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Vortex formation of coherent waves in nonseparable mesoscopic billiards

Y. F. Chen and K. F. Huang
Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan

~Received 7 August 2003; published 23 December 2003!

We analytically study the vortex formation associated with the classical periodic orbits in a nonseparable
quantum billiard. The influence of vortex formation on the quantum flux in the mesoscopic region is clearly
demonstrated. Remarkably, the high-order vortex structures in an equilateral triangle billiard display the trian-
gular, swirl, andkagome` vortex lattices. The relationship between various vortex lattices is found to rely on the
relative phase factor in the coherent state.
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In recent years, there has been growing attention to
dependence of the vortex configuration on the geometry
mesoscopic thin superconductors@1–3#. The symmetry-
induced formation of vortex patterns is important not on
for superconductors but also for symmetrically confined
perfluids and Bose-Einstein condensates@4,5#, which are
typically described within the mean-field approximation@6#
by a nonlinear equation. Indeed, quantum vortices can
pear in a system described by the linear Schro¨dinger equa-
tion @7# such as two-dimensional~2D! square billiards@8#. A
renaissance of interest in the quantum billiard proble
comes from the result that the analogous experiments
various classical wave systems such as microwave cav
@9–11# and semiconductor lasers@12# have been demon
strated. The studies in progress focus on the vortex forma
in 2D mesoscopic billiards@13,14# because of the exact co
respondence between the quantum probability flux and
Poynting vector of 2D microwave cavities@15,16#.

On the other hand, the experimental results in the balli
quantum transport revealed that the quantum states as
ated with the classical periodic orbits play an important r
in the striking phenomena of conductance fluctuations@17#.
In this work, we analytically study the vortex formation a
sociated with the classical periodic orbits in a 2D mesosco
equilateral triangle billiard, which is a classically nonsep
rable but integral system. It is found that the geomet
induced vortex formation gives rise to a conspicuous d
similarity between the quantum and classical flu
Remarkably, the swirl, triangular, andkagome` vortex lattices
can be formed in the high-order coherent states with spe
phase factors.

The three vertices of an equilateral triangle billiard is a
sumed to be at~0,0!, (a/2,)a/2), and (2a/2,)a/2), where
a is the side length. The formation of classical periodic orb
can be denoted by three parameter (p,q,6f), where the
parametersp andq are nonnegative integers with the restr
tion thatp>q; the parameterf is in the range of 0 top. The
sign 6 and the parametersp andq correspond to the initia
angle of the billiard ball by@18#

tanu5~6 !
p2q

p11

1

)
, ~1!

where the initial angleu is with respect to the horizonta
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Assuming the initial position to be on they axis, the param-
eterf can be related to the initial position by

y5S 1

p1qD S f

p D )a

2
. ~2!

Some sample orbit families are given in Fig. 1. In terms
the p and q, the path lengths can be written asLp,q

5a)Ap21pq1q2, except for the isolated orbits such a
~1,1,p! @18#.

The eigenstates in an equilateral triangular quantum
liard have been derived by several groups@19,20#. The wave
functions for the two degenerate stationary states can be
pressed as

Fm,n
~1! ~x,y!5A 16

a23)
H cosF ~m1n!

2p

3a
xGsinF ~m2n!

3
2p

)a
yG1cosF ~2m2n!

2p

3a
xGsinFn

2p

)a
yG

2cosF ~2n2m!
2p

3a
xGsinFm

2p

)a
yG J ~3!

FIG. 1. Some classical periodic orbits (p,q,f) in the equilateral
triangle billiard.
©2003 The American Physical Society07-1
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and

Fm,n
~2! ~x,y!5A 16

a23)
H sinF ~m1n!

2p

3a
xGsinF ~m2n!

3
2p

)a
yG2sinF ~2m2n!

2p

3a
xGsinFn

2p

)a
yG

1sinF ~2n2m!
2p

3a
xGsinFm

2p

)a
yG J ~4!

for the case ofn.2m. As it is, the conventional eigenstate
do not manifest the properties of classical periodic orb
even in the correspondence limit of large quantum numb

For the construction of the coherent states associated
the periodic orbits, it is mandatory to use the traveling wa
states from the linear combination of the eigenstates in E
~3! and ~4!:

Fm,n~x,y!5Fm,n
~1! ~x,y!1 iFm,n

~2! ~x,y!5A 16

a23)

3H expF i ~m1n!
2p

3a
xGsinF ~m2n!

