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The interrelation between disorder and interactions in two-dimensional electron liquid is studied beyond
weak-coupling perturbation theory. Strong repulsion significantly reduces the electronic density of states on the
Fermi level. This makes the electron liquid more rigid and strongly suppresses elastic scattering off impurities.
As a result the weak localization, although ultimately present at zero temperature and infinite sample size, is
unobservable at experimentally accessible temperature at high enough densities. Therefore practically there
exists a well-defined metallic state. We study diffusion of electrons in this state and find that the diffusion pole
is significantly modified due to “mixture” with static photons similar to the Anderson-Higgs mechanism in
superconductivity. As a result several effects stemming from the long-range nature of diffusion such as the
Aronov-Altshuler logarithmic corrections to conductivity are less pronounced.
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[. INTRODUCTION dered electron gas are identified: diffusddescribing diffu-
sive nature of the electron motion due to impuritiesd
The question of mutual influence of long-range CoulombCooperons in the particle-particle channel. It is the last
interactions and disorder in two-dimensional electron gasvhich lead to weak localization due to logarithmic infrared
(2DEQG) attracted a great attention after an unexpected distlR) divergences in leading fluctuation contribution to
covery of metallic state and clear metal-insulator transitionconductivity'® (diffusons can also lead to IR divergences at
by Kravchenko and co-workels. The very existence of a yet higher orders)
metallic state with finite conductivity at zero temperature is
in conflict with the weak-localization theofywhich predicts
that in 2D even negligible amount of disorder localizes elec-
trons at sufficiently low temperature. The theory however
was firmly established at weak coupling or for short-rangewherer is a free system relaxation time.
interactions only, while the metallic state exists and the tran- More sophisticated renormalization-group based methods
sition was found for rather strong coupling=E../Er  using “path integral®? and “o models™****with Coulomb
~10, whereE,, is the average interaction energy per elec-interactions>*®were developed. Considering high-order ver-
tron andEg is the Fermi energy. Therefore Coulomb inter- tex renormalization, it was found that there are additional
actions dominate the kinetic energy and cannot be considerddgarithmic IR (Aronov-Altshulet’) divergencies:
“small.” In addition to an obvious difficulty to treat quanti-
tatively or even qualitatively the strong coupling, it is not
clear which one, disorder or Coulomb interactions, should be
considered as a most important cause of the transition to an
insulating state(the corresponding insulating state in thesewhereF* is the Fermi-surface average of the screened Cou-
cases is of “Anderson” or “Mott” typ&). Most probably it lomb interaction, leading to a conclusion that long interac-
results from a nontrivial combination of these interactions. tions increase tendency to weak localizatfBiThis leads to
The standard approach starts with a commonly acceptea difficulty in understanding recent experiments in which
argument that a long-range Coulomb interaction afte@pparently interactions do not necessarily lead to rapid in-
“bubble resummation” of the random-phase-approximationcrease of resistivity. Recent detailed experimental stétifés
(RPA) type’ becomes effectively short range. Therefore oneclearly show that near the putative metal-insulator transition
can start the treatment of disorder after this resummation wasgarithmic terms either are suppressed or cancel each other
performed. Disorder is treated within a similar approach in(several arguments were put forward in Ref. 19 against such
which “rainbow” diagram$ “ladders and crossed ladders a fortuitous cancellation The conductivity dependence on
resummation” (or, more systematically, the “steepest de- temperature follows the Gold-Dolgopofdvinear decrease,
scent” approximatiorfsin the path-integral languagjewith ~ which at higher temperatures crosses over to the ballistic
interaction being already short ranged. In this way two kindgregime studied in detail recently in Ref. 22. Generally within
of massless modes determining the properties of the disothis approach the Coulomb interaction is screened first and
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the disorder effects are treated later. However recenmass grows with coupling as was observed recently in
electron-spin-resonance experinfémdemonstrated that the Shubnikov—de Haas experimeffsWe comment more on
screening length rapidly diverges when density is reducethat in Sec. Il B.
towards the transition point. The density of statP©9 at After the variational quadratic Hamiltonigor variational
the Fermi level vanishes. It was noticed long time#dbat  quadratic action in the path-integral formalisis found, we
the diffusive motion of electrons slows down the process ointroduce in Sec. lllA a systematic perturbation theory
screening. Therefore in the limit of small density and whenaround it. In the path-integral languddét is a conventional
disorder seems to play an important and possibly cruciasteepest descent expansion with the variational action as a
role, it is reasonable to start from an approximation in whichsaddle point. First we introduce fields describing various
the interaction is not rendered short range. possible kinds of fluctuations: diffusons, Cooperons, static
With these experimental facts in mind, we reconsider thgphotons (corresponding to the direct Coulomb interaction
guestion of the interrelation of disorder and Coulomb inter-channe), the exchange and the Cooper channel interactions.
actions in 2DEG within a single consistent systematic ap-The last two are evidently massive as well as half of diffu-
proach without replacing it by a short-range potential fromsons and CooperofisHowever we find that there is a non-
the beginning as is done in the clean limit or high densitytrivial mixing between photons and diffusons. The phenom-
The necessarily nonperturbative approach consists of twenon is very reminiscent of the Anderson-Higgs mechanism
steps. First is a variational orfeonperturbative in coupling  in superconductivit$? in which massless Goldstone boson of
and is similar in spirit to the Hartree-Fock for clean metals orphase is mixing with(dynamical photon. As a result both
the BCS approximation in superconducting metals. We findnodes become “massive.” In the case of strongly coupled
in Sec. Il the “best” quadratic Hamiltonian representing the 2DEG the modes are not really massive, the density-density
system. On this set of Hamiltonians a quasiparti@@d correlator describing diffuson becoming “harder”:
quasihole Green’s function is a variational parameter. There
are possible contributions in the particle-parti¢l@ooper 1

pairg as well as the particle-hole channels due to Coulomb wr+e2D |p|/477' @
interactions(Hartree state in direct and Fock state in ex- ' '

change channgl while interactions with disorder can be compared to the noninteracting diffusion pole

treated in a similar manner with the frequency dependent

relaxation time being one of the variational parameters. Pos- 1

sible condensates in several channels do not realize that of ()

: : wTr+Drp2.
course there is no condensate in the Cooper channel for a

repulsive interaction and there is also no condensation in thghe (statig photon becomes RPA screened:
direct channel due to the charge neutrality as is shown in

Sec. Il A. However the strong long-range exchange interac- 1

tion creategeven in the clean ca$® a dip in the DOS on
the Fermi surface. At infinitely strong coupling the DOS on
the Fermi surface approaches z¢to avoid confusion, this The renormalized diffusion constabf increasesgnonpertur-

reduction is not related to the one found at higher orders fopaively) with coupling from its noninteracting value @
screened interaction in Ref. 18, see discussion of this topic in- ,, 7/m_ Similarly the renormalized relaxation time in-

Sec. IVD). This makes the electron liquid very rigid and, as reases with .
a result, the effects of disorder are greatly suppressed. This in Equation(1) implies that electrons at large distances are
turn leads to increase in conductivity at large coupling. The,q longer “diffusive”: they obey diffusion equation with first
emergence of the above phenomenon can already be seen Qi ce derivative only. The Cooperon on the other hand still
perturbative Ievel._ The first-order quasiparticle energy shiftaiains its typical diffusive pole form, E42). The approxi-
due to exchange ieup to a constant mation scheme at higher orders therefore nontrivially com-
bines the RPA and the disorder resummation on the same
- footing. It is important to emphasize that the scheme is mani-
p festly “gauge invariant.” As was shown in Refs. 16 and 15,
r(’““_ ) that it is very important to ensure gauge invariance at each
stage in order not to miss important “vertex corrections”
necessary to ensure charge conservation at each order of the
It is easily shown(Sec. Il B) that for purely repulsivey(p)  expansion including the variational stage.
energy of states above the Fermi level is shifted up, while Next in Sec. IV we turn to the “fluctuation corrections”
energy of states below the Fermi-level is shifted down. Thdeading to weak localization. The leading fluctuation correc-
logarithmic vanishing of the DOS is a direct consequence ofion to conductivity is infrared divergent. However, as the
the long range nature of the Coulomb interaction. It is im-couplingrs grows, the correction grows slower than the main
portant to note that the significant reduction of the DOS neafDrude contribution. This justifies the expansion even for
the Fermi level does not mean that the effective mass ismall values oD <1 at which the standard /expansion is
smaller than the band effective mass. On the contrary, it wasvalid (D,>1 is however required Therefore the crossover
shown in the clean ca¥? that despite this the effective temperature at which conductivity starts approaching zero is

2|p|le?+2m

(p[Hindp)=—2 v(p—p')sg

p' m*

245321-2



EMERGENCE OF QUASIMETALLIC STATE INA.. .. PHYSICAL REVIEW B568, 245321 (2003

significantly lower than that for noninteracting electrons.lows, in addition, a convenient treatment of quantum and
This temperature is estimated as a temperature at which tteermal fluctuations. Transforming to the Matsubara fre-
perturbation theory in fluctuations breaks down, namelyquency w,=(2n+1)#T and the momentum basis for the
when the correction becomes a significant fraction of theGrassmannian fields

leading-order contribution. The crossover temperature ac-

cording to our analysis becomes unobservably small since it a_ Loy a

vanishes exponentially fast with couplitgue to logarithmic Vo= ﬁ% ; XL (Px= @) J¥7pn,

dependence of the fluctuation correction on temperature . . . L .
serving as an IR cutoff Therefore one can practicalljor and separating regions of phase space in which mt_eractlon
samples of finite albeit large sizéalk about stable metallic CCNNECts electrons near the Fermi surface, one obtains

state in 2DEG. Our conclusions and discussion of the phase 9

. . . ~ J— . p
diagram as well as relations with other approaches are sub- A—» %, —iwgt——n YR+ Agis+Ac,
ject of Sec. V. P n
(6)
II. VARIATIONAL PRINCIPLE FOR COULOMB 1
INTERACTIONS IN THE PRESENCE OF DISORDER T ~b
Adis= =5 2 2 [Up-qntant®p v mtim
A. Model and the basic approximation p.a.r nm
o M
1. The model + l;b’a)—q,nl;b3 p—r,nwr,mlpg,m

We consider a system of electrons with effective band +YR R WP
massm* confined to a plane interacting with each other and PranTmpmLATG MM
with random potential (x): T _ — .

5 ACZE gr nzm [l//gfq,n‘/’;nv(p)‘//—p—r,m'r//r,m
V 4, )
H=fcfw<———,u+U(x))cxg _
—
X 2m* + ‘/’gfq,n‘/’afpfr,nv(p) ‘r/fr,m'/’g,m
1 —a a b b
* Efx ClUlCX01V(X—y)ClUZCXUZ- ©) * wp—q,nw—p—r,nv(p) lﬁq,mwr,m]'

All the fermion’s momenta, q, r are now considered to be
We seth =1 throughout theoretical parts of the papeiis a  aroundpg. Both the disorder and the Coulomb interaction
spin and valley index and(x) is the 3D Coulomb interac- parts Ag;s and Ac, respectively, have three terms corre-
tion which has the following Fourier transform: sponding to directHartreg, exchanggFock) electron-hole
&1 channels and the electron-electri@oopej channel.
v(P)= 2¢ B[l_ (p)]. ) 2. The most general quadratic Hamiltonian and the Hubbard-

. . . . Stratonovich fields
Here € is the dielectric constant and the last term describes

the background ensuring charge neutrality of the system, A convenient way to look for the most general quadratic
v(p=0)=0. Passing to the standard imaginary time path-2ction is to perform a_Hubbard-Stratonowd_FlS) transfor-
integral formulatiofl and performing a well-known replica mation mtroducn_wg a field for each of the S|x_channels. We
trick® one obtains the action should not consider the direct channel for disorder though
since it is of higher order in number of replichk which

_ _ V2 should approach zerwe assume that replica symmetry is
ALy, ¢]=f Wl | | not broken spontaneouslyThe effective action in terms of
Xt 2m these fields is rather complicated:
1 —a
- oy a0, boy boy B
ZINRER SRR Acti= = THNLGY 1+ 3 Q3 Qi+ ASamA R,
1 —a
+Z oy a0, X— aop a0y ) 5 1 3 , B )
fo,y,tlp)(t xt U( y)'lfyt ':byt ( ) +§ 2 [(D:;nv l(p_p )¢P’n+®;§’nv 1(p_p )
pp'n
Herea,b=1, ... N, are replica indicesr is the “bare” re- a xab _1 L —ab
laxation time describing strength of the random potential. Let X ®pp’n“L Eppnv (p=p )Epp’n]' (@)

us first consider, for the sake of s_implicity, the spin—polariz.ed|_|ereGN is the fermionic Green’s function in Nambu space
case and only one “valley{returning to the general case in jefined by

Sec. IV A), which means that we drop the spin indices

The path-integral formulation of the variational principle, be- 1 Wgﬂ o 1 _
ing completely equivalent to the standard methods such as ﬂgn: — | ngn:—(ngn— zpipn). (8)
summation of diagrams or Bogoliubov transformations, al- V2 — ¥ on V2
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The inverse fermionic propagator is &2 matrix p-q

G*' F
), ©

GNl:( F* G—l*

q
whose element& ! andF are themselves matrices mn,

anda space. The diagonal element is FIG. 1. The self-energy corresponding to the saddle-point equa-
tion in the clean limit.

2

<g,n,|G’1IBn>= Snn 53"{ ( iw,— P — T Spp TPy, We will comment on the Ia;t tw@ontrivial) assumptions in _
2m Sec. V. Consequently the inverse Green’s function of fermi-
: ons simplifies to
+—=Q% ,  —8WEX, (10)
J7 cpmp/nn’ T Tpprn F-o,
where the fieldQ describes the diffusonl is a static photon
field in the direct channel, whil& is an “exchange field.” (a,n,|G‘1 ’;n): 5ab5”n’5(p_p’)((;3)—1, (13
The off-diagonal element P
. q p2
[ n—1_; n
a by_ ab b@a Gy =il wopt—=|+tpu———-3,.
<p’n’||:|pn>_E_App’nn’dl_éa ®pp’,n+n/ (11 ( p) @n \/; m om* Ep

contains theA and the® fields describing the Cooperon The minimization equation for the static photon condensate

channel in the disorder part and the Cooper channel in the is

Coulomb interaction partif the interaction were attractive

this channel would have led to superconductivitsespec-

tively. This effective action should be minimized as a func- b= —iﬁé(p)v(p)Z Gg. (14

tion of all five HS fields determining the fermionic Green’s an

function. The solution of this variational problem is dis- o

cussed in the following section. Later in Sec. Ill we expandHowever due to neutralizing backgrouedp=0)=0, and

the path integral around the solution of the minimizationthe right-hand side of this equation vanishes. Theretpre

equations to quadratic ordérarmonic approximatiorto de- ~ =0. Minimization equations foq,, e, are

termine elementary excitation modes and then in Sec. IV use

Feynman rules to compute fluctuation corrections. i
dh="5% 2 Gj, (15)

3. The saddle-point equations 79

Minimization of the effective action, Eq7), poses a non-
trivial mathematical problem. Let us first remove obviously Jy 0
irrelevant fields and functional dependencies using symmetry 2p= _TZ v(p=p )Gp’ : (16)
arguments. Since the Coulomb interaction is purely repul- Pn
sive, we assume that the electromagnetid)yauge sym-
metry is unbroker(there is no condensation of the electron-
electron pairs ThereforeAgp=0sp=0. This by no means
indicates that there are no fluctuations in these channels. On
the contrary fluctuations in the Cooperon channel play an B. The clean limit
important role in destroying the metallic state.

The translation invariance in space and titaee assume
that the ground state is a liquid rather than Wigner cry3tal In the absence of disorder—x, q—0 and we should
and the unbroken replica symmettgssuming the ground consider the second equatiqd6) only. Substituting the
state is a disordered, possibly overcooled liquid rather thafreen’s function, Eq(13), it takes a form
electron glas¥) implies

We start with exact solution of these equations in the clean
case.

1. A major simplification in the clean limit

v(p—a)
ab =55 s S =—T ) 17)
QpnmSF’_ nmOpUn P ;1 iwn-l-,u,—qZ/Zm*—Eq (
ab _ qab
Eopnsp™ 0% 0ndpprp. (12) corresponding to the diagram in Fig. 1. At zero temperature
(to which we confine ourselves for most of the papthe
®pn= 6ab5n§pd>. summation over Matsubara frequencies results in
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N ey

1
Sp=-35 2 v(lp-dhsatu—a%/2m* ~ 3]

i

-

+ +

FIG. 2. The “rainbow” diagrams corresponding to the saddle-

=— ! fw J'w qv[\/p2+ q2_ 2pgcod )] point equation. The solid lines denote the fermionic propagator, the
2(2m)2 =0t =0 wavy lines denote the Coulomb interactions.
— 2 _ . . .
Xsg p—q72m* —X4], (18) Generally the solution of the saddle-point equation corre-

where ¢ is an angle between fermion’s momenta vecors SPONds in terms of diagrams to summation of all the photonic

andq andp, g are their lengths. Integral over the angle gives'@inbows, see Fig. 2. However, as it is well knoMe sum
of the diagrams except that of Fig. 1 vanishes identically.

4pq This will no longer be the case in the disordered electron gas.
5 gK| — 5 The fermionic Green’s function near the Fermi surface,
__® J (p—a) sorf ju—q2/2m* — 3. ] namely at smalk, becomes nonanalytic:
P (27)%J|al=0 lp—d o 8
R r
HereK[x] is the full elliptic integral of the first kind! The G, ~iw,te| 1+ \/E—Slng) (23
o

interaction with neutralizing background amounts to sub-
tracting the termg=p. Now we switch to dimensionless and it is dominated by the interaction “corrections.” Here
varlak_)les describing deviations of particle’s energy from&)n:wnlzlu is dimensionless frequency.

Fermi surface,

pém(l+s+ ). gq= \/M(1+8'+ .. 2. Depletion around the Fermi level
(19 Although no energy gapthe Coulomb gaphas been

opened within this approximation, it follows directly from

rescaling also the variational self-energy functidi,  £q (23) that the DOS right on the Fermi level vanishes
=2ue, . In the resulting integral equation logarithmically:

I's f 1
e,= kle—¢']sgie’ +e, /], 20 __ -
2l [ Isgri ] (20 N(e) in(1s) " (24)
K[ — 4/s2] Therefore one can term electron gas with such properties
K[S]ET, “very marginal Fermi liquid.” The logarithmic dip in the
€

DOS is even weaker than a power normally associated with
we extend the integration over to {—,%} and observe such a situatiori? As we will see in the following section,
that there exists a solution obeying physically reasonabl&is will naturally lead to effective reduction of scattering off
property that the sign o€, is the same as that of (we impurities thereby increasing conductivity and making the
checked that there are no other solutions in disordered cad@nsition to Anderson insulator at least more difficult. Of

as wel). This makes the right-hand side independeneof course this result is “perturbative” in a sense that for the
and we obtain a solution inverse propagator only one diagram was taken, Fig. 1.

Therefore the effect “starts” and can be understood at weak
\/Ers R \/Ers coupling. One can interpret the minimization equatipas
e8=—f k[e']= K1l €], (21)  the Hartree-FockHF) resummatiohas a renormalization of
m =0 energies of the one-particle states due to the collective effect
where functionk[] can be expressed via Meijer function Of the many-body electron-electron repulsions. As we men-
GMN(z[21 -+~ ) 31 tioned in the Introduction the reduction in DOS in perturba-
PARTIby, . by tion theory can be seen from the eigenvalue shifts. Indeed the
. sgr ] factor in Eq.(21) makes it clear that energy of states
wkile]=asgrie][M(e)—M(0)], (22 above the Fermi level is shifted up, while energy of states
below the Fermi level is shifted down. The logarithmic sin-
gularity is a direct consequence of the long-range nature of
the Coulomb interaction.
Obviously, if there would not be a disorder to interfere

It behaves as(In[8/e]+1)/2 at smalle and asrIn[2s]/2 at ~ With the screening, the RPA type of reasoning would imply

!

e ™

1/2,1/2,1

M(s)=G33 —
&

0,0

largee. The standard dimensionless coupling that the singularity would be “smoothed away” or “cured”
by the quantum fluctuation corrections. Higher orders in cou-
e? m* pling are increasingly singular and the singularities should be
rs= Ame 7 “resumed away.® However even for the screened interac-
tions there is a dip in the DO%.It cannot approach zero, but
was introduced. might be reduced significantly. We calculatedO) for dif-
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TABLE I. The density of states at Fermi lewd(0) (normalized
to the ideal gas DOSIy=1/27) for various couplings ¢ and dif-
fusion constanta..

L ~,

m ,rr-N\\ s m\
Ay \
4 4 AP A T S \

- +

FIG. 3. The “rainbow” diagrams involving both Coulomb inter-

rs actions(wavy lines and interactions with disordédashed linesin

N 0.1 1 2 4 8 16 the general case.

8 0.873 0395 0219 0.106 0.0476 0.0204 . . .
I i o omm oo o T e oo of e hson e e
0.5 0895 0557 0.344  0.167 00714 00297 finitéJ mor):ot(F)nicaII incréasir?’ *>r;1* while more recent
01 0845 0651 0471 0241 0103 00395 =70 ¥ . l’g]<rl i nleaiiio e
RPA 0961 0817 0709 0623 0506 0393 calcuialio cates that afs=<21, m, and become

larger abover =1. Numerical simulations of the same
systeni* indicate that, on the one hand, the renormalized
ferent couplings assuming RPA potential insteadv¢p). ~ Mass is definitely smaller than® at least for <5, but, on
For several couplings the reduction of DOS is given in thethe other hand, it increases withy. In recent experiments
last line of Table I. It provides an indication at what degreeth® renormalized mass was measured using Shubnikov—de
of disorder we can continue to use the HF approach withouflaas oscillations in magnetic fiefd Apparently the renor-
encountering strong screening effects. As one can see, tigalized mass deduced that way monotonically increases
RPA is apparently less important to the reduction of DOSWith I's. To conclude, the increase of the effective mass with
already atr; as low as 1. coupling does not necessarily imply that the DOS at Fermi
This is consistent with results of more elaborate calculal®Vel cannot drop significantly. This is important for our ap-
tions of the renormalization constaftdefined in Eq.(26) ~ Proach since the drop in the DOS naively should result in
below involving the Hubbard function in Ref. 25. The effect SUPPression of the elastic scattering off impurities due to
of screening is much smaller at large coupling due to smalféduced phase space available. Now we return to the general
density of the polarizing electrons. As we will see in the ase Of disordered strongly coupled 2DEG.
following section, in the disordered case the “marginality” is
replaced at large coupling by large nonperturbative renormal-

ization of the parameters of the disordered Fermi liquid.

3. Effective mass increase versus the DOS drop

C. The saddle-point equations in the general case
1. Numerical solution

Following in the more complicated disordered case, Egs.

The reduction in the DOS due to the repulsive interactior{15) and(16), the same steps as in the clean case, the equa-
is related and is sometimes confused with the issue of thtons for the scaleddimensionlessquantities &,=2ue,,

vanishing in Hartree-Fock approximation of the “renormal-

ized mass” and the Fermi-liquid paramete} defined by~

*

m_Z_ 1+F3 (25
m*  Zg v
where renormalization constants are defined by
Z’1=1+m—*iR§ret(p 0=0)| ~
Pe p ' P=Pr 27N(w=0)’
(26)
-1_ ﬁ ret —
Ze —1—£Re2 (P=Pe ®)|w=0-

Within the Hartree-Fock approximatidwithout the RPA re-
summation the retarded self-energy"®'(p,w) does not de-
pend on frequency. Consequenffiy=1 and sincez<1 for
repulsive interactiorfé the renormalized mass; is smaller
than the band mass©* [m; vanishes for the long-range
interactions, see Eq24)]. Several groups tried to improve

an=2u+1q,, ®=2uw) at zero temperature are

.1 J' w+q, -

G~ 2m2n e (e+e,)?+(w+q,)?

I‘S f [ ,] 8,+e8/ (28)
e.= K|lE—¢€ P s

V27m2) e (e'+e,)%+(w+q,)>2

where A= u7 and functionx[e] was defined in Eq(20).
The approximation corresponds to summing up the whole set
of rainbow diagrams involving both Coulomb interactions
and interactions with disorder, Fig. 3.

