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Vortex formation of coherent waves in nonseparable mesoscopic billiards
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We analytically study the vortex formation associated with the classical periodic orbits in a nonseparable
quantum billiard. The influence of vortex formation on the quantum flux in the mesoscopic region is clearly
demonstrated. Remarkably, the high-order vortex structures in an equilateral triangle billiard display the trian-
gular, swirl, anckagomevortex lattices. The relationship between various vortex lattices is found to rely on the
relative phase factor in the coherent state.
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In recent years, there has been growing attention to thAssuming the initial position to be on theaxis, the param-
dependence of the vortex configuration on the geometry oéter ¢ can be related to the initial position by
mesoscopic thin superconductoféd—3]. The symmetry-
induced formation of vortex patterns is important not only
for superconductors but also for symmetrically confined su- y=
perfluids and Bose-Einstein condensafdss|, which are
typically described within the mean-field approximatidi _ - ) o
by a nonlinear equation. Indeed, quantum vortices can apSome sample orbit families are given in Fig. .1. In terms of
pear in a system described by the linear $dimger equa- the P and g, the path lengths can be written ds, 4
tion [7] such as two-dimensioné2D) square billiard§8]. A~ =av3yp“+pg+g-, except for the isolated orbits such as
renaissance of interest in the quantum billiard problemg1.1m) [18]. _ _ . _
comes from the result that the analogous experiments for The elgenstates_ln an equilateral triangular quantum bil-
various classical wave systems such as microwave cavitidi@rd have been derived by several groip8,20. The wave
[9-11] and semiconductor lasefd2] have been demon- functions for the two degenerate stationary states can be ex-
strated. The studies in progress focus on the vortex formatioRressed as
in 2D mesoscopic billiardgl3,14] because of the exact cor-
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respondence between the quantum probability flux and the [ 16 2

Poynting vector of 2D microwave caviti¢5,16]. CD%)“(X,y)= 5 |co+m+ n) 3—x sin (m—n)
On the other hand, the experimental results in the ballistic a’3v3 a

guantum transport revealed that the quantum states associ- o o o

ated with the classical periodic orbits play an important role X—y +cos{(2m—n) —x|sin n—y

in the striking phenomena of conductance fluctuatidhg. 3a Vv3a

In this work, we analytically study the vortex formation as-

sociated with the classical periodic orbits in a 2D mesoscopic _ on— 2_77 . 2_77 3

equilateral triangle billiard, which is a classically nonsepa- cog(2n—m) 3aX sin m‘/jay &)

rable but integral system. It is found that the geometry-

induced vortex formation gives rise to a conspicuous dis- (1.0, 0) (1,0, 7/3)

similarity between the quantum and classical flux.

Remarkably, the swirl, triangular, akégomevortex lattices
can be formed in the high-order coherent states with special
phase factors.

The three vertices of an equilateral triangle billiard is as-
sumed to be af0,0), (a/l2y3a/2), and (~a/2y3al2), where
ais the side length. The formation of classical periodic orbits

can be denoted by three parameterq, = ¢), where the

parameterp andq are nonnegative integers with the restric- (1,1, =/2) (2,1, /4)
tion thatp=q; the paramete® is in the range of O ter. The
sign = and the parametersand g correspond to the initial
angle of the billiard ball byf18]
p—q 1
tang=(£) —— —, 1
()51 73 1)

FIG. