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Emergence of quasimetallic state in a disordered two-dimensional electron gas
due to strong interactions
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The interrelation between disorder and interactions in two-dimensional electron liquid is studied beyond
weak-coupling perturbation theory. Strong repulsion significantly reduces the electronic density of states on the
Fermi level. This makes the electron liquid more rigid and strongly suppresses elastic scattering off impurities.
As a result the weak localization, although ultimately present at zero temperature and infinite sample size, is
unobservable at experimentally accessible temperature at high enough densities. Therefore practically there
exists a well-defined metallic state. We study diffusion of electrons in this state and find that the diffusion pole
is significantly modified due to ‘‘mixture’’ with static photons similar to the Anderson-Higgs mechanism in
superconductivity. As a result several effects stemming from the long-range nature of diffusion such as the
Aronov-Altshuler logarithmic corrections to conductivity are less pronounced.
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I. INTRODUCTION

The question of mutual influence of long-range Coulom
interactions and disorder in two-dimensional electron
~2DEG! attracted a great attention after an unexpected
covery of metallic state and clear metal-insulator transit
by Kravchenko and co-workers.1,2 The very existence of a
metallic state with finite conductivity at zero temperature
in conflict with the weak-localization theory,3 which predicts
that in 2D even negligible amount of disorder localizes el
trons at sufficiently low temperature. The theory howev
was firmly established at weak coupling or for short-ran
interactions only, while the metallic state exists and the tr
sition was found for rather strong couplingr s5Eee/EF
;10, whereEee is the average interaction energy per ele
tron andEF is the Fermi energy. Therefore Coulomb inte
actions dominate the kinetic energy and cannot be consid
‘‘small.’’ In addition to an obvious difficulty to treat quanti
tatively or even qualitatively the strong coupling, it is n
clear which one, disorder or Coulomb interactions, should
considered as a most important cause of the transition t
insulating state~the corresponding insulating state in the
cases is of ‘‘Anderson’’ or ‘‘Mott’’ type4!. Most probably it
results from a nontrivial combination of these interaction

The standard approach starts with a commonly acce
argument that a long-range Coulomb interaction a
‘‘bubble resummation’’ of the random-phase-approximati
~RPA! type5 becomes effectively short range. Therefore o
can start the treatment of disorder after this resummation
performed. Disorder is treated within a similar approach
which ‘‘rainbow’’ diagrams6 ‘‘ladders and crossed ladder
resummation’’7 ~or, more systematically, the ‘‘steepest d
scent’’ approximations8 in the path-integral language9! with
interaction being already short ranged. In this way two kin
of massless modes determining the properties of the di
0163-1829/2003/68~24!/245321~18!/$20.00 68 2453
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dered electron gas are identified: diffusons~describing diffu-
sive nature of the electron motion due to impurities! and
Cooperons in the particle-particle channel. It is the l
which lead to weak localization due to logarithmic infrare
~IR! divergences in leading fluctuation contribution
conductivity10 ~diffusons can also lead to IR divergences
yet higher orders11!

Dswl~T!5
e2

ph
ln@Tt/\#,

wheret is a free system relaxation time.
More sophisticated renormalization-group based meth

using ‘‘path integral’’12 and ‘‘s models’’7,13,14with Coulomb
interactions15,16were developed. Considering high-order ve
tex renormalization, it was found that there are additio
logarithmic IR ~Aronov-Altshuler17! divergencies:

Dsee~T!5
e2

ph
~123/4F* !ln@Tt/\#,

whereF* is the Fermi-surface average of the screened C
lomb interaction, leading to a conclusion that long intera
tions increase tendency to weak localization.18 This leads to
a difficulty in understanding recent experiments in whi
apparently interactions do not necessarily lead to rapid
crease of resistivity. Recent detailed experimental studies19,20

clearly show that near the putative metal-insulator transit
logarithmic terms either are suppressed or cancel each o
~several arguments were put forward in Ref. 19 against s
a fortuitous cancellation!. The conductivity dependence o
temperature follows the Gold-Dolgopolov21 linear decrease
which at higher temperatures crosses over to the balli
regime studied in detail recently in Ref. 22. Generally with
this approach the Coulomb interaction is screened first
©2003 The American Physical Society21-1
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B. ROSENSTEIN AND TRAN MINH-TIEN PHYSICAL REVIEW B68, 245321 ~2003!
the disorder effects are treated later. However rec
electron-spin-resonance experiment23 demonstrated that th
screening length rapidly diverges when density is redu
towards the transition point. The density of states~DOS! at
the Fermi level vanishes. It was noticed long time ago24 that
the diffusive motion of electrons slows down the process
screening. Therefore in the limit of small density and wh
disorder seems to play an important and possibly cru
role, it is reasonable to start from an approximation in wh
the interaction is not rendered short range.

With these experimental facts in mind, we reconsider
question of the interrelation of disorder and Coulomb int
actions in 2DEG within a single consistent systematic
proach without replacing it by a short-range potential fro
the beginning as is done in the clean limit or high dens
The necessarily nonperturbative approach consists of
steps. First is a variational one~nonperturbative in coupling!
and is similar in spirit to the Hartree-Fock for clean metals
the BCS approximation in superconducting metals. We fi
in Sec. II the ‘‘best’’ quadratic Hamiltonian representing t
system. On this set of Hamiltonians a quasiparticle~and
quasihole! Green’s function is a variational parameter. The
are possible contributions in the particle-particle~Cooper
pairs! as well as the particle-hole channels due to Coulo
interactions~Hartree state in direct and Fock state in e
change channel!, while interactions with disorder can b
treated in a similar manner with the frequency depend
relaxation time being one of the variational parameters. P
sible condensates in several channels do not realize th
course there is no condensate in the Cooper channel f
repulsive interaction and there is also no condensation in
direct channel due to the charge neutrality as is shown
Sec. II A. However the strong long-range exchange inter
tion creates~even in the clean case25! a dip in the DOS on
the Fermi surface. At infinitely strong coupling the DOS
the Fermi surface approaches zero~to avoid confusion, this
reduction is not related to the one found at higher orders
screened interaction in Ref. 18, see discussion of this top
Sec. IV D!. This makes the electron liquid very rigid and,
a result, the effects of disorder are greatly suppressed. Th
turn leads to increase in conductivity at large coupling. T
emergence of the above phenomenon can already be se
perturbative level. The first-order quasiparticle energy s
due to exchange is~up to a constant!

^puHintup&52(
p8

v~p2p8!sgnS m2
p82

2m*
D .

It is easily shown~Sec. II B! that for purely repulsivev(p)
energy of states above the Fermi level is shifted up, wh
energy of states below the Fermi-level is shifted down. T
logarithmic vanishing of the DOS is a direct consequence
the long range nature of the Coulomb interaction. It is i
portant to note that the significant reduction of the DOS n
the Fermi level does not mean that the effective mas
smaller than the band effective mass. On the contrary, it
shown in the clean case26,25 that despite this the effectiv
24532
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mass grows with coupling as was observed recently
Shubnikov–de Haas experiments.27 We comment more on
that in Sec. II B.

After the variational quadratic Hamiltonian~or variational
quadratic action in the path-integral formalism! is found, we
introduce in Sec. III A a systematic perturbation theo
around it. In the path-integral language9,8 it is a conventional
steepest descent expansion with the variational action
saddle point. First we introduce fields describing vario
possible kinds of fluctuations: diffusons, Cooperons, sta
photons ~corresponding to the direct Coulomb interactio
channel!, the exchange and the Cooper channel interactio
The last two are evidently massive as well as half of dif
sons and Cooperons.8 However we find that there is a non
trivial mixing between photons and diffusons. The pheno
enon is very reminiscent of the Anderson-Higgs mechan
in superconductivity28 in which massless Goldstone boson
phase is mixing with~dynamical! photon. As a result both
modes become ‘‘massive.’’ In the case of strongly coup
2DEG the modes are not really massive, the density-den
correlator describing diffuson becoming ‘‘harder’’:

1

vt r1e2Dr upu/4p
, ~1!

compared to the noninteracting diffusion pole

1

vt r1Drp
2

. ~2!

The ~static! photon becomes RPA screened:

1

2upu/e212p
.

The renormalized diffusion constantDr increases~nonpertur-
batively! with coupling from its noninteracting value ofD
5mt/m. Similarly the renormalized relaxation timet r in-
creases withr s .

Equation~1! implies that electrons at large distances a
no longer ‘‘diffusive’’: they obey diffusion equation with firs
space derivative only. The Cooperon on the other hand
retains its typical diffusive pole form, Eq.~2!. The approxi-
mation scheme at higher orders therefore nontrivially co
bines the RPA and the disorder resummation on the s
footing. It is important to emphasize that the scheme is ma
festly ‘‘gauge invariant.’’ As was shown in Refs. 16 and 1
that it is very important to ensure gauge invariance at e
stage in order not to miss important ‘‘vertex correction
necessary to ensure charge conservation at each order o
expansion including the variational stage.