The results for the real part of self-energy for=0.5, rg
=1 (where in the noninteracting case Anderson localization
is very effective and A=8, r;=0.01, 1, and 16(still a
quasimetal with small localization effegtare given in Fig.
4. The corresponding imaginary part of self—enefgy is
given in Fig. 5. We solved the equations for various values of
coupling r¢ between weak coupling up to,=24 [experi-

this beyond Hartree-Fock using the RPA and the Hubbaranentally the metal-insulator transition is observed from

approximatiort®?® Generally the wave-function renormal-

izationZg<<1 since it represents departure of the momentunjunctions

=15 (Ref. 1) to rg=25 in GaAs/AlGaAs(Ref. 35 hetero-
and around rg=10 in Si metal-oxide-

distribution from the ideal Fermi gas one. Therefore thesemiconductor field-effect transistqRefs. 36 and 38.
question whether the effective mass is larger than the ban8olid lines are simulation results. The dashed lines are results
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FIG. 5. The dependence qf, on w for various values of s and
. The solid lines are the numerical results, the dashed lines are the

and\. The solid lines are the numerical results, the dashed lines argsults ofrs expansion, and the dots are the results af épan-
the results ofrg expansion, and the dots are the results of 1/ SION:

expansion.

of expansion inrg briefly described in the Appendix, while
dots are the results of the next to leading order ix also

summarized

At zero frequency the large coupling value @f_, is
much smaller than the noninteracting result M{4We de-

in the Appendix.

fine the renormalized relaxation time via

One observes in Fig. 5 that fog<10 the disorder parameter

q,, is almost independent @f in the whole region where it is
important for calculations of integrals over Green’s functions

(namely whenfq<w). Therefore one can still consider the

i

T 20,0 4\Q

Ty

From Fig. 4 we observe that at very large coupling it is
similar to the very marginal Fermi liquid of the clean case.
The interaction correctio, dominates and is not propor-
tional toe, therefore it does not reduce to a mere renormal-
ization of the density of states on the Fermi level. At finite
but large coupling the renormalization of the density of states
is still large, see Table I. We calculated it as explained in Sec.
IID, Eg. (33). At large coupling the quantity diverges very
fast. The limiting values ofy at zero frequency for various
bare diffusion constants and couplings are given in Table II.

Before trying to further exploit the solutions of the
saddle-point equations, we would like to explicitly show that
even perturbatively the reduction in the DOS due to ex-
change can be clearly seen.

D. Reduction in the density of states

system as a disordered liquid without temporary dispersion. The fact that at smalk (deviation of fermion's energy
It is a good approximation to simplify the analysis by con- from w) and large couplings, %.>2ue leads to significant
sidering a variational principle with constamy,=q.

The saddle-point equations in that case take a simplefarious couplings, and bare diffusion constanis
form (after integration ovemw)

e.=

V2rg
T

> JS’K[s—s’]SgI‘[s']

1- 1 f 1
TN (sre)?t R

™ q
— —arctan———
2 le’ +e,|

TABLE Il. Renormalization of the inverse relaxation tirgefor

rS
A 0.1 1 2 4 8 16
8 0.028 0.013 0.0070 0.0034 0.0015 0.00067
4 0.057 0.028 0.015 0.0075 0.0033 0.0015
2 0.12 0.056 0.034 0.017 0.0073  0.0032
0.5 0.47 0.29 0.18 0.086 0.037 0.015
0.1 24 1.6 1.3 0.67 0.27 0.10
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0.08

] d 2\/§rs T a
e'= &e == f K’[g](E—arctane—).
0.07 =0 ™ e=0 &
_ (35
= 0.06 . S
Z The asymptotic of the functior’[ ] is as follows. At small
¢ it is negative and divergenk'[e]~—1/2s. As we have
0.05 seen in the clean case this leads to vanishing DOS. However
0.04 in the presence of disorder the divergence is cut off since the
' second multiplier vanishes at smallase, /q. This in par-
w ticular means that in the case of disorder the RPA improve-
ment is not necessary as long as the cutoff due to disorder is
0.5 i ‘ N I8 ' ] larger than the cutoff due to screenifsge discussion in Sec.
| im0 T I1B).
0'4, r=1 (b) 1 At large ¢ the integral converges rapidly sinc€|[e]
3 03k R ~—m/2e?. This can be seen perturbatively as well using
Z op| TET T | results of the preceding section. To leading ordergn
0.1 I.s=4: ------------------ ’ 2\/5[@ ’ (1)
W—i—_—_\_ &= 71_2&(0)[620" [ele;”,
-0.08 -0.04 0 0.04 0.08

w whereq® andel™) are given in the Appendix by EqéA1)
and (A2). The frequency-dependent correction to the DOS

FIG. 6. The DOSN(w) (normalized to the ideal gas DO$, (compared to the ideal gaéy=1/27) is perturbatively

=1/27) for (a) fixed rg=8 and various\, (b) fixed A=8 and
various coupling .

" o\all)
SN() =N(w)— Ng=—2 J[( (w=e)e,

rearrangement of the DOS in the vicinity of the Fermi sur- 8m\? w—e)?+q?)?
face. The DON(w) is related to the retarded Green’s func- . .
. In particular on the Fermi surface
tion by
3
1 AN(0) = g,
N(w)=—;Imf Gy (). (32 ”
’ whereq® is given in the Appendix by EqA3). The results
For frequency independe[“Ju |t reduces to for the DOS are giVen in Table I. The effect of reduction of
the DOS at the Fermi level due to repulsion increases fast
1 1 with increasingrs and depends weaker on As we men-
N(w)=——Im>, : tioned, in the clean case the DOS approaches zero at any
T 5 w—2uepy—Iptiq coupling no matter how small, which is clearly an artifact of
- neglecting screening at this stage. However the disorder ef-
1 a (33) fectively “averages” the distribution of states making it fi-

nite. At the limit of large disorder the DOS should approach
the ideal-gas one. Repulsive interaction works to reduce the
DOS near the Fermi surface and is expected to make scatter-
ing by impurities less effective. We will see in the following
section thate’ is related to the renormalized value of the
diffusion constantD,=\/e’.

- 2% ). (&)—8_68)2+a2.

The DOS atw=0 for various couplings are given in
Table |, while the DOS as a function effor fixedr,=8 and
various\ in Fig. 6@ and for fixed\ =8 and various cou-
pling r¢ in Fig. 6b). At large coupling the renormalization of
limiting value of 7, is very large anuﬁ approaches zero. The
integrand in Eq.(33) becomesé function and the DOS is
determined by the derivative @&, with respect toe at

Ill. A SYSTEMATIC EXPANSION IN FLUCTUATIONS
AROUND THE SADDLE POINT

=0: A. Classification of fluctuations around the ground state
All the Hubbard-Stratonovich fields correspond to el-
1 1 ementarytharmonig excitations of the system. The spectrum
N(“’):Z 1+e'|. o (34 of these excitations is determined by a quadratic term in
elo=zcte, expansion of the effective action, E(), around the saddle

point determined by a solution of the minimization equations
Using the simplified saddle-point equation, Eg1), the de- (27) and(28). This quadratic form should be diagonalized to
rivative of e, is find the spectrum. We first sort out evidently massive modes
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which do not play a role in subsequent discussion. These afBo conclude there are three fields which might have poten-

exchangeE and the Cooper exchang® fields. In the fol- tially massless modes. While Cooperon cannot mix with the

lowing two sections we address photons, diffusons, andther two, diffusons and photons can. Even if both the dif-

Cooperons. fuson and the photon are massless, after mixing the massless
Since the ground state does not break spontaneously theodes could turn massive. We study this phenomenon next.

electric charge (1) symmetry the charged field® and

CooperorA do not mix with neutral fieldg, diffusonQ, and B. Anderson-Higgs mechanism for diffusons

static photon®. In this sector the inverse propagator ele-

ments(second functional derivatives of the effective action

with respect to relevant fieldsre

1. Matrix elements of the photon-diffuson inverse propagator
matrix

) , At small frequency and momenta around the Fermi sur-
(E,,p,lD(;(%)mp): S(P—P") " [S(p—p )v(p) ! face we will use the asymptotic expressions for the solution
of the saddle-point equations:
—8(p—p')Gpr2+ p2GPro—pr2

-
+o(p+ p’)Gg/2+pIZGg/2—pI2]. qw~qw=0=2,u\/;q=g, (41
r
pro [D36lpp)=8(P=P") 8" *™GRy . Gl o S ~2ue’s=2u(Z 1 1)s,
<;:m'|D;A1*|Bm>= 5n+m,n’+m’5(p_ p’) where renormalizations of the “disorder efficiency"71and

of the inverse density of states at the Fermi lexef were
L1 introduced in Eq(26). As can be seen from Tables | and Il at
x| o= > Gp.oGI'l, (360  large coupling they are quite large.

d Then one computes standard diagrams in(B§). for ma-
where P, p are a total and relative momenta of the two- trix elements of the inverse propagators involving diffusons
electron state, respectively. The relation to indices of@he and static photons at certain fixed momentpm
fields used in the effective action, E(), is obvious:

P=p;+p2, pP=p1—p2.

The @0 element of the inverse fluctuation propagator indi- N e e

cated that in this channel there are no massless modes. This =5 [6™ —6(—nm)B(p,n—m)],

is evident at small coupling since the diagonal first term (42
dominates, but since the Coulomb interaction is repulsive is . ) ) .
true for any coupling. The mixing with Cooperon cannot turnWhere at smalko and p, it contains well-studied function
it to a massless mode. We therefore discard the flih “bubble” integral having the following asymptotic at small

_ o , 1
L I P

what follows. Now we turn to the neutral fields. frequencies and momenta:
Second derivative of the effective action with respect to 1
Eis B(P)=7 2 GpiqCq" ' =1- w7~ Dip% (43

n’ —-1n \ _ _ pr’y snn’ N -1
<P’P’|DEE|PP>_5(P P") o™ (3(p=p")u(p) for n<0, n+1>0. Within an approximation of “renormal-
—8(p—p' )Gy p/ZGrI;/27 p/z)_ (37) ization,” Eq. (41), one obtains

It is again a massive mode and its mixing with other neutral z7

field is unimportant. More interesting are the diffusQrand Dy=—

the static photord fields: T
N —11nm e — , Beyond this approximation the value of effective diffusion
(o [Dgglp™y=8""™ o(p—p’) constant can be calculated from the values given in Tables |

1 and II. As usual, we discard the massive same frequency sign
P G3+q6?}’ (39 t+and—-— mode$ and concentrate on different frequency
T q sign excitations.
It is convenient to this end to rescale the photon field

X

1
| —1inmy_ _ d,n—m A n m _
(pIDagly") == 8"""o(p=p") = 2 GJ.4Gy, D=0 (P) TP . (44)
(39 The mixing and the photon inverse propagators are
, , T - _ ,
(IDailpy=2""8(p—p")| v(p) =~ X GBWGE”} (IDaglp™i=—28"""8(p—p") o (p)TO(—nm)
qn
(40 XB(p,n—m), (45)
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(IDadlphr=6""8(p=p)1-v(PIL(p.D].  (46) (BT~ 1 52
p~-p
where the Lindhard functidfi has an asymptotic behavior @7+ D,p?+Dv(p)p*/(2m)
1
L(p.H=TY B(p,n,n—1)~(—1+ w7 +---)/(2m). ~ . : (53)
n o7, +D,epl/(4m)

4

) ) ( 7) It becomes hardefless singularthan in the standard treat-
One notices in Eq(45) that, due to the factof(—nm), itis  ment in which the mixing between photon and diffuson is
precisely the massless different frequency sign diffusons thafeglected. It is interesting to note that in the standard treat-
mix with photon. The mixing strength is large since it is ment at small couplings the mixing is not neglected as far as
determined by the same bubble integral that appears in thehoton's propagator is concerned. One uses the RPA propa-
diffuson’s inverse propagator, E¢42). Now we will invert  gator, Eq.(51), despite the fact that the same off-diagonal
this matrix and find its eigenmodes. matrix element, Eq(39), is simultaneously responsible for

. ) ) ) the essential modification of the diffuson.

2. Eigenvalues and eigenmodes: Physical photon and diffuson  1he inverse of a matrix of the type of E@8) generally is

The Q®d inverse propagator matrix is “blocked” for dif-

ferent photon frequencids=n—m (we taken>0, m<0), . EJF b_z b_2 .. —b
namely we can consider a single valuel oFor a fixed fre- a a a
guency|>0 the range of possibla is limited to —1<n 1 b2 b2 b2
<0 and the (+1)X(I1+1) matrix has the following form: - C——— .. =D
aC_le a a a
a o0 . b : : . :
0 a ... b —b —b ... a
.. | (48)
) Matrix elements of the propagators therefore are
b b C
1
where <n,n+I|DQQ|n’,n’+I>=Plénn,Jerm, (54)
a=1-B(p,l), b=—+v(p)TB(p,1), L
n,n+1|Dgol|l)=P : 55
c=1-v(p)TL(p.). (49 < Paol)=Ps 5 59
Eigenvalues of this matrix are thé{1) times degenerate D[]y =P 56
a~w,7,+ D,p? (original “massless” diffusons before mix- (IDg[1) =Py, (56)
ing) and two nondegenerate eigenvalues where functionsP and their asymptotic at small frequency
N 5 5 and momentum are
Ar=3zla+cxy(a—c)+4lb7],
corresponding to eigenvectors, 1, ...,1a.} with a. b 21 o1 57)
=(N.—a)/b. Their asymptotic at small momenta and fre- 1" a rw+D,p?’
quency is
2
Mo~1+o(p)/(2m), p— 2 v(p) e
a(ac—1b%) rw+D,p?+D,p(p)
A_=~27mv(p) w7, +Dp?)+D,p> (50)
The f(lm of the\ . eigenvalue means that physical photon Py=— 2mlb ~ Vou(p) (59)
moded®=30__, Qp+a., P propagatofrescaling back by ac—1b?> 7 w+Dp?+D,p’v(p)
VJu(p)T] is the RPA photon propagator exhibiting Debye
screening: a T,w+D,p?
ac—1b2  rw+D,p2+D,p%u(p)
(Pp@ )~ — - (51) . . .
v H(p)+2m We will see in Sec. IlID that the diagonal part of the

) o N ) diffuson describes density fluctuations and therefore mixing
The second is “symmetric” inn superposition of diffuson  jth photon makes electrons nondiffusive at large densities.
modesQ‘5’=22=,|Qg+ a,cbg and is no longer the usual Propagators for relevant modes supplemented by vertices,
diffusion pole: the fermion-fermion-diffuson
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p-q 1.6F
. Lo
e Sl2r |
Wn q L j
P £0.8F
&

(a) (b) (c)

FIG. 7. The Feynman rules f¢a) fermion-fermion-diffuson(b)
fermion-fermion-Cooperon,(c) fermion-fermion-photon vertex.
The solid and wavy lines denote the fermion and photon propagator, riG. 8. The dependence 8i(p,»=0) onp for variousr and
respectively, the double solid lines with opposigame direction  \ The solid lines are the original values Bfp,»=0), while the

n 1 n
0.06  0.08 0.1
P

n 1
0 0.02 0.04

arrows denote the diffusofCooperon propagator. dashed lines are their corresponding quadratic fitting values.
FW@:—I— B(w;,p=0)= ! f(G —Gyp)—————
T ' 2m2lg " T™ilw+dn—an]
and the fermion-fermion-photod __Gmn~0n . 63)
o+ 0m—0n
Typo=—1 This approaches 1 in the limit of zero frequency as long as

. o there is a jump iQ, from negative to positive frequencies.
constitute Feynman rules shown in Figgaj7and 1c), ré-  The propagator of the different frequency sign Cooperons at
spectively. However fieldsb and Q do not correspond to  gmq) frequencies and momenta is
“modes” or “bosonic excitations” of the system due to mix-

ing between them discussed in detail in the preceding sec- 1
tion. One can still use these fields in calculation considering Dy = ———, (64)
them as a vector and their propagator as a matrix. 2qw+B'p?

whereB’ denotes a derivative of the bubble integral
C. The Cooperon propagator

As we mentioned in Sec. lll A due to its charge the Coop- . dB(0p)
eron does not mix with photon or any other neutral field. It is B'= I02
massless for different sign frequencies and massive for the P
same sign frequencies. The strong coupling however inﬂuAssuming quadratic momentum dependenc®@s, ), di-
ences its propagator beyond the evident renormalization rect calculation leads to e
—D,, 7—7,. Substituting the expression of the fermion
propagators, Eq13), into Eq.(36) the inverse propagator of
the excitation is B = 1 f

2m(2m)%) s

(65

p=0

(e+e})’—¢’
[g%+ (e +el)?]®

(1+e))%. (66

nmD r[nmy=1—6(—nm)B(p,n—m). 61
(nmiD s Inm) ( )B(p ) (6D The values oB’ for various couplings s and bare diffu-

) ) ) i _ sion constantsx determining the Drude conductivity are
Numerical solution of the saddle-point equations subshtute%iven in Table Ill. The perturbative expression for this quan-
into Eq.(36) shows that the dependence is quadratic only ti”tity is
certain momentum at which it saturates, see Fig. 8rfor
=1, 2, and 4. This is of importance later when we estimate
the quantum correction to conductivity in Sec. IV. B' = —\72

Note that the excitation remains massless even at strong
coupling. This follows from very general considerations.
Consider the bubble diagram where