2p

)a
yG

1expF2 i ~2m2n!
2p

3a
xGsinFn

2p

)a
yG

2expF2 i ~2n2m!
2p

3a
xGsinFm

2p

)a
yG J .

~5!

The SU~2! coherent state for the 2D quantum harmonic
cillators has been demonstrated to be well localized on
corresponding classical elliptical trajectory@21#. As in the
Schwinger representation of the SU~2! algebra@21# and in
terms ofFm,n(x,y), the wave functions associated with th
periodic orbits (p,q,6f) in an equilateral triangular quan
tum billiard are deduced to be

CN,M~x,y;p,q,6f!5
1

2N/2 (
K50

N S N
K D 1/2

exp~6 iKf!

3Fp~K11!,M1q~N2K !~x,y! ~6!

with the restriction thatM>2p(N11), where the indicesM
andN indicates the order of the coherent states. Equation~6!
indicates that the parameterf is the relative phase betwee
various components of the coherent state. Figure 2 dep
the wave patterns ofuCN,M(x,y;p,q,f)u2 with N520 and
M52p(N11) corresponding to the classical trajectori
displayed in Fig. 1. On the whole, the distributions
uCN,M(x,y;p,q,f)u2 are in good agreement with the class
cal trajectories. Even so, quantum interference effects
only lead to the wave localization but also result in the
06620
s
s.
ith
e
s.

-
e

ts

ot
-

terwoven patterns and vortex structures, which cause
quantum flux to be significantly different from the classic
picture.

The character of the classical trajectories implied by
coherent states can be manifested by using the identit
sinz5(eiz2e2iz)/2i to rewriteFm,n(x,y) in Eq. ~6!. Applying
the property of the Dirichlet kernel, the maximum intens
of the coherent state in Eq.~6! can be found to localize on
the six lines of equation familiesqy/)a6(2p1q)x/3a
7f/2p5n, py/)a6(p12q)x/3a6f/2p5n, (p
1q)y/)a6(p2q)x/3a6f/2p5n with nPZ, which coin-
cide with the classical trajectories. Therefore, the relat
phase factor between various parts of the coherent state h
causal relationship with the localization on the classical t
jectories. Note that the quantum flux for the complex con
gate of the coherent stateCN,M* (x,y;p,q,f) changes to the
opposite direction. Therefore, the coherent states,CN,M

6 iCN,M* , turn out to be the standing waves.
Strictly speaking, the coherent states in Eq.~6! are not

stationary states because the eigenstate components ar
exactly degenerate for the HamiltonianH. Nevertheless, the
asymptotic behavior thatDH/^H&→0 asN→` ensures the
coherent states in Eq.~6! to be stationary states in the cla
sical limit, where^H& is the expectation value of the Hami
tonian andDH is the dispersion in energy by computin
A^H2&2^H&2. On the other hand, experimental resu
@11,12,17# have revealed that the coherent state obtained
superposition of a few nearly degenerate eigenstates prov
a more physical description of a phenomenon than the
eigenstates in the mesoscopic region.

With the coherent state, the probability current densityJY
}Im(C*¹C) can be calculated to gain physical aspects
the quantum vortices. In separable rectangular billiards@8#,

FIG. 2. The wave patterns ofuCN,M(x,y;p,q,f)u2 from Eq.~6!
for N520 andM52p(N11) corresponding to the classical traje
tories displayed in Fig. 1.
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FIG. 3. ~a! The normalized quantum fluxJY /uJY u for several small regions of the coherent states shown in Fig. 2~a!. ~b! The normalized

quantum fluxJY /uJY u for several small regions of the coherent states shown in Fig. 2~b!. ~c! The normalized quantum fluxJY /uJY u for several
small regions of the coherent states shown in Fig. 2~c!.
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the tangents to the quantum streamlines generally coin
with the directions of the classical velocities; the vort
structures form a regular square lattice. In a nonsepar
billiard, however, the formation of complex vortex structur
gives rise to a conspicuous inconsistency between the q
tum flux and the classical velocity fields, as shown in Fi
3~a!–3~c! for the wave functions displayed in Fig. 2. T
06620
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show the fine details, Figs. 3~a!–3~c! depict the normalized
quantum fluxJY /uJY u for several small regions. Despite th
well localization of the quantum probability on the classic
trajectories, the quantum probability flows significantly d
fer from the classical velocity fields. In particular, th
interference-induced quantum vortices play an important r
not only in the localization part but also in the low probab
7-3
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ity region. From nonseparable to chaotic billiards, quant
flux and vortex structures are expected to be further irregu
consistent with the random wave conjecture of Berry@22#.