Next in Sec. IV we turn to the ‘‘fluctuation corrections
leading to weak localization. The leading fluctuation corre
tion to conductivity is infrared divergent. However, as t
couplingr s grows, the correction grows slower than the ma
~Drude! contribution. This justifies the expansion even f
small values ofD,1 at which the standard 1/D expansion is
invalid (Dr@1 is however required!. Therefore the crossove
temperature at which conductivity starts approaching zer
1-2
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EMERGENCE OF QUASIMETALLIC STATE IN A . . . PHYSICAL REVIEW B68, 245321 ~2003!
significantly lower than that for noninteracting electron
This temperature is estimated as a temperature at which
perturbation theory in fluctuations breaks down, nam
when the correction becomes a significant fraction of
leading-order contribution. The crossover temperature
cording to our analysis becomes unobservably small sinc
vanishes exponentially fast with coupling~due to logarithmic
dependence of the fluctuation correction on tempera
serving as an IR cutoff!. Therefore one can practically~for
samples of finite albeit large size! talk about stable metallic
state in 2DEG. Our conclusions and discussion of the ph
diagram as well as relations with other approaches are
ject of Sec. V.

II. VARIATIONAL PRINCIPLE FOR COULOMB
INTERACTIONS IN THE PRESENCE OF DISORDER

A. Model and the basic approximation

1. The model

We consider a system of electrons with effective ba
massm* confined to a plane interacting with each other a
with random potentialU(x):

H5E
x
cxs

† S 2
¹2

2m*
2m1U~x!D cxs

1
1

2Ex,y
cxs1

† cxs1
V~x2y!cxs2

† cxs2
. ~3!

We set\51 throughout theoretical parts of the paper.s is a
spin and valley index andv(x) is the 3D Coulomb interac
tion which has the following Fourier transform:

v~p!5
e2

2e

1

p
@12d~p!#. ~4!

Here e is the dielectric constant and the last term descri
the background ensuring charge neutrality of the syst
v(p50)50. Passing to the standard imaginary time pa
integral formulation9 and performing a well-known replica
trick8 one obtains the action

A@c,c̄#5E
x,t

c̄xt
asS ] t2

¹2

2m*
2m D cxt

as

2
1

2tEx,t,s
c̄xt

as1cxt
as1c̄xs

bs2cxs
bs2

1
1

2Ex,y,t
c̄xt

as1cxt
as1v~x2y!c̄yt

as2cyt
as2 . ~5!

Herea,b51, . . . ,Nr are replica indices,t is the ‘‘bare’’ re-
laxation time describing strength of the random potential.
us first consider, for the sake of simplicity, the spin-polariz
case and only one ‘‘valley’’~returning to the general case
Sec. IV A!, which means that we drop the spin indicess.
The path-integral formulation of the variational principle, b
ing completely equivalent to the standard methods such
summation of diagrams or Bogoliubov transformations,
24532
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lows, in addition, a convenient treatment of quantum a
thermal fluctuations. Transforming to the Matsubara f
quencyvn5(2n11)pT and the momentum basis for th
Grassmannian fields

cxt
a 5AT(

p
(

n
exp@ i ~px2vnt !#cpn

a ,

and separating regions of phase space in which interac
connects electrons near the Fermi surface, one obtains8:

A5(
p

(
n

c̄pn
a S 2 ivn1

p2

2m*
2m D cpn

a 1Adis1AC ,

~6!

Adis52
1

2t (
p,q,r

(
n,m

@c̄p2q,n
a cq,n

a c̄2p2r ,m
b c r ,m

b

1c̄p2q,n
a c2p2r ,n

a c̄ r ,m
b cq,m

b

1c̄p2q,n
a c2p2r ,n

a c̄q,m
b c r ,m

b #,

AC5
T

2 (
p,q,r

(
n,m

@c̄p2q,n
a cq,n

a v~p!c̄2p2r ,m
b c r ,m

b

1c̄p2q,n
a c2p2r ,n

a v~p!c̄ r ,m
b cq,m

b

1c̄p2q,n
a c2p2r ,n

a v~p!c̄q,m
b c r ,m

b #.

All the fermion’s momentap, q, r are now considered to b
aroundpF . Both the disorder and the Coulomb interactio
parts Adis and AC , respectively, have three terms corr
sponding to direct~Hartree!, exchange~Fock! electron-hole
channels and the electron-electron~Cooper! channel.

2. The most general quadratic Hamiltonian and the Hubbard-
Stratonovich fields

A convenient way to look for the most general quadra
action is to perform a Hubbard-Stratonovich~HS! transfor-
mation introducing a field for each of the six channels. W
should not consider the direct channel for disorder thou
since it is of higher order in number of replicasNr which
should approach zero~we assume that replica symmetry
not broken spontaneously!. The effective action in terms o
these fields is rather complicated:

Ae f f52Tr ln@GN
21#1(

pnm
@Qpnm

ab Qpnm* ab1Dpnm* abDpnm
ab #

1
1

2 (
pp8n

@Fpn* v21~p2p8!Fp8n1Qpp8n
* a v21~p2p8!

3Qpp8n
a

1Epp8n
* ab v21~p2p8!Epp8n

ab
#. ~7!

HereGN is the fermionic Green’s function in Nambu spa
defined by

hpn
a 5

1

A2
S cpn

a

2c̄2pn
a D , h̄pn

a 5
1

A2
~ c̄pn

a 2c2pn
a !. ~8!
1-3



n
th

c
’s
s-
nd
on

u

ly
et
u

n-

. O
a

l

ha

mi-

ate

an

ure

ua-

B. ROSENSTEIN AND TRAN MINH-TIEN PHYSICAL REVIEW B68, 245321 ~2003!
The inverse fermionic propagator is a 232 matrix

GN
215S G21 F

F* G21 * D , ~9!

whose elementsG21 andF are themselves matrices inp,n,
anda space. The diagonal element is

^p8n8
a uG21upn

b &5dnn8d
abF S ivn2

p2

2m*
1m D dpp81 iFpnG

1
i

At
Qp2p8nn8

ab
2dnn8Epp8n

ab , ~10!

where the fieldQ describes the diffuson,F is a static photon
field in the direct channel, whileE is an ‘‘exchange field.’’
The off-diagonal element

^p8n8
a uFupn

b &5
i

At
Dpp8nn8

ab
1dabQpp8,n1n8

a ~11!

contains theD and theQ fields describing the Coopero
channel in the disorder part and the Cooper channel in
Coulomb interaction part~if the interaction were attractive
this channel would have led to superconductivity!, respec-
tively. This effective action should be minimized as a fun
tion of all five HS fields determining the fermionic Green
function. The solution of this variational problem is di
cussed in the following section. Later in Sec. III we expa
the path integral around the solution of the minimizati
equations to quadratic order~harmonic approximation! to de-
termine elementary excitation modes and then in Sec. IV
Feynman rules to compute fluctuation corrections.

3. The saddle-point equations

Minimization of the effective action, Eq.~7!, poses a non-
trivial mathematical problem. Let us first remove obvious
irrelevant fields and functional dependencies using symm
arguments. Since the Coulomb interaction is purely rep
sive, we assume that the electromagnetic U~1! gauge sym-
metry is unbroken~there is no condensation of the electro
electron pairs!. ThereforeDSP5QSP50. This by no means
indicates that there are no fluctuations in these channels
the contrary fluctuations in the Cooperon channel play
important role in destroying the metallic state.

The translation invariance in space and time~we assume
that the ground state is a liquid rather than Wigner crysta29!
and the unbroken replica symmetry~assuming the ground
state is a disordered, possibly overcooled liquid rather t
electron glass30! implies

QpnmSP
ab 5dabdnmdpqn ,

Epp8nSP
ab

5dabdndpp8ep , ~12!

Fpn5dabdndpf.
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We will comment on the last two~nontrivial! assumptions in
Sec. V. Consequently the inverse Green’s function of fer
ons simplifies to

F50,

^p8n8
a uG21upn

b &5dabdnn8d~p2p8!~Gp
n!21, ~13!

~Gp
n!215 i S vn1

qn

At
D 1m2

p2

2m*
2Sp .

The minimization equation for the static photon condens
f is

f52 iATd~p!v~p!(
q,n

Gq
n . ~14!

However due to neutralizing backgroundv(p50)50, and
the right-hand side of this equation vanishes. Thereforef
50. Minimization equations forqn , ep are

qn5
i

At
(

q
Gq

n , ~15!

Sp52T(
p8,n

v~p2p8!Gp8
n . ~16!

We start with exact solution of these equations in the cle
case.

B. The clean limit

1. A major simplification in the clean limit

In the absence of disordert→`, q→0 and we should
consider the second equation~16! only. Substituting the
Green’s function, Eq.~13!, it takes a form

Sp52T(
q,n

v~p2q!

ivn1m2q2/2m* 2Sq

, ~17!

corresponding to the diagram in Fig. 1. At zero temperat
~to which we confine ourselves for most of the paper! the
summation over Matsubara frequencies results in

FIG. 1. The self-energy corresponding to the saddle-point eq
tion in the clean limit.
1-4
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Sp52
1

2 (
q

v~ up2qu!sgn@m2q2/2m* 2Sq#

52
1

2~2p!2Eq50

` E
w50

p

qv@Ap21q222pq cos~w!#

3sgn@m2q2/2m* 2Sq#, ~18!

wherew is an angle between fermion’s momenta vectorsp
andq andp, q are their lengths. Integral over the angle giv

Sp52
e2

~2p!2Euqu>0

qKF2
4pq

~p2q!2G
up2qu

sgn@m2q2/2m* 2Sq#.

HereK@x# is the full elliptic integral of the first kind.31 The
interaction with neutralizing background amounts to su
tracting the termq5p. Now we switch to dimensionles
variables describing deviations of particle’s energy fro
Fermi surface,

p>A2m* m~11«1••• !. q>A2m* m~11«81••• !,
~19!

rescaling also the variational self-energy functionSp
52me« . In the resulting integral equation

e«5
r s

A2p
E

«8
k@«2«8#sgn@«81e«8#, ~20!

k@«#[
K@24/«2#

u«u
,

we extend the integration over«8 to $2`,`% and observe
that there exists a solution obeying physically reasona
property that the sign ofe« is the same as that of« ~we
checked that there are no other solutions in disordered
as well!. This makes the right-hand side independent ofe«

and we obtain a solution

e«5
A2r s

p E
«850

«

k@«8#[
A2r s

p
k1@«#, ~21!

where functionk1@«# can be expressed via Meijer functio
Gpq

mn(zub1 , . . . ,bq

a1 , . . . ,ap),31

k1@«#5 1
4 sgn@«#@M ~«!2M ~0!#, ~22!

M ~«!5G33
22S 4

«2U
0,0

1/2,1/2,1D .

It behaves as«(ln@8/«#11)/2 at small« and asp ln@2«#/2 at
large«. The standard dimensionless coupling

r s[
e2

4pe
Am*

m

was introduced.
24532
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Generally the solution of the saddle-point equation cor
sponds in terms of diagrams to summation of all the photo
rainbows, see Fig. 2. However, as it is well known,5 the sum
of the diagrams except that of Fig. 1 vanishes identica
This will no longer be the case in the disordered electron g
The fermionic Green’s function near the Fermi surfac
namely at small«, becomes nonanalytic:

G«
21; i v̂n1«S 11

r s

A2p
ln

8

« D ~23!

and it is dominated by the interaction ‘‘corrections.’’ He
v̂n5vn/2m is dimensionless frequency.

2. Depletion around the Fermi level

Although no energy gap~the Coulomb gap! has been
opened within this approximation, it follows directly from
Eq. ~23! that the DOS right on the Fermi level vanish
logarithmically:

N~«!;
1

ln~1/«!
. ~24!

Therefore one can term electron gas with such proper
‘‘very marginal Fermi liquid.’’ The logarithmic dip in the
DOS is even weaker than a power normally associated w
such a situation.32 As we will see in the following section
this will naturally lead to effective reduction of scattering o
impurities thereby increasing conductivity and making t
transition to Anderson insulator at least more difficult. O
course this result is ‘‘perturbative’’ in a sense that for t
inverse propagator only one diagram was taken, Fig.
Therefore the effect ‘‘starts’’ and can be understood at we
coupling. One can interpret the minimization equations@or
the Hartree-Fock~HF! resummation# as a renormalization o
energies of the one-particle states due to the collective ef
of the many-body electron-electron repulsions. As we m
tioned in the Introduction the reduction in DOS in perturb
tion theory can be seen from the eigenvalue shifts. Indeed
sgn@«# factor in Eq.~21! makes it clear that energy of state
above the Fermi level is shifted up, while energy of sta
below the Fermi level is shifted down. The logarithmic si
gularity is a direct consequence of the long-range nature
the Coulomb interaction.

Obviously, if there would not be a disorder to interfe
with the screening, the RPA type of reasoning would imp
that the singularity would be ‘‘smoothed away’’ or ‘‘cured
by the quantum fluctuation corrections. Higher orders in c
pling are increasingly singular and the singularities should
‘‘resumed away.’’5 However even for the screened intera
tions there is a dip in the DOS.33 It cannot approach zero, bu
might be reduced significantly. We calculatedN(0) for dif-

FIG. 2. The ‘‘rainbow’’ diagrams corresponding to the sadd
point equation. The solid lines denote the fermionic propagator,
wavy lines denote the Coulomb interactions.
1-5
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B. ROSENSTEIN AND TRAN MINH-TIEN PHYSICAL REVIEW B68, 245321 ~2003!
ferent couplings assuming RPA potential instead ofv(p).
For several couplings the reduction of DOS is given in
last line of Table I. It provides an indication at what degr
of disorder we can continue to use the HF approach with
encountering strong screening effects. As one can see
RPA is apparently less important to the reduction of DO
already atr s as low as 1.

This is consistent with results of more elaborate calcu
tions of the renormalization constantZ defined in Eq.~26!
below involving the Hubbard function in Ref. 25. The effe
of screening is much smaller at large coupling due to sm
density of the polarizing electrons. As we will see in t
following section, in the disordered case the ‘‘marginality’’
replaced at large coupling by large nonperturbative renorm
ization of the parameters of the disordered Fermi liquid.

3. Effective mass increase versus the DOS drop

The reduction in the DOS due to the repulsive interact
is related and is sometimes confused with the issue of
vanishing in Hartree-Fock approximation of the ‘‘renorma
ized mass’’ and the Fermi-liquid parameterF1

s defined by6,5

mr*

m*
5

Z

ZF
511F1

s , ~25!

where renormalization constants are defined by

Z21511
m*

pF

]

]p
ReS ret~p,v50!up5pF

'
1

2pN~v50!
,

~26!

ZF
21512

]

]v
ReS ret~p5pF ,v!uv50 .

Within the Hartree-Fock approximation~without the RPA re-
summation! the retarded self-energyS ret(p,v) does not de-
pend on frequency. Consequently,ZF51 and sinceZ,1 for
repulsive interactions24 the renormalized massmr* is smaller
than the band massm* @mr* vanishes for the long-rang
interactions, see Eq.~24!#. Several groups tried to improv
this beyond Hartree-Fock using the RPA and the Hubb
approximation.26,25 Generally the wave-function renorma
izationZF,1 since it represents departure of the moment
distribution from the ideal Fermi gas one. Therefore t
question whether the effective mass is larger than the b

TABLE I. The density of states at Fermi levelN(0) ~normalized
to the ideal gas DOSN051/2p) for various couplingsr s and dif-
fusion constantsl.

r s

l 0.1 1 2 4 8 16

8 0.873 0.395 0.219 0.106 0.0476 0.020
2 0.892 0.466 0.268 0.129 0.0570 0.024
0.5 0.895 0.557 0.344 0.167 0.0714 0.029
0.1 0.845 0.651 0.471 0.241 0.103 0.039
RPA 0.961 0.817 0.709 0.623 0.506 0.393
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mass depends on which of the reduction factors spacialZ or
temporaryZF is smaller. Ting, Lee, and Quinn26 obtained
finite monotonically increasingmr* .m* , while more recent
calculation25 indicates that atr s,1, mr* ,m* and become
larger abover s51. Numerical simulations of the sam
system34 indicate that, on the one hand, the renormaliz
mass is definitely smaller thanm* at least forr s,5, but, on
the other hand, it increases withr s . In recent experiments
the renormalized mass was measured using Shubnikov
Haas oscillations in magnetic field.27 Apparently the renor-
malized mass deduced that way monotonically increa
with r s . To conclude, the increase of the effective mass w
coupling does not necessarily imply that the DOS at Fe
level cannot drop significantly. This is important for our a
proach since the drop in the DOS naively should result
suppression of the elastic scattering off impurities due
reduced phase space available. Now we return to the gen
case of disordered strongly coupled 2DEG.

C. The saddle-point equations in the general case

1. Numerical solution

Following in the more complicated disordered case, E
~15! and ~16!, the same steps as in the clean case, the e
tions for the scaled~dimensionless! quantities (Sp52me« ,
qn[2mAtq̂v , v[2mv̂) at zero temperature are

q̂v5
1

~2p!2lE«

v̂1q̂v

~«1e«!21~v̂1q̂v!2
, ~27!

e«5
r s

A2p2Ev,«8
k@«2«8#

«81e«8

~«81e«8!
21~v̂1q̂v!2

, ~28!

where l5mt and functionk@«# was defined in Eq.~20!.
The approximation corresponds to summing up the whole
of rainbow diagrams involving both Coulomb interactio
and interactions with disorder, Fig. 3.

The results for the real part of self-energy forl50.5, r s
51 ~where in the noninteracting case Anderson localizat
is very effective! and l58, r s50.01, 1, and 16~still a
quasimetal with small localization effects! are given in Fig.
4. The corresponding imaginary part of self-energyq̂v is
given in Fig. 5. We solved the equations for various values
coupling r s between weak coupling up tor s524 @experi-
mentally the metal-insulator transition is observed fromr s
515 ~Ref. 1! to r s525 in GaAs/AlGaAs~Ref. 35! hetero-
junctions and around r s510 in Si metal-oxide-
semiconductor field-effect transistor~Refs. 36 and 35!#.
Solid lines are simulation results. The dashed lines are res

FIG. 3. The ‘‘rainbow’’ diagrams involving both Coulomb inter
actions~wavy lines! and interactions with disorder~dashed lines! in
the general case.
1-6
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of expansion inr s briefly described in the Appendix, while
dots are the results of the next to leading order in 1/l also
summarized in the Appendix.