5/2y 3

— 120+ cl|, (67

2,22 3)
3/2,3/2,

22,2
A) : (68)
312,312,

1+rg —

1

1 C= _G22 (4)\)2 3/2,3/2)+G23
B(w,,p)= —zf anGq+p'm, (62) (4)\)4 33 |1,1 43
(2m)°Jq

(4N)2

wherel=m-—n. At zero momentum using the saddle-point +2(3421§(

2
equation(15) one obtains (4N)
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TABLE lll. Derivative B/ 72 of the Lindhard function in the presence of disorder for various valueg of

andA\.
rS

A 0.1 1 2 4 8 16

8 12.2 31X 10 3.33x10° 6.06x 10* 1.40x 10° 3.12x 10
4 5.78 114107 1.15x 10° 2.11x10* 5.14x 1P 1.29x 10
2 2.74 40.4 3.7% 107 7.02x10° 1.81x10° 4.93x< 1¢°
0.5 0.620 4.75 34.8 6.35107 1.90x10* 6.18x 10°
0.1 0.117 0.605 1.79 25.3 9.¥8 (% 4.10x 10*

with the standard notatio®},\(z|p> ' °) of the Meijer ~ Here expressions for, B, andP, are given in Eqs(47),
q

"""" . “ H - ” H _

functions®! It rises fast withrg, while being weakly depen- (62), (57)~(60) and the “noninteracting” correlator is de
. . ) . fined by
dent on\. Finally the fermion-fermion-Cooperon vertex is
i o B(p,)?
- = — — = — + _ .
and it completes the Feynman rules shown in Fig).7 lts asymptotic at smakb andp is
D. Density-density correlator and conductivity to leading order D,p?
r
1. Modification of diffusive motion due to strong interaction x(w,p)=

@7+ D, p?+D,p%u(p)/(27)
One of the most important characteristics of 2DEG is the
density-density correlator describing the diffusive nature ofTherefore not surprisingly it is proportional to propagator of
the charge carrier’'s motion in a disordered medium. It isthe “diagonal” diffuson defined in Eq(52). The diffusive
closely related to dielectric function and polarizability of behavior dominates short-range fluctuations only on scale
2DEG. The correlator is given in Matsubara formalism by smaller thars=2e/e?. On a larger scale the last term in the
denominator is linear ip and is therefore larger than the

(wp)= md gior standard diffusion term. This makes diffusion less long range
xtw.p g, Jo T although in 2D it does not become a short-range one. The
o o scale was introduced by Si and Varthand we will com-
X(CT L p4q,(7) g, (7) ¥p+q,(0) g, (0) ). ment on connection to their work in Sec. V.
First we use the Feynman rules stated above to calculate the 2. The leading (Drude) contribution conductivity

density-density correlator at the leading order. In the limit of . . .
small frequencies the contributions come from diagrams The dc conductivity can be read off the density-density

(@—(d) in Fig. 9. They are—L(p.!), —wB(p,)2P(1 correlator using the relation
+Py)/27, 2w (p)/27L(p,1)B(p,!)P3, and

_ 2 . . . e2 eZ 2 B ,0 2
v(p)L(p,1)?P,, respectively, and can be combined into o lim Iim—;u)((w,p)= Cim &Y (w,0) :
w—0p—0 P w—0 2m [1_8(0)!0)]

!

( )_ XO(wllp)
xtenp)= 1+v(p)xo(w,p)’

= ez4 2’} 69
=544 T, (69

(a) (b)
which follows from the Kubo formuld® Here we used the
asymptotic of the bubble integr8l, Eq.(47), and the imagi-
nary part of self-energg and derivative of the bubble inte-
gral B’ defined in Egs(15) and (65), respectively. Results
are given in Table IV for variouss and\. One observes that
at large coupling the “Drude” conductivity increases consid-

©=Q Q’”‘Q erably compared with the noninteracting one. We explain this

by reduction of interaction with disordeq (s much smaller

(C) (d) than its noninteracting value of /2 despite the reduction in
density of statesB’ larger than its noninteracting value of

FIG. 9. Contributions to the density-density correlator at the— ). At smallrg using Eqs(A2) and(A3) of the Appendix
leading order. and Eq.(67) one obtains
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TABLE IV. The Drude conductivityo/2me? for various values  not rigorous however. There is an assumption involved: it is
of rs and\. assumed that all the Hubbard-Stratonovich fields which in
general are tensorial are dominated by their singlet part:

rS
A 0.1 1 2 4 8 16 QUlUZN 50102Q-
8 985 51.4 168107 7.15<10% 3.39x10° 1.53x10% In this paper we will make such an assumption. Therefore we
4 479 220 70.3  3.0410%7 1.47x10° 7.18x1C° neglect, for example, triplet channels in the physical case of
2 233 931 287 12410 6.22x10% 3.20x10° Ng=2. _ _ .
0.5 0.553 1.61 4.44 19.0 1.6a® 577X 1% The partition function(suppressing for simplicity the rep-
0.1 0.107 0.246 0.470 1.79 10.5 6g.3 lica indices and writing explicitly just one of the HS fiejds
or any observable is expanded around the saddle point
2 5/2)3 — | eNsPerdQl~
e N 27\ Z—feSeff ~fexNA
o=—\| 1-4r A gD +r, cl. 0 o A(NsAet{ Qspl
2 2

1 -1
whereC is given in Eq.(68). The leading-order contribution 20D "QsplQ+AAIRD,
dominates at small couplings and disorder. However, thavhere AA[Q] contains all the cubic, quartic, and higher-
theory has zero modes—Cooperons. Therefore possible IBrder terms irQ. From this Feynman rules are read and they
divergencies might render the leading-order results invalid ascale compared to Fig. 7 in the following way: HS fields’
large coupling or disorder. In principle for zero temperaturepropagators are proportional tds, fermion loop also has
and infinite samples the results are invalid for all couplingsNg, while fermion-fermion-boson vertex is dJ)Ts The
Our next task is to find a range of parameters and temperdeading-order contribution of conductivity considered so far
ture (or sample sizgsin which the IR divergencies at the is of orderNg and we will consider ordeNg:]_ in the fol-
next order are still small compared to the main contributionjowing section.

IV. SUPPRESSION OF WEAK LOCALIZATION BY THE B. Fluctuation correction to the density-density correlator and
LONG-RANGE INTERACTION EFFECTS conductivity
A. The saddle-point expansion and the spin-singlet 1. Density-density correlator

imati . . .
approximation The correction to density-density correlator at two-loop

In this section we describe some of the corrections aroungdrder which contributes to the small frequency linfihe
the variational ground state found in Sec. Il and used in Seanly ones needed for subsequent calculation of the conduc-
lll to calculate several physical quantities. The steepest deivity) is given in Fig. 10,
scent expansion in terms of Feynman diagrams is quite
standard:® We briefly describe it introducing\s identical o
“spin” components to show that the expansion might be in- ox( ,p)—TE 2 o(=n(n+1)6(=n’(n"+1))

terpreted as “INg” expansion(spin might include other de- 7 nmofm

generacies such as multiple valleys in.Sihe action includ- XB(p,)*(n,n+ [[Dgglm,m+1)
ing the spin indicesr is given in Eq.(5). It is a peculiar ol 1

feature of the disordered Coulomb problem that the leading XGyGpy oG+ rGpigsr

order in 1Ng vanishes for two entirely unrelated reasons.
The direct contribution in the disorder part vanishes due to
the fact that it is of highetsecond order in replicasN, as x(m’,m’+1[Dqgln’,n’+1).
well:

X{(n,m’|Dar|m+1,m" +1)

All the other diagrams are regular as—0 , hence they do
not give contributions to the dc conductivity. Near the Fermi
2 2 Gaa be ~N2N2. ‘1 ” . .
& e Poyoy Poyey NriVs surface one “disentangles” the momenta flowing in the cen-
oo tral loop, see Fig. 10,
The directNZ contribution to the Coulomb part

| B(p.l)? 1
ox=T —  _Bu(p,l —F, (70
2 2GR, (xX)u(x—y)G5, (v,y)=0 =12, PECTY I > ey ™
Xy a o0
. o . where
vanishes due to neutralizing backgroufya (x—y) =0 (and

under assumption of homogengityrherefore leading terms Nt ] -

are of ordeN,. The free theory action is also of ordi. By(p.)=2> GiG"}/Gp_Go'),. (71
Therefore all the terms in action are of the ordérand it a

plays a role of the “loop expansion parameter” and comesThe integral over is logarithmically infrared divergent in
always in combination with %/. This Hartree-Fock logic is 2D and, as usuaf, signals breakdown of naive perturbation
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TABLE V. The values ofB,/7* for variousrg and .

rS
0.1 1 2 4 8 16

3.77 4.6&K107 1.60x10* 1.25x10° 1.47x10% 2.11x10°
3.46 2.86<10% 9.05x10° 7.21x10° 8.92x10° 1.28<10'°
2 318 1.7x10% 4.78<10° 3.85x10° 5.14x10° 7.78x10°
0.5 2.73 536 1.0410° 8.10x10* 1.35x10° 2.58<10°
0.1 244 274 12810 6.65<10° 1.51x10¢° 4.72<10°

H 0| >

PHYSICAL REVIEW B68, 245321 (2003

FIG. 10. The correction to the density-density correlator at two-
loop order.