So far, forp and q to be relatively prime, the SU~2! co-
herent state corresponds to a single, nonrepeated orbit.l
be the highest common factor of the indicesp and q. If l
.1, the coherent states are denoted to be high order.
wave patterns of high-order coherent states correspond
combination ofl primitive periodic orbits that are given b
(p/ l ,q/ l ,fs / l ), where fs5f12ps, sPZ, and 2 l /2,s
,( l /22f/2p). In the case ofp5q, the high-order coheren
state displays a highly regular pattern. Hereafter we focus
the high-order coherent states withp5q. Numerical analy-
ses reveal that forfÞ0 or p the high-order coherent stat
typically exhibits an interlace pattern, as shown in Fig. 4~a!
for uCN,M(x,y;p,q,f)u2 with p5q53, f5p/2, N510, and
M52p(N11). Although the coherent state withp5q53,
f5p/2 is well localized on the three classical periodic orb
~1, 1,p/6!, ~1, 1,23p/6!, and~1, 1, 5p/6!, its intensity is like
to be made up of woven threads which pass alternately o
and under one another as they loop and knot around
another. As shown in Fig. 4~b!, the corresponding flux vec
tors JY are not straightaway but are swirling about the clas
cal trajectories. Since the high-order coherent state ha
regular periodic pattern, only a small region consisting o
unit trajectory is shown for fine details. It needs to be e
phasized that the swirling, twisting quantum flux associa
with the periodic orbits is fully induced by the confineme
not by the magnetic field. Even so, weak perturbation play
vital role for the appearance of the coherent states in m
scopic quantum billiards@23#.

In addition to the swirl vortex lattice, the high-order c
herent states are found to form a triangular vortex lattice w
phase synchronizationf50 and to form akagome` vortex
lattice with phase antisynchronizationf5p, as show in
Figs. 5~a! and 5~b! for CN,M(x,y;p,q,f) with p5q56, N
510, andM52p(N11). The corresponding quantum flu
vectorsJY for a unit trajectory are depicted in Figs. 5~c! and
5~d!. It can be seen that the quantum flux vectors in
triangular andkagome` vortex lattices are relatively parallel t
the classical velocity fields. Nevertheless, the main chara
vortex-antivortex pair, is manifest in these vortex lattic

FIG. 4. ~a! The wave pattern of the high-order coherent st
uCN,M(x,y;p,q,f)u2 from Eq. ~6! with p5q53, f5p/2, N510,
andM52p(N11). ~b! The corresponding quantum flux.
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Although vortex lattice states are well known in superco
ductor systems, their possibility in mesoscopic quantum
liards is likely to be ubiquitous@8,13#. More interestingly, the
difference between the various vortex lattices only depend
the relative phase factor between various components of
coherent state.

In conclusion, the vortex formation associated with t
classical periodic orbits in a nonseparable mesoscopic q
tum billiard has been analytically studied. It is found th
quantum interference effects lead to the well localization
the coherent state on the classical trajectories; however
quantum probability flows may significantly differ from th
classical velocity fields. On the other hand, the high-or
coherent states are found to form the triangular, swirl, a
kagome` vortex lattices. Theoretical results indicate that m
nipulating the phase factor of the high-order coherent s
can lead to the transition between various vortex lattic
Since the phase factor of the coherent states is closely re
to the initial position of the classical trajectories, from a
experimental point of view, it can be changed by controlli
the source of the excited wave. For instance, it has b
demonstrated that controlling the excitation region in a la
Fresnel number laser cavity can bring about various cohe
patterns related to different phase factors@24,25#.
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FIG. 5. The wave patterns for the high-order coherent sta
uCN,M(x,y;p,q,f)u2 from Eq. ~6! with p5q56, N510, andM
52p(N11): ~a! f50, a triangular vortex lattice;~b! f5p, a
kagome` vortex lattice;~c! and ~d! are the quantum flux vectors fo
~a! and ~b!, respectively.
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