At zero frequency the large coupling value ofq̂v50 is
much smaller than the noninteracting result 1/(4l). We de-
fine the renormalized relaxation time via

t r[
At

2qv50
5

t

4lq̂
. ~29!

One observes in Fig. 5 that forr s,10 the disorder paramete
q̂v is almost independent ofv in the whole region where it is
important for calculations of integrals over Green’s functio
~namely whenq̂,v). Therefore one can still consider th
system as a disordered liquid without temporary dispers
It is a good approximation to simplify the analysis by co
sidering a variational principle with constantq̂v5q̂.

The saddle-point equations in that case take a sim
form ~after integration overv)

15
1

~2p!2lE«

1

~«1e«!21q̂2
, ~30!

e«5
A2r s

p2 E
«8

k@«2«8#sgn@«8#S p

2
2arctan

q̂

u«81e«8u
D .

~31!

FIG. 4. The dependence ofe« /« on « for various values ofr s

andl. The solid lines are the numerical results, the dashed lines
the results ofr s expansion, and the dots are the results of 1l
expansion.
24532
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From Fig. 4 we observe that at very large coupling it
similar to the very marginal Fermi liquid of the clean cas
The interaction correctionS« dominates and is not propor
tional to «, therefore it does not reduce to a mere renorm
ization of the density of states on the Fermi level. At fin
but large coupling the renormalization of the density of sta
is still large, see Table I. We calculated it as explained in S
II D, Eq. ~33!. At large coupling the quantity diverges ver
fast. The limiting values ofq̂ at zero frequency for various
bare diffusion constants and couplings are given in Table

Before trying to further exploit the solutions of th
saddle-point equations, we would like to explicitly show th
even perturbatively the reduction in the DOS due to e
change can be clearly seen.

D. Reduction in the density of states

The fact that at small« ~deviation of fermion’s energy
from m) and large couplingr s , S«@2m« leads to significant

FIG. 5. The dependence ofq̂v on v for various values ofr s and
l. The solid lines are the numerical results, the dashed lines are
results ofr s expansion, and the dots are the results of 1/l expan-
sion.

TABLE II. Renormalization of the inverse relaxation timeq̂ for
various couplingsr s and bare diffusion constantsl.

r s

l 0.1 1 2 4 8 16

8 0.028 0.013 0.0070 0.0034 0.0015 0.0006
4 0.057 0.028 0.015 0.0075 0.0033 0.0015
2 0.12 0.056 0.034 0.017 0.0073 0.0032
0.5 0.47 0.29 0.18 0.086 0.037 0.015
0.1 2.4 1.6 1.3 0.67 0.27 0.10

re
1-7
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B. ROSENSTEIN AND TRAN MINH-TIEN PHYSICAL REVIEW B68, 245321 ~2003!
rearrangement of the DOS in the vicinity of the Fermi s
face. The DOSN(v) is related to the retarded Green’s fun
tion by

N~v!52
1

p
ImE

p
Gp

ret~v!. ~32!

For frequency independentqv it reduces to

N~v!52
1

p
Im(

p

1

v22m«p2Sp1 iq

5
1

2p2E«

q̂

~v̂2«2e«!21q̂2
. ~33!

The DOS atv50 for various couplings are given i
Table I, while the DOS as a function ofv for fixed r s58 and
variousl in Fig. 6~a! and for fixedl58 and various cou-
pling r s in Fig. 6~b!. At large coupling the renormalization o
limiting value oft r is very large andq̂ approaches zero. Th
integrand in Eq.~33! becomesd function and the DOS is
determined by the derivative ofe« with respect to« at «
50:

N~v!5
1

2p

1

11e«8
U

v̂5«1ê«

. ~34!

Using the simplified saddle-point equation, Eq.~31!, the de-
rivative of e« is

FIG. 6. The DOSN(v) ~normalized to the ideal gas DOSN0

51/2p) for ~a! fixed r s58 and variousl, ~b! fixed l58 and
various couplingr s .
24532
-

e8[
d

d«
eU

«50

52
2A2r s

p2 E
«>0

k8@«#S p

2
2arctan

q̂

e«
D .

~35!

The asymptotic of the functionk8@«# is as follows. At small
« it is negative and divergent,k8@«#'21/2«. As we have
seen in the clean case this leads to vanishing DOS. How
in the presence of disorder the divergence is cut off since
second multiplier vanishes at small« as ê« /q̂. This in par-
ticular means that in the case of disorder the RPA impro
ment is not necessary as long as the cutoff due to disord
larger than the cutoff due to screening~see discussion in Sec
II B !.

At large « the integral converges rapidly sincek8@«#
'2p/2«2. This can be seen perturbatively as well usi
results of the preceding section. To leading order inr s ,

e852
2A2r s

2

p2q̂(0)E«>0
k8@«#e«

(1) ,

whereq̂(0) ande«
(1) are given in the Appendix by Eqs.~A1!

and ~A2!. The frequency-dependent correction to the DO
~compared to the ideal gasN051/2p) is perturbatively

dN~v!5N~v!2N05
r s

8p2l2E«

~v̂2«!ê«
(1)

@~v̂2«!21q̂(0)2#2
.

In particular on the Fermi surface

dN~0!5
32r sl

3

p
q̂(1),

whereq̂(1) is given in the Appendix by Eq.~A3!. The results
for the DOS are given in Table I. The effect of reduction
the DOS at the Fermi level due to repulsion increases
with increasingr s and depends weaker onl. As we men-
tioned, in the clean case the DOS approaches zero at
coupling no matter how small, which is clearly an artifact
neglecting screening at this stage. However the disorder
fectively ‘‘averages’’ the distribution of states making it fi
nite. At the limit of large disorder the DOS should approa
the ideal-gas one. Repulsive interaction works to reduce
DOS near the Fermi surface and is expected to make sca
ing by impurities less effective. We will see in the followin
section thate8 is related to the renormalized value of th
diffusion constant:Dr5l/e8.

III. A SYSTEMATIC EXPANSION IN FLUCTUATIONS
AROUND THE SADDLE POINT

A. Classification of fluctuations around the ground state

All the Hubbard-Stratonovich fields correspond to e
ementary~harmonic! excitations of the system. The spectru
of these excitations is determined by a quadratic term
expansion of the effective action, Eq.~7!, around the saddle
point determined by a solution of the minimization equatio
~27! and~28!. This quadratic form should be diagonalized
find the spectrum. We first sort out evidently massive mo
1-8
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EMERGENCE OF QUASIMETALLIC STATE IN A . . . PHYSICAL REVIEW B68, 245321 ~2003!
which do not play a role in subsequent discussion. These
exchangeE and the Cooper exchangeQ fields. In the fol-
lowing two sections we address photons, diffusons,
Cooperons.

Since the ground state does not break spontaneously
electric charge U~1! symmetry the charged fieldsQ and
CooperonD do not mix with neutral fieldsE, diffusonQ, and
static photonF. In this sector the inverse propagator e
ments~second functional derivatives of the effective acti
with respect to relevant fields! are

^P8p8
n8 uDQQ

21 uPp
n &5d~P2P8!dnn8@d~p2p8!v~p!21

2d~p2p8!GP/21p/2
n GP/22p/2

n

1d~p1p8!GP/21p/2
n GP/22p/2

n
#,

^P8p8
n8m8uDDQ

21 uPp
n &5d~P2P8!dn81m8,nGP/21p/2

n8 GP/22p/2
m8 ,

^p8
n8m8uDDD*

21 up
nm&5dn1m,n81m8d~p2p8!

3S dnn82
1

t (
q

Gp1q
n Gq

mD , ~36!

where P, p are a total and relative momenta of the tw
electron state, respectively. The relation to indices of theQ
fields used in the effective action, Eq.~7!, is obvious:

P5p11p2 , p5p12p2 .

The QQ element of the inverse fluctuation propagator in
cated that in this channel there are no massless modes.
is evident at small coupling since the diagonal first te
dominates, but since the Coulomb interaction is repulsiv
true for any coupling. The mixing with Cooperon cannot tu
it to a massless mode. We therefore discard the fieldQ in
what follows. Now we turn to the neutral fields.

Second derivative of the effective action with respect
E is

^P8p8
n8 uDEE

21uPp
n &5d~P2P8!dnn8

„d~p2p8!v~p!21

2d~p2p8!GP/21p/2
n GP/22p/2

n
…. ~37!

It is again a massive mode and its mixing with other neu
field is unimportant. More interesting are the diffusonQ and
the static photonF fields:

^p8
n8m8uDQQ

21 up
nm&5dn2m,n82m8d~p2p8!

3Fdnn82
1

t (
q

Gp1q
n Gq

mG , ~38!

^p8
l uDFQ

21 up
nm&52d l ,n2md~p2p8!

1

t (
q

Gp1q
n Gq

m ,

~39!

