The so-generated current amplitude can be easily e
mated. With da533106 cm/s,4 for V52p3109 s21, n
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51012 cm22, and t51 ps, from ~14! we derive (2e/\)
3^J j

i (V)&.1023 Amp/cm. This ac spin current can be d
tected by various methods. For example, if holes can tun
into the neighborhood of the gate edge, their recombina
with spin-polarized electrons will produce the emission
circular-polarized light.11

However, here we will discuss a method of direct elect
detection of the dc or the ac spin current. This method
based on a simple fact that the Rashba SOI couples the
current to the gate voltage. We have shown in our ab
analysis that due to this coupling, spin current can be
duced by a time-dependent gate voltage. In this case
voltage variation plays the role of a source which driv
electrons out of thermodynamic equilibrium, and the sp
current is the linear response to this perturbation. The rev
process is to create a spin current in a 2DEG by some sou
and so inducing a voltage shift in a nearby gate. This is a
possible to realize. We thus consider a model where the
constanta(U) is a function of the gate voltageU(t)5U0
1V(t). U0 is the static equilibrium value in the absence o
spin current, whileV(t) is a dynamic variable. The mea
value^V& of V(t) has to be calculated as a linear response
the perturbation associated with the presence of the s
polarization flow. The explicit form of this perturbation ca
be obtained by averaging the Hamiltonian of the system o
an electronic state with the given time-dependent spin c
rent.

Let ^•••&J be such type of average. To the lowest ord
with respect to SOI, the coupling of the gate voltage to
spin current is thus determined by the average of the Ras
interaction in Eq.~9! with a5a(U). The coupling between
the gate voltageU(t) and the spin currentJ j

i is via the
kinetic currentJj

i . To derive the coupling HamiltonianH int ,
we use Eq.~6! to expressJj

i in terms of J j
i , and expand

FIG. 2. Distribution of spin currents induced by a tim
dependent circular gate which is marked as the gray region. Un
the gate, electrons with opposite spins~solid arrows! move in op-
posite directions indicated by the dashed-line arrows. Arrows o
side the gate area show the accumulated spin polarization duri
half period of ac gate voltage oscillation.
7-3
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a(U)5a(U0)1a8V(t) for small V(t). The coupling
Hamiltonian is then derived from Eq.~9! as

H int5
m* a8

\
V@^J y

x&J2^J j
y&J#. ~16!

The charging of the gateQ5CV is related to the gate ca
pacitance. Hence, Eq.~16! can be expressed in the conv
nient formH int5QE, where

E5
m* a8

\C
@^J y

x&J2^J j
y&J# ~17!

is the effective electromotive force.
To illustrate our proposed method of direct electric det

tion, let us consider a circuit connected to the gate. The p
cipal scheme of the spin current detection is shown in Fig
In it, an additional back gate can be utilized to tune t
electron density~not shown!. The circuit is characterized b
a frequency-dependent impedanceZ(V). The voltage in-
duced on the gate by the electromotive force~17! is then
easily obtained as

FIG. 3. Schematic illustration of spin current detection. ac s
current flows from the right to the left under the gate with sp
polarized as shown by arrows.V denotes the voltmeter andZ is the
outer circuit impedance.
s,

in
om
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^V&5E iVCZ~V!

11 iVCZ~V!
. ~18!

When the spin-current frequency is in resonance with
circuit eigenmode, the gate voltage becomes very large
the limit of high impedance~open circuit!, ^V&5E. Using
the spin current (2e/\)^J j

i (V)&.1023 Amp/cm derived
above, and the fact that^J j

i &J5A^J j
i (V)&, whereA is the

area under the gate, let us estimate the electromotive f
induced in a probe gate by this spin current generated b
nearby source gate. For the reasonable parameter valuea8
533107 cm/Vs,4 m* 50.03me , and C5ke0A/ l with k
510 andl 51025 cm, from Eqs.~14! and ~18! we obtainE
.1025 V.

The generated ac spin current can be rectified with v
ous methods. For example, one can use a shutter gate w
is p/2 phase shifted with respect to the generation gate.
shutter gate can be placed in the neighborhood of the g
eration gate or between two such gates. The evaluation o
rectifying efficiency of such a setup requires a thorou
analysis of spin relaxation and diffusion processes cause
the spin accumulation during the shutter cycle.

We would like to add one relevant piece of informatio
which we became aware of after we completed this pa
The preprint of Governaleet al. on the quantum-spin pump
ing in a 1D wire is also based on the idea of creating s
current via a time-dependent gate.12 However, our results
involving dissipative transport in 2DEG and 1DEG cann
be compared directly to those in Ref. 12.
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