So=— = In—. (72
2m 7B Jpr 12 27 7B’ p,ZR

e? ZQZBAJPuv rdr € o°B, pdy

theory and appearance of weak-localization effects. We asas usual® it is cut off in both infrared and ultraviolet. The

sume an IR cutoffto be defined more explicitly belowand
will use this expression to calculate conductivity.

2. Weak localization

The fluctuation correction to conductivity using Kubo for-

mula is

~ e’w? B(0))?
So=lim

w—0 2m [1_ B(O,l)]

1
B4 TR
where the derivative oB,, Eq.(71), is defined by

&B4(D,I = O)
a(p?)

After some algebra it takes a form

B

p=0

B/ — 1 f (e+e,)?
“2m2p)*)e [qP+ (et e,)2)

(1+e))2

Values of the coefficienB, for various couplings and disor-

der strength are given in Table V.

infrared cutoff for the weak-localization logarithmic diver-
gence can be set by finite temperature

27Tm*/ 1
2(q/\7)(B'17?)

or finite sizeL of the sample

pI2R:

_271'
le—T-

The ultraviolet cutoff id°

2

&zmin{,u,llr}. (73)
2m*

C. Crossover temperature

Let us find a temperature at which the perturbation theory
in “loops” or 1/Ng breaks down. At this temperature the
Drude conductivity is significantly reduced by fluctuations
and one conservatively estimates it as settling of the weak-
localization (the Anderson insulatpregime. It is estimated

Before discussing physical implications of the correctionby equating leadingEq. (69)] and the fluctuation correction

we provide perturbative result fd :

B,=2n7% 1+rn| —225gM+

2,2,2
3/2,3/2,3)
2,2,2 1 2,2,2
2652( 4) + 4G§§< S) .
2 2
(4)\) 3/2,3/2, (4)\) 3/2,3/2,

The quantity is increasing very fast with couplimg and
decreases slowly with disorder strength.
Returning to conductivity one obtains

25/2) 2
2 Cq

37

where

3
Ca= 7 3 CH(4N 2179~ 9G3

(4n)?

e? 2g°B, (= rdr
Sor q 4j

T 2n wr o 1-B(r,l)’

[Eq. (72)] to conductivity times a factdR of order 1 at finite
temperaturdor sample size

eZ
2p7
0'02—77_4qu B'/Tr=Réo

2

e? o°B, 2m* 27T, m* 732
:_q 4n( T 1w T (79
27 7B’ T 2qB’

where we used the large disorder value in &3). Therefore

208

wl— 1
777_5/2

with a dominant argument of the exponential being

_ 4mNg(B’)?

S
RB;

Considering first the bare diffusion constant as fixed one ob-

In 2D the integral is dominated by small momenta. Thereforeserves that asg increases the temperature first rises due to
at very low temperature we can use approximation of Egpreexponential factor, but then after reaching a maximum

(64),

exponentially drops at large;. On the other hand fixings
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regime considered in this paper, due to mixing of diffusons

with static photons, the vertex given in Fig. 13 has much
4o softened small momentum asymptotic: d#+Dp?). It can
be easily seen that this softening is quite enough to render
the contributions such as those in Fig. Qhich is of the
order 1N, namely higher than the weak-localization pne
finite. One therefore would ask how this can be understood
diagrammatically in terms of conventional disorder
coupling® The point is that the mixing effectively sums up
diagrams to all orders in Coulomb coupling, Fig. 13. Each
one of these is divergent, while their sum is not. This is quite
analogous to the disappearance of IR divergencies due to
long-range photon “chains” after the RPA diagrams are
summed.

I
+

FIG. 11. Vertex correction due to interactions with disorder
(dashed linesin the conventional notatior(®ef. 18 (first line) and
in the present paper notatiofsecond ling
the temperature quickly drops asincreases. In experiment 2. Density of states near the Fermi-level at large coupling
what is usually varied is density of electrons. In this case as The Aronov-Altshuler corrections to conductivity are di-
density gets lower both the diffusion constant becomesectly related to the downturn cusp in DOS due to Coulomb
smaller andr becomes larger. The overall effect is that for interaction. In 2D the cusp is given By
clean samples and relatively largethe quasimetallic state
is stable to very long temperatures due to reduction of the SN(e)xIn[e]
DOS at the Fermi level. Note that the trajectory in the,
space of the experimental setup is itself dependent on th@gain due to the renormalization of the vertex, see Fig. 11. It
DOS This complicates the actual comparison since effectgvas claimed that this is precisely what was observed in tun-
of screening cannot be neglected in experiments to date, &€ling junction experiments in disordered metal fifth&?In
was discussed in Sec. II. Qualitatively however the picture i®ur approach, due to Anderson-Higgs mechanism, this renor-
that at large coupling the metallic state survives effect ofmalization is greatly reduced. An alternative explanation at

scattering off impurities due to the reduction in the DOS. Very strong coupling and significant disorder might be the
leading-order reduction of DOS discussed in Sec. IID, see

Fig. 6. This does not contradict the experiments in metals
since in these experiments disorder is lafgeen very largg
1. Higher-order corrections to the vertex function and while the couplingr is quite small. Of course if the density
conductivity is sufficiently high the screening can no longer be neglected

It was shown in Ref. 37 that in perturbation theory whenand the Aronov-Altshuler effect becomes dominant. How-
one sums up all the corrections to the vertex gt ¢ryyp ~ €VEr, as we mentioned before, in very clean 2DEG samples
condensate where is the density field that couples to static the disorder can reduce the screening and our approach of
photon shown in Fig. 11, it becomes proportional to the Neglecting the screening at the leading order becomes more
diffusive pole 1/ 7+ Dp?). The same expressions are also@PPropriate. In this case higher orders will not be large
shown in Fig. 11 in our notations as a sum of leading and th&nough to undermine this assumption. One will get again a
next to leading terms in the steepest descent expansion. [gduction in the DOS, but for entirely different reason. A
this picture however the diffuson propagator is considered ifelated issue is emergence of the Coulomb gap commented
the noninteracting theory. The vertex part enters high-ordePn in the following section.
diagrams creating logarithmically divergent corrections

D. Higher-order effects: Aronov-Altshuler effect revisited

which strengthen(in the singlet sectgrweak localization. V. SUMMARY AND DISCUSSION
The major diagrams involving the singular vertex part con- . _ . .
tributing to conductivity are given in Fig. 12&ome other To summarize we present a consistent gauge-invariant ap-

contributions cancel, see Ref.)18he physical interpreta- Proach to disordered strongly interacting electron gas in 2D.

tion of this phenomenon is that electrons scatter coherentlffhysically the basic phenomenon is the reduction in the DOS

on Friedel oscillations due to density fluctuatidAs. at Fermi level due to strong Coulomb repulsion. This in turn
Without the crucial pole factor the Aronov-Altshuler cor- SUPPresses both screening and scattering of impurities stabi-

rections do not diverge in the infrared. In the strong-couplingiZing the metallic state against weak-localization effects.
Formally the approach consists of two steps. The first is

variational(or “self-consistent’): the most general quadratic
states were considered and one with minimal energy identi-
fied. At this stage the “RPA’ screening is neglected assum-
ing it is sufficiently weakened by disorder so that higher

orders are small. The second step is steepest descent pertur-
FIG. 12. Major contributions to the conductivity in perturbation bative expansiorfwhich also can be identified as an expan-
theory. sion in parameter Ny with Ng number of spin components
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or valleys. Although the general philosophy of the steepest

descent expansion is not drastically different from the one

adopted in other workésee for example Ref.)8two rather r = +

independent observations were made. The first is that the

exchange part of Coulomb interaction leads at strong cou-

pling to a significant reduction of the DOS near the Fermi

surface and to via the reduction suppresses the disorder ef-

fects. The second is that when the steepest descent expansion

procedure is followed consistently, mixing between static

photons and diffusons not only causes Debye screening of

the photon, but leads in addition to a softening of the diffu-  riG. 13. Vertex corrections due to mixing of diffusons with

sion pole. This in turn leads to a number of observable constatic photons in the present paper notatiéitst line) and in the

sequences such as a significant modification of the vertegonventional notationéRef. 6 (second ling

part and consequently of the Aronov-Altshuler contribution

to conductivity. The contribution becomes regular in the

strong coupling,_ hot Iogari_thmikthe_ ab_sence of the effect of Hwately within theo-model approach as long as the mixing is

the DOS reduction due to interaction in Ref. 17 can be trace . ) )
Small. This is a well-known problem in gquantum-field