^p8
l 8 uDFF

21 up
l &5d l l 8d~p2p8!Fv~p!212

T

t (
qn

Gp1q
n Gq

mG .
~40!
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To conclude there are three fields which might have pot
tially massless modes. While Cooperon cannot mix with
other two, diffusons and photons can. Even if both the d
fuson and the photon are massless, after mixing the mas
modes could turn massive. We study this phenomenon n

B. Anderson-Higgs mechanism for diffusons

1. Matrix elements of the photon-diffuson inverse propagator
matrix

At small frequency and momenta around the Fermi s
face we will use the asymptotic expressions for the solut
of the saddle-point equations:

qv'qv5052mAtq̂5
At

2t r
, ~41!

S«'2me8«[2m~Z2121!«,

where renormalizations of the ‘‘disorder efficiency’’ 1/t and
of the inverse density of states at the Fermi levelZ21 were
introduced in Eq.~26!. As can be seen from Tables I and II
large coupling they are quite large.

Then one computes standard diagrams in Eq.~38! for ma-
trix elements of the inverse propagators involving diffuso
and static photons at certain fixed momentump:

^n8m8uDQQ
21 unm&5dn2m,n82m8Fdnn82

1

t (
q

Gp1q
n Gq

mG
[dn2m,n82m8@dnn82u~2nm!B~p,n2m!#,

~42!

where at smallv and p, it contains well-studied function
‘‘bubble’’ integral having the following asymptotic at sma
frequencies and momenta:

B~p,l !5
1

t (
q

Gp1q
n Gq

n1 l.12v lt r2Drp
2, ~43!

for n,0, n1 l .0. Within an approximation of ‘‘renormal-
ization,’’ Eq. ~41!, one obtains

Dr5
Zt r

3

t3
l.

Beyond this approximation the value of effective diffusio
constant can be calculated from the values given in Tabl
and II. As usual, we discard the massive same frequency
11 and22 modes8 and concentrate on different frequenc
sign excitations.

It is convenient to this end to rescale the photon field

Fpn5Av~p!TF̃pn . ~44!

The mixing and the photon inverse propagators are

^p8
l uDFQ

21 up
nm& l52d l ,n2md~p2p8!Av~p!Tu~2nm!

3B~p,n2m!, ~45!
1-9
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B. ROSENSTEIN AND TRAN MINH-TIEN PHYSICAL REVIEW B68, 245321 ~2003!
^p8
l 8 uDFF

21 up
l & l 85d l l 8d~p2p8!@12v~p!L~p,l !#, ~46!

where the Lindhard function24 has an asymptotic behavior

L~p,l ![T(
n

B~p,n,n2 l !'~211v lt r1••• !/~2p!.

~47!

One notices in Eq.~45! that, due to the factoru(2nm), it is
precisely the massless different frequency sign diffusons
mix with photon. The mixing strength is large since it
determined by the same bubble integral that appears in
diffuson’s inverse propagator, Eq.~42!. Now we will invert
this matrix and find its eigenmodes.

2. Eigenvalues and eigenmodes: Physical photon and diffuso

The QF inverse propagator matrix is ‘‘blocked’’ for dif-
ferent photon frequenciesl 5n2m ~we taken.0, m,0),
namely we can consider a single value ofl. For a fixed fre-
quency l .0 the range of possiblen is limited to 2 l ,n
,0 and the (l 11)3( l 11) matrix has the following form:

S a 0 . . . b

0 a . . . b

A A � A

b b . . . c

D , ~48!

where

a512B~p,l !, b52Av~p!TB~p,l !,

c512v~p!TL~p,l !. ~49!

Eigenvalues of this matrix are the (l 21) times degenerate
a;v lt r1 Drp

2 ~original ‘‘massless’’ diffusons before mix
ing! and two nondegenerate eigenvalues

l65 1
2 @a1c6A~a2c!214lb2#,

corresponding to eigenvectors$1,1,1, . . . ,1,a6% with a6

5(l62a)/b. Their asymptotic at small momenta and fr
quency is

l1'11v~p!/~2p!,

l2'2pv~p!21~v lt r1Drp
2!1Drp

2. ~50!

The form of thel1 eigenvalue means that physical phot
modeF̄p

v5(n52 l
0 Qp

n1a1Fp
v propagator@rescaling back by

Av(p)T] is the RPA photon propagator exhibiting Deby
screening:

^F̄p
vF̄2p

2v&;
1

v21~p!12p
. ~51!

The second is ‘‘symmetric’’ inn superposition of diffuson
modesQ̄p

v5(n52 l
0 Qp

n1a2Fp
v and is no longer the usua

diffusion pole:
24532
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^Q̄p
vQ̄2p

2v&;
1

vt r1Drp
21Drv~p!p2/~2p!

~52!

.
1

vt r1Dre
2p/~4p!

. ~53!

It becomes harder~less singular! than in the standard treat
ment in which the mixing between photon and diffuson
neglected. It is interesting to note that in the standard tre
ment at small couplings the mixing is not neglected as fa
photon’s propagator is concerned. One uses the RPA pr
gator, Eq.~51!, despite the fact that the same off-diagon
matrix element, Eq.~39!, is simultaneously responsible fo
the essential modification of the diffuson.

The inverse of a matrix of the type of Eq.~48! generally is

1

ac2 lb2 S c2
lb2

a
1

b2

a

b2

a
••• 2b

b2

a
c2

lb2

a
1

b2

a
••• 2b

A A � A

2b 2b ••• a

D .

Matrix elements of the propagators therefore are

^n,n1 l uDQQun8,n81 l &5P1dnn81P2

1

2p l
, ~54!

^n,n1 l uDQFu l &5P3

1

A2p l
, ~55!

^ l uDFFu l &5P4 , ~56!

where functionsP and their asymptotic at small frequenc
and momentum are

P15
1

a
'

1

t rv1Drp
2

, ~57!

P25
lb2

a~ac2 lb2!
'

v~p!

t rv1Drp
21Drp

2v~p!
, ~58!

P352
A2p lb

ac2 lb2
'

Avv~p!

t rv1Drp
21Drp

2v~p!
, ~59!

P45
a

ac2 lb2
'

t rv1Drp
2

t rv1Drp
21Drp

2v~p!
. ~60!

We will see in Sec. III D that the diagonal part of th
diffuson describes density fluctuations and therefore mix
with photon makes electrons nondiffusive at large densit

Propagators for relevant modes supplemented by verti
the fermion-fermion-diffuson
1-10
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Gc̄cQ52
i

t

and the fermion-fermion-photonF

Gc̄cF52 i

constitute Feynman rules shown in Figs. 7~a! and 7~c!, re-
spectively. However fieldsF and Q do not correspond to
‘‘modes’’ or ‘‘bosonic excitations’’ of the system due to mix
ing between them discussed in detail in the preceding
tion. One can still use these fields in calculation consider
them as a vector and their propagator as a matrix.

C. The Cooperon propagator

As we mentioned in Sec. III A due to its charge the Coo
eron does not mix with photon or any other neutral field. I
massless for different sign frequencies and massive for
same sign frequencies. The strong coupling however in
ences its propagator beyond the evident renormalizatiol
→Dr , t→t r . Substituting the expression of the fermio
propagators, Eq.~13!, into Eq.~36! the inverse propagator o
the excitation is

^nmuDDD*
21 unm&512u~2nm!B~p,n2m!. ~61!

Numerical solution of the saddle-point equations substitu
into Eq.~36! shows that the dependence is quadratic only
certain momentum at which it saturates, see Fig. 8 forr s
51, 2, and 4. This is of importance later when we estim
the quantum correction to conductivity in Sec. IV.

Note that the excitation remains massless even at st
coupling. This follows from very general consideration
Consider the bubble diagram

B~v l ,p!5
1

~2p!2Eq
GqnGq1p,m , ~62!

where l 5m2n. At zero momentum using the saddle-poi
equation~15! one obtains

FIG. 7. The Feynman rules for~a! fermion-fermion-diffuson,~b!
fermion-fermion-Cooperon,~c! fermion-fermion-photon vertex
The solid and wavy lines denote the fermion and photon propag
respectively, the double solid lines with opposite~same! direction
arrows denote the diffuson~Cooperon! propagator.
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B~v l ,p50!5
1

~2p!2Eq
~Gqn2Gqm!

1

i @v l1qm2qn#

5
qm2qn

v l1qm2qn
. ~63!

This approaches 1 in the limit of zero frequency as long
there is a jump inQv from negative to positive frequencies
The propagator of the different frequency sign Cooperon
small frequencies and momenta is

DDD* 5
1

2qv1B8p2
, ~64!

whereB8 denotes a derivative of the bubble integral

B85
]B~0,p!

]p2 U
p50

. ~65!

Assuming quadratic momentum dependence ofB(p,v), di-
rect calculation leads to

B85
1

2p~2m!2E«

~«1e«8!22q̂2

@ q̂21~«1e«8!2#3
~11e«8!2. ~66!

The values ofB8 for various couplingsr s and bare diffu-
sion constantsl determining the Drude conductivity ar
given in Table III. The perturbative expression for this qua
tity is

B852lt2F11r sS 212lq̂(1)1
25/2l3

p2
CD G , ~67!

where

C5
1

~4l!4
G33

22
„~4l!2u1,1

3/2,3/2
…1G43

23S 1

~4l!2U
3/2,3/2,3

2,2,2 D
12G43

23S 1

~4l!2U
3/2,3/2,4

2,2,2 D , ~68!

r, FIG. 8. The dependence ofB(p,v50) on p for variousr s and
l. The solid lines are the original values ofB(p,v50), while the
dashed lines are their corresponding quadratic fitting values.
1-11
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TABLE III. Derivative B8/t2 of the Lindhard function in the presence of disorder for various values or s

andl.

r s

l 0.1 1 2 4 8 16

8 12.2 3.133102 3.333103 6.063104 1.403106 3.123107

4 5.78 1.143102 1.153103 2.113104 5.143105 1.293107

2 2.74 40.4 3.773102 7.023103 1.813105 4.933106

0.5 0.620 4.75 34.8 6.353102 1.903104 6.183105

0.1 0.117 0.605 1.79 25.3 9.153102 4.103104
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with the standard notationGpq
mn(zub1 , . . . ,bq

a1 , . . . ,ap) of the Meijer

functions.31 It rises fast withr s , while being weakly depen
dent onl. Finally the fermion-fermion-Cooperon vertex is

Gc̄cD52
i

t

and it completes the Feynman rules shown in Fig. 7~b!.

D. Density-density correlator and conductivity to leading order

1. Modification of diffusive motion due to strong interaction

One of the most important characteristics of 2DEG is
density-density correlator describing the diffusive nature
the charge carrier’s motion in a disordered medium. It
closely related to dielectric function and polarizability
2DEG. The correlator is given in Matsubara formalism by

x~v,p!5 (
q1 ,q2

E
0

1/T

dt eivt

3^Tt@c̄p1q1
~t!cq1

~t!c̄p1q2
~0!cq2

~0!#&.

First we use the Feynman rules stated above to calculate
density-density correlator at the leading order. In the limit
small frequencies the contributions come from diagra
~a!–~d! in Fig. 9. They are2L(p,l ), 2v lB(p,l )2P1(1
1P4)/2p, 2Av lv(p)/2pL(p,l )B(p,l )P3, and
2v(p)L(p,l )2P4, respectively, and can be combined into

x~v l ,p!5
x0~v l ,p!

11v~p!x0~v l ,p!
.

FIG. 9. Contributions to the density-density correlator at
leading order.
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Here expressions forL, B, and P4 are given in Eqs.~47!,
~62!, ~57!–~60! and the ‘‘noninteracting’’ correlator is de
fined by

x0~v l ,p!52S L~p,l !1
v l

2p

B~p,l ! 2

12B~p,l ! D .

Its asymptotic at smallv andp is

x~v l ,p!5
Drp

2

v lt r1Drp
21Drp

2v~p!/~2p!
.

Therefore not surprisingly it is proportional to propagator
the ‘‘diagonal’’ diffuson defined in Eq.~52!. The diffusive
behavior dominates short-range fluctuations only on sc
smaller thans52e/e2. On a larger scale the last term in th
denominator is linear inp and is therefore larger than th
standard diffusion term. This makes diffusion less long ran
although in 2D it does not become a short-range one.
scale was introduced by Si and Varma38 and we will com-
ment on connection to their work in Sec. V.

2. The leading (Drude) contribution conductivity

The dc conductivity can be read off the density-dens
correlator using the relation

s5 lim
v→0

lim
p→0

e2v

p2
x~v,p!52 lim

v→0

e2v2

2p

B~v,0!2

@12B~v,0!#2
B8

5
e2

2p
4q2B8/t, ~69!

which follows from the Kubo formula.10 Here we used the
asymptotic of the bubble integralB, Eq. ~47!, and the imagi-
nary part of self-energyq and derivative of the bubble inte
gral B8 defined in Eqs.~15! and ~65!, respectively. Results
are given in Table IV for variousr s andl. One observes tha
at large coupling the ‘‘Drude’’ conductivity increases consi
erably compared with the noninteracting one. We explain t
by reduction of interaction with disorder (q is much smaller
than its noninteracting value of 1/2t) despite the reduction in
density of states (B8 larger than its noninteracting value o
2m). At small r s using Eqs.~A2! and~A3! of the Appendix
and Eq.~67! one obtains
1-12
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s5
e2

2p
lS 124r slq̂(1)1r s

25/2l3

p2
CD ,

whereC is given in Eq.~68!. The leading-order contribution
dominates at small couplings and disorder. However,
theory has zero modes—Cooperons. Therefore possibl
divergencies might render the leading-order results invali
large coupling or disorder. In principle for zero temperatu
and infinite samples the results are invalid for all couplin
Our next task is to find a range of parameters and temp
ture ~or sample sizes! in which the IR divergencies at th
next order are still small compared to the main contributi

IV. SUPPRESSION OF WEAK LOCALIZATION BY THE
LONG-RANGE INTERACTION EFFECTS

A. The saddle-point expansion and the spin-singlet
approximation

In this section we describe some of the corrections aro
the variational ground state found in Sec. II and used in S
III to calculate several physical quantities. The steepest
scent expansion in terms of Feynman diagrams is q
standard.7,8 We briefly describe it introducingNs identical
‘‘spin’’ components to show that the expansion might be
terpreted as ‘‘1/Ns’’ expansion~spin might include other de
generacies such as multiple valleys in Si!. The action includ-
ing the spin indicess is given in Eq.~5!. It is a peculiar
feature of the disordered Coulomb problem that the lead
order in 1/Ns vanishes for two entirely unrelated reason
The direct contribution in the disorder part vanishes due
the fact that it is of higher~second! order in replicasNr as
well:

(
a,b

(
s1,s2

Gs1s1

aa Gs2s2

bb ;Nr
2Ns

2 .

The directNs
2 contribution to the Coulomb part

E
x,y

(
a

(
s1,s2

Gs1s1

aa ~x,x!v~x2y!Gs2s2

aa ~y,y!50

vanishes due to neutralizing background*yv(x2y)50 ~and
under assumption of homogeneity!. Therefore leading terms
are of orderNs . The free theory action is also of orderNs .
Therefore all the terms in action are of the orderNs and it
plays a role of the ‘‘loop expansion parameter’’ and com
always in combination with 1/\. This Hartree-Fock logic is

TABLE IV. The Drude conductivitys/2pe2 for various values
of r s andl.

r s

l 0.1 1 2 4 8 16

8 9.85 51.4 1.683102 7.153102 3.393103 1.533104

4 4.79 22.0 70.3 3.013102 1.473103 7.183103

2 2.33 9.31 28.7 1.243102 6.223102 3.203103

0.5 0.553 1.61 4.44 19.0 1.033102 5.773102

0.1 0.107 0.246 0.470 1.79 10.5 68.3
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not rigorous however. There is an assumption involved: i
assumed that all the Hubbard-Stratonovich fields which
general are tensorial are dominated by their singlet part:

Qs1s2;ds1s2Q.

In this paper we will make such an assumption. Therefore
neglect, for example, triplet channels in the physical case
Ns52.

The partition function~suppressing for simplicity the rep
lica indices and writing explicitly just one of the HS fields!
or any observable is expanded around the saddle point

Z5E
Q

eNsAe f f[Q]'E
Q

exp~NsAe f f@QSP#

1 1
2 QD21@QSP#Q1DA@Q# !,

where DA@Q# contains all the cubic, quartic, and highe
order terms inQ. From this Feynman rules are read and th
scale compared to Fig. 7 in the following way: HS field
propagators are proportional toNs , fermion loop also has
Ns , while fermion-fermion-boson vertex is 1/ANs. The
leading-order contribution of conductivity considered so
is of orderNs and we will consider orderNs

051 in the fol-
lowing section.

B. Fluctuation correction to the density-density correlator and
conductivity

1. Density-density correlator

The correction to density-density correlator at two-lo
order which contributes to the small frequency limit~the
only ones needed for subsequent calculation of the cond
tivity ! is given in Fig. 10,

dx~v l ,p!5T(
q,r

(
nmn8m8

u„2n~n1 l !…u„2n8~n81 l !…

3B~p,l !2^n,n1 l uDQQum,m1 l &

3Gq
mGp1q

m1 lGq1r
m8 Gp1q1r

m81 l

3^n,m8uDDDr um1 l ,m81 l &

3^m8,m81 l uDQQun8,n81 l &.

All the other diagrams are regular asv→0 , hence they do
not give contributions to the dc conductivity. Near the Fer
surface one ‘‘disentangles’’ the momenta flowing in the ce
tral loop, see Fig. 10,

dx5T(
n50

l
B~p,l !2

@12B~p,l !#2
B4~p,l !(

r

1

12B~r ,l !
, ~70!

where

B4~p,l ![(
q

Gq
nG2q

n1 lGp2q
n Gq2p

n1 l . ~71!

The integral overr is logarithmically infrared divergent in
2D and, as usual,10 signals breakdown of naive perturbatio
1-13
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theory and appearance of weak-localization effects. We
sume an IR cutoff~to be defined more explicitly below! and
will use this expression to calculate conductivity.

2. Weak localization

The fluctuation correction to conductivity using Kubo fo
mula is

ds5 lim
v→0

e2v2

2p

B~0,l !2

@12B~0,l !#2
B48(

r

1

12B~r ,l !
,

where the derivative ofB4, Eq. ~71!, is defined by

B48[
]B4~p,l 50!