:ﬁeziarnEzp(plr(cs)ﬁlmate calculation of the exchange diagram Ir'Eheory“‘under the name of “gauged models.” These issues

In this section we discuss several general questions armight become clearer when the present approach is extended

assumptions and relation of our work to other attempts t*€yond 2D(say to 2+e). Work on this is in progress. A
incorporate the long-range Coulomb interactions into thd€lated issue is understanding the difference between diffu-
theory of disordered electron gas. sons and Cooperons. Within the model approach the
The theory of disordered electron gas relies to a largeoP(2N) @ Sp(N) symmetry forces the Cooperon and the
extent on the existence of massless collective modes, diffiffuson propagators to be the same. It is precisely an ex-
sons and Cooperons. It is tempting to interpret these excitd?licit (not spontaneoysymmetry breaking due to Coulomb
tions as Goldstone bosons of some symmetry breafiit interactions that leads to the hardening of the diffugoix-
several complications arising from the quenched disordefNd With photon, while leaving Cooperon intact possible.
see Ref. 48 The o-model approach initiated by Wegrer The fact that Coulomb interaction modifies diffusion at
and other¥3 long ago and developed and applied to thelarge distances was also discussed in Ref. 38 and this might
Coulomb interaction case recently by Bararehall® starts lead also to suppression of weak localization. The work how-
from an assumption that th8 = Sp(2N) @ Sp(2N) symme-  EVer was criticized>%?%that the vertex parts were not taken
try of free disordered electron gas is spontaneously broke/fito account or alternatively the treatment is not gauge in-

down to diagonal subgroull=Sp(2N), whereN enumer- variant. Our work explicitly shows that despite the fact that

ates replica, spin, and Matsubara indices. We have shown fiffuson is hardetalthough still masslesst large distances,

Sec. Il however that diffusons mix with photon and becomethe Cooperon is not. Therefore although weak localization is

“harder” than standard Goldstone bosons. This might signaPuPPressed, the suppression is much weaker and completely

that thec-model approach should be modified to incorporatediﬁerent' The logarithmically divergent contribution to con-

the Anderson-Higgs mechanism. Actually the need for such Juctivity includes Cooperon.

modification can be found in recent remarkable work of Ref, 't Was shown by Efros and Shklovsfiion the basis of a
16 and we comment on this now. heuristic argument with plausible assumptions about the na-

Unfortunately the presence of strong Coulomb interacture of the localized electronic statéseglecting their over-

tions explicitly breaks a subgroup @. An example of the |aP9 that there should be a Coulomb gap in the strongly

explicitly  broken-symmetry  transformation  is 8, interacting electrpn gas. As in the case cr)fmodels With_
Lt — L P Coulomb interactionsS it is not clear from the first orders in
= _pns Opn=—t¢_p — for positive Matsubara frequen-

] our scheme whether the reduction of the density of states is
ciesn>0 and 6pn=1_p —n, Othpn=—t_p n for nega-  zjong the line of their argument. We believe this is unlikely
tive Matsubara frequencies<0. The symmetry is broken dye to the fact that they neglect the effect of exchange on the
by both the frequency terrEp,nz//Sn(—iwn) l/fgn and by the “states” y; defined there. It is also not clear at this point
Coulomb interaction term. However while the breaking bywhether the opening of Coulomb gap that Baramdal *®

the frequency term is “soft” and insignificant, as far as staticdeduce on the basis of thet2 expansion is related to the
quantities such as dc conductivity are concerned, it waseduction in density of states due to exchange.

showrt® that the Coulomb interaction effectively represented One can extend the approach presented here to the “self-
on theo model level by the “square of trace” operatidg.  consistent” scheme initiated by Vollhardt and developed to
(2.1) in Ref. 16 is relevant and cannot be reduced to a softinclude Coulomb interactions by SadovsRyThis will allow
breaking. Barano\et al. notice that at large distances the quantitative study of the insulating state and of the Coulomb
diffusion is suppressed which coincides with our E5R). At  gap. Note however that the “gap” equations of Ref. 39 fol-
short distance scales the electrons are diffusive. We belieew the perturbative Aronov-Altshuler contributions, while
that the Anderson-Higgs mechanism can be treated approxihe self-consistent form of our conductivity contributions,
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Eqgs.(69) and(72), will contain different diagrams. The work APPENDIX: APPROXIMATE SOLUTION OF THE
on this is in progress. MINIMIZATION EQUATIONS

At last we briefly comment on two general assumptions
made. The first is the spatial homogeneity. It is clénat _
clean and even disordered 2DE@ef. 49 at sufficienty ~_ From Eq.(31) we observe that at small coupling<1,
strong coupling become inhomogeneous Wigner crystals o, starts from the first ordee, =sgrie](rse{"+ ). Sub-
“glass.” It was even speculatédthat the Wigner crystalli- stituting this into Eq.(30) immediately gives the leading
zation (which occurs arounds=40 in clean systemsnight  term forg,,:
be related to the observed metal-insulator transition. Follow- 1
|ng.general argument can be advanced against such a sce- 612)0)=Sgr[w]K=sgr{w]6](°). (A1)
nario. It has been observed recently that in several clean
systems of thermally fluctuating repelling objects the homo‘l’herefore we expand, =sgrf »](§©+ rsasvl)Jr ...). Then

geneous stat@iquid or gag exists down to zero temperature. the leading-order contribution t, can be computed:
One such system is the one-component classical pl&Sma.

Another is a system of vortex lines in type-ll \/Ef o e'+e,
w>0,e'

superconductor®. The latter is quite analogous to 2DEG. eil)=—2
a

1. Expansion in smallrg

X i i ’ 2 o ~(0)\2
The difference is that thermal fluctuations should be replaced (e"+&)"+(0+0a™)

by quantum and bosonic field by fermior{gtatistics is quite \/5 . a(o)
unimportant in the low-density limit thoughTo be sure the = —zj K[g—gf]sgr(g’)(——arctan—
energy of the solid is lower, so below the melting point the meJe! 2 ']
liquid state is metastablgn conventional liquids for which We use here the constam approximation. Substituting this
in addition to repulsive interaction there is a long-range ats o Eq. (30) one obtains '

tractive force, the metastable state ceases to exist at spino a} '

point). It is reasonable to assuntand it was demonstrated . 3\/§(a(0))2 «[e]
recently?) that disorder favors homogeneous state over a W= — f
structured crystal Therefore transition to a Wigner crystal €
or glass state would occur at much higher couplings than 3
metal-insulator transition and the relevant state is homoge- =— ———G2(41)?32%3, (A3)
neous as was assumed in the present paper. 215273\ 2 ’

Another assumption commonly made is that the replic - T VIRUY: T ' .

symmetry used to derive our starting point, E5), was as- Twhere the Meijer functio®p; (), bz) 's defined in Ref.

sumed to be unbroken. This means that we neglected a posl- We observe that it is negative, namely the long-range
sibility of “electron glass.’ao This is a distant possibility in interaction reduced the effect of disorder. Diagrammatically

the quasimetallic state since, as we argued in the paper, rg_e minimization equations sum all the rainbows including

ducion n he DOS due (0 ongrange. neracons makegol IS0 S0 ereeton €6 2, n perbeon ey
disorder less favored. Eventually in the insulating stateb. 9 . P X I

: . . itrary number of disorder lines, namely diagram in Fig. 1
glassy behaviors will eventually prevail.

with disordered Green’s function. Its imaginary part is pre-
cisely ). The actual expansion parameter y&r /7>

rather tharr g as can be seen from comparison of the pertur-
bative and exact solutions. Therefore perturbation theory

, , breaks down completely at~10.
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eltl= -

re f k[e—e']1-k[e+e']

2\/5772 "e">0 (s’+e[°]+s”+ei9,])2'

The actual expansion parameter is A rather than\ as

(A5)
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can be seen from comparison of the perturbative and exact
solutions. Therefore perturbation theory breakshatO.1.

The results are marked by dotted lines in Figs. 4 and 5.
Generally numerical results agree with both perturbative ex-
pansions.
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