]~p2!
U

p50

.

After some algebra it takes a form

B485
1

2p~2m!4E«

~«1e«!2

@ q̂21~«1e«!2#4
~11e«8!2.

Values of the coefficientB48 for various couplings and disor
der strength are given in Table V.

Before discussing physical implications of the correcti
we provide perturbative result forB48 :

B4852lt4F11r slS 2225q̂(1)1
25/2l2

3p2
C4D G ,

where

C45
3

27l4
G33

22
„~4l!2u1,1

3/2,3/2
…29G43

23S 1

~4l!2U
3/2,3/2,3

2,2,2 D
112G34

23S 1

~4l!2U
3/2,3/2,4

2,2,2 D 14G43
23S 1

~4l!2U
3/2,3/2,5

2,2,2 D .

The quantity is increasing very fast with couplingr s and
decreases slowly with disorder strength.

Returning to conductivity one obtains

ds5
e2

2p

2q2B48

pt E
0

` r dr

12B~r ,l !
.

In 2D the integral is dominated by small momenta. Theref
at very low temperature we can use approximation of
~64!,

TABLE V. The values ofB48/t
4 for variousr s andl.

r s

l 0.1 1 2 4 8 16

8 3.77 4.643102 1.603104 1.253106 1.473108 2.1131010

4 3.46 2.863102 9.053103 7.213105 8.923107 1.2831010

2 3.18 1.703102 4.783103 3.853105 5.143107 7.783109

0.5 2.73 53.6 1.043103 8.103104 1.353107 2.583109

0.1 2.44 27.4 1.233102 6.653103 1.513106 4.723108
24532
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ds5
e2

2p

2q2B48

ptB8
E

pIR

pUV r dr

r 2
5

e2

2p

q2B48

ptB8
ln

pUV
2

pIR
2

. ~72!

As usual10 it is cut off in both infrared and ultraviolet. The
infrared cutoff for the weak-localization logarithmic dive
gence can be set by finite temperature

pIR
2 5

2pTm* /t

2~q/At!~B8/t2!

or finite sizeL of the sample

pIR5
2p

L
.

The ultraviolet cutoff is39

pUV
2

2m*
5min$m,1/t%. ~73!

C. Crossover temperature

Let us find a temperature at which the perturbation the
in ‘‘loops’’ or 1/Ns breaks down. At this temperature th
Drude conductivity is significantly reduced by fluctuatio
and one conservatively estimates it as settling of the we
localization~the Anderson insulator! regime. It is estimated
by equating leading@Eq. ~69!# and the fluctuation correction
@Eq. ~72!# to conductivity times a factorR of order 1 at finite
temperature~or sample size!:

s05
e2

2p
4Nsq

2B8/t5Rds

5
e2

2p

q2B48

ptB8
lnF S 2m*

t D Y S 2pTwlm* t3/2

2qB8
D G , ~74!

where we used the large disorder value in Eq.~73!. Therefore

Twl5
2qB8

pt5/2
e2§,

with a dominant argument of the exponential being

§5
4pNs~B8!2

RB48
.

Considering first the bare diffusion constant as fixed one
serves that asr s increases the temperature first rises due
preexponential factor, but then after reaching a maxim
exponentially drops at larger s . On the other hand fixingr s

FIG. 10. The correction to the density-density correlator at tw
loop order.
1-14
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EMERGENCE OF QUASIMETALLIC STATE IN A . . . PHYSICAL REVIEW B68, 245321 ~2003!
the temperature quickly drops asl increases. In experimen
what is usually varied is density of electrons. In this case
density gets lower both the diffusion constant becom
smaller andr s becomes larger. The overall effect is that f
clean samples and relatively larger s the quasimetallic state
is stable to very long temperatures due to reduction of
DOS at the Fermi level. Note that the trajectory in thel,r s
space of the experimental setup is itself dependent on
DOS.40 This complicates the actual comparison since effe
of screening cannot be neglected in experiments to date
was discussed in Sec. II. Qualitatively however the pictur
that at large coupling the metallic state survives effect
scattering off impurities due to the reduction in the DOS.

D. Higher-order effects: Aronov-Altshuler effect revisited

1. Higher-order corrections to the vertex function and
conductivity

It was shown in Ref. 37 that in perturbation theory wh
one sums up all the corrections to the vertex part~the ccr
condensate wherer is the density field that couples to stat
photon! shown in Fig. 11, it becomes proportional to th
diffusive pole 1/(vt1Dp2). The same expressions are al
shown in Fig. 11 in our notations as a sum of leading and
next to leading terms in the steepest descent expansio
this picture however the diffuson propagator is considere
the noninteracting theory. The vertex part enters high-or
diagrams creating logarithmically divergent correctio
which strengthen~in the singlet sector! weak localization.
The major diagrams involving the singular vertex part co
tributing to conductivity are given in Fig. 12~some other
contributions cancel, see Ref. 18!. The physical interpreta
tion of this phenomenon is that electrons scatter cohere
on Friedel oscillations due to density fluctuations.22

Without the crucial pole factor the Aronov-Altshuler co
rections do not diverge in the infrared. In the strong-coupl

FIG. 11. Vertex correction due to interactions with disord
~dashed lines! in the conventional notations~Ref. 18! ~first line! and
in the present paper notations~second line!.

FIG. 12. Major contributions to the conductivity in perturbatio
theory.
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regime considered in this paper, due to mixing of diffuso
with static photons, the vertex given in Fig. 13 has mu
softened small momentum asymptotic: 1/(vt1Dp2). It can
be easily seen that this softening is quite enough to ren
the contributions such as those in Fig. 12~which is of the
order 1/Ns , namely higher than the weak-localization on!
finite. One therefore would ask how this can be understo
diagrammatically in terms of conventional disord
coupling.6 The point is that the mixing effectively sums u
diagrams to all orders in Coulomb couplingr s , Fig. 13. Each
one of these is divergent, while their sum is not. This is qu
analogous to the disappearance of IR divergencies du
long-range photon ‘‘chains’’ after the RPA diagrams a
summed.

2. Density of states near the Fermi-level at large coupling

The Aronov-Altshuler corrections to conductivity are d
rectly related to the downturn cusp in DOS due to Coulo
interaction. In 2D the cusp is given by18

dN~«!} ln@«#

again due to the renormalization of the vertex, see Fig. 11
was claimed that this is precisely what was observed in t
neling junction experiments in disordered metal films.41,42 In
our approach, due to Anderson-Higgs mechanism, this re
malization is greatly reduced. An alternative explanation
very strong coupling and significant disorder might be t
leading-order reduction of DOS discussed in Sec. II D,
Fig. 6. This does not contradict the experiments in me
since in these experiments disorder is large~even very large!,
while the couplingr s is quite small. Of course if the densit
is sufficiently high the screening can no longer be neglec
and the Aronov-Altshuler effect becomes dominant. Ho
ever, as we mentioned before, in very clean 2DEG sam
the disorder can reduce the screening and our approac
neglecting the screening at the leading order becomes m
appropriate. In this case higher orders will not be lar
enough to undermine this assumption. One will get agai
reduction in the DOS, but for entirely different reason.
related issue is emergence of the Coulomb gap comme
on in the following section.

V. SUMMARY AND DISCUSSION

To summarize we present a consistent gauge-invariant
proach to disordered strongly interacting electron gas in
Physically the basic phenomenon is the reduction in the D
at Fermi level due to strong Coulomb repulsion. This in tu
suppresses both screening and scattering of impurities s
lizing the metallic state against weak-localization effec
Formally the approach consists of two steps. The first
variational~or ‘‘self-consistent’’!: the most general quadrati
states were considered and one with minimal energy ide
fied. At this stage the ‘‘RPA’’ screening is neglected assu
ing it is sufficiently weakened by disorder so that high
orders are small. The second step is steepest descent p
bative expansion~which also can be identified as an expa
sion in parameter 1/Ns with Ns number of spin component

r

1-15
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B. ROSENSTEIN AND TRAN MINH-TIEN PHYSICAL REVIEW B68, 245321 ~2003!
or valleys!. Although the general philosophy of the steep
descent expansion is not drastically different from the o
adopted in other works~see for example Ref. 8!, two rather
independent observations were made. The first is that
exchange part of Coulomb interaction leads at strong c
pling to a significant reduction of the DOS near the Fer
surface and to via the reduction suppresses the disorde
fects. The second is that when the steepest descent expa
procedure is followed consistently, mixing between sta
photons and diffusons not only causes Debye screenin
the photon, but leads in addition to a softening of the dif
sion pole. This in turn leads to a number of observable c
sequences such as a significant modification of the ve
part and consequently of the Aronov-Altshuler contributi
to conductivity. The contribution becomes regular in t
strong coupling, not logarithmic@the absence of the effect o
the DOS reduction due to interaction in Ref. 17 can be tra
to an approximate calculation of the exchange diagram
their Eq.~16!#.

In this section we discuss several general questions
assumptions and relation of our work to other attempts
incorporate the long-range Coulomb interactions into
theory of disordered electron gas.

The theory of disordered electron gas relies to a la
extent on the existence of massless collective modes, d
sons and Cooperons. It is tempting to interpret these exc
tions as Goldstone bosons of some symmetry breaking~with
several complications arising from the quenched disor
see Ref. 43!. The s-model approach initiated by Wegne7

and others14,13 long ago and developed and applied to t
Coulomb interaction case recently by Baranovet al.16 starts
from an assumption that theG5Sp(2N) ^ Sp(2N) symme-
try of free disordered electron gas is spontaneously bro
down to diagonal subgroupH5Sp(2N), whereN enumer-
ates replica, spin, and Matsubara indices. We have show
Sec. III however that diffusons mix with photon and becom
‘‘harder’’ than standard Goldstone bosons. This might sig
that thes-model approach should be modified to incorpor
the Anderson-Higgs mechanism. Actually the need for suc
modification can be found in recent remarkable work of R
16 and we comment on this now.

Unfortunately the presence of strong Coulomb inter
tions explicitly breaks a subgroup ofG. An example of the
explicitly broken-symmetry transformation isdcpn

5c̄2p,n , dc̄p,n52c2p,2n for positive Matsubara frequen
cies n.0 anddcpn5c̄2p,2n , dc̄p,n52c2p,2n for nega-
tive Matsubara frequenciesn,0. The symmetry is broken
by both the frequency term(p,nc̄pn

a (2 ivn)cpn
a and by the

Coulomb interaction term. However while the breaking
the frequency term is ‘‘soft’’ and insignificant, as far as sta
quantities such as dc conductivity are concerned, it w
shown16 that the Coulomb interaction effectively represent
on thes model level by the ‘‘square of trace’’ operator@Eq.
~2.1! in Ref. 16# is relevant and cannot be reduced to a s
breaking. Baranovet al. notice that at large distances th
diffusion is suppressed which coincides with our Eq.~52!. At
short distance scales the electrons are diffusive. We bel
that the Anderson-Higgs mechanism can be treated app
24532
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mately within thes-model approach as long as the mixing
small. This is a well-known problem in quantum-fie
theory44 under the name of ‘‘gaugeds models.’’ These issues
might become clearer when the present approach is exte
beyond 2D~say to 21«). Work on this is in progress. A
related issue is understanding the difference between d
sons and Cooperons. Within thes model approach the
Sp(2N) ^ Sp(2N) symmetry forces the Cooperon and th
diffuson propagators to be the same. It is precisely an
plicit ~not spontaneous! symmetry breaking due to Coulom
interactions that leads to the hardening of the diffuson~mix-
ing with photon!, while leaving Cooperon intact possible.

The fact that Coulomb interaction modifies diffusion
large distances was also discussed in Ref. 38 and this m
lead also to suppression of weak localization. The work ho
ever was criticized,45,16,22that the vertex parts were not take
into account or alternatively the treatment is not gauge
variant. Our work explicitly shows that despite the fact th
diffuson is harder~although still massless! at large distances
the Cooperon is not. Therefore although weak localization
suppressed, the suppression is much weaker and compl
different. The logarithmically divergent contribution to con
ductivity includes Cooperon.

It was shown by Efros and Shklovskii46 on the basis of a
heuristic argument with plausible assumptions about the
ture of the localized electronic states~neglecting their over-
laps! that there should be a Coulomb gap in the stron
interacting electron gas. As in the case ofs models with
Coulomb interactions,16 it is not clear from the first orders in
our scheme whether the reduction of the density of state
along the line of their argument. We believe this is unlike
due to the fact that they neglect the effect of exchange on
‘‘states’’ c i defined there. It is also not clear at this poi
whether the opening of Coulomb gap that Baranovet al.16

deduce on the basis of the 21« expansion is related to th
reduction in density of states due to exchange.

One can extend the approach presented here to the ‘‘
consistent’’ scheme initiated by Vollhardt and developed
include Coulomb interactions by Sadovsky.39 This will allow
quantitative study of the insulating state and of the Coulo
gap. Note however that the ‘‘gap’’ equations of Ref. 39 fo
low the perturbative Aronov-Altshuler contributions, whi
the self-consistent form of our conductivity contribution

FIG. 13. Vertex corrections due to mixing of diffusons wi
static photons in the present paper notations~first line! and in the
conventional notations~Ref. 6! ~second line!.
1-16
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EMERGENCE OF QUASIMETALLIC STATE IN A . . . PHYSICAL REVIEW B68, 245321 ~2003!
Eqs.~69! and~72!, will contain different diagrams. The wor
on this is in progress.

At last we briefly comment on two general assumptio
made. The first is the spatial homogeneity. It is clear47 that
clean and even disordered 2DEG~Ref. 48! at sufficiently
strong coupling become inhomogeneous Wigner crystal
‘‘glass.’’ It was even speculated29 that the Wigner crystalli-
zation~which occurs aroundr s540 in clean systems! might
be related to the observed metal-insulator transition. Follo
ing general argument can be advanced against such a
nario. It has been observed recently that in several cl
systems of thermally fluctuating repelling objects the hom
geneous state~liquid or gas! exists down to zero temperatur
One such system is the one-component classical plasm49

Another is a system of vortex lines in type-
superconductors.50 The latter is quite analogous to 2DEG
The difference is that thermal fluctuations should be repla
by quantum and bosonic field by fermionic~statistics is quite
unimportant in the low-density limit though!. To be sure the
energy of the solid is lower, so below the melting point t
liquid state is metastable~in conventional liquids for which
in addition to repulsive interaction there is a long-range
tractive force, the metastable state ceases to exist at spin
point!. It is reasonable to assume~and it was demonstrate
recently51! that disorder favors homogeneous state ove
structured crystal!. Therefore transition to a Wigner crysta
or glass state would occur at much higher couplings t
metal-insulator transition and the relevant state is homo
neous as was assumed in the present paper.

Another assumption commonly made is that the rep
symmetry used to derive our starting point, Eq.~5!, was as-
sumed to be unbroken. This means that we neglected a
sibility of ‘‘electron glass.’’30 This is a distant possibility in
the quasimetallic state since, as we argued in the paper
duction in the DOS due to long-range interactions ma
disorder less favored. Eventually in the insulating st
glassy behaviors will eventually prevail.
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APPENDIX: APPROXIMATE SOLUTION OF THE
MINIMIZATION EQUATIONS

1. Expansion in smallr s

From Eq.~31! we observe that at small couplingr s!1,
ê« starts from the first order:e«5sgn@«#(r se«

(1)1•••). Sub-
stituting this into Eq.~30! immediately gives the leading
term for qv :

q̂v
(0)5sgn@v#

1

4l
5sgn@v#q̂(0). ~A1!

Therefore we expandq̂v5sgn@v#(q̂(0)1r sq̂v
(1)1•••). Then

the leading-order contribution toe« can be computed:

e«
(1)5

A2

p2Ev.0,«8
k@«2«8#

«81e«8

~«81e«8!
21~v̂1q̂(0)!2

5
A2

p2E«8
k@«2«8#sgn~«8!S p

2
2arctan

q̂(0)

u«8u
D . ~A2!

We use here the constantq̂v approximation. Substituting this
into Eq. ~30! one obtains

q̂(1)52
3A2~ q̂(0)!2

2p2 E
«

k@«#

~«214q̂(0)2!

52
3

215/2p3l2
G33

22
„~4l!2u1,1

3/2,3/2), ~A3!

where the Meijer functionGpq
mn(zub1 , . . . ,bq

a1 , . . . ,ap) is defined in Ref.

31. We observe that it is negative, namely the long-ran
interaction reduced the effect of disorder. Diagrammatica
the minimization equations sum all the rainbows includi
both disorder and interaction, Fig. 2. In perturbation theo
one evaluated a diagram with one photonic rainbow and
bitrary number of disorder lines, namely diagram in Fig.
with disordered Green’s function. Its imaginary part is pr
cisely q̂(1). The actual expansion parameter isA2r s /p2

rather thanr s as can be seen from comparison of the pert
bative and exact solutions. Therefore perturbation the
breaks down completely atr s;10.

2. Expansion in small 1Õl

It is important also to obtain analytical solutions
the minimization equations at larger s . This turns out to be
possible for relatively clean case in which we can expa
in 1/l. The leading order is the clean solution alrea
discussed in Sec. II B:e«

[0]5e«
[0]1e«

[1] /l1••• with e«
[0]

5A2r sk1@«#/p. The leading term forq̂v5q̂v
[1] /l1q̂v

[2] /l2

1••• is

q̂v
[1]5

1

4pE«

v̂

~«1e«
[0] !21v̂2

. ~A4!

The correction to dispersion relation can also be compute
a quite compact form:
1-17



xact

5.
ex-

B. ROSENSTEIN AND TRAN MINH-TIEN PHYSICAL REVIEW B68, 245321 ~2003!
e«
[1]52

r s

2A2p2E«8,«9.0

k@«2«8#2k@«1«8#

~«81e«8
[0]

1«91e«9
[0]

!2
. ~A5!

The actual expansion parameter is 1/4pl rather thanl as
od

a

s

,

v
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can be seen from comparison of the perturbative and e
solutions. Therefore perturbation theory breaks atl;0.1.
The results are marked by dotted lines in Figs. 4 and
Generally numerical results agree with both perturbative
pansions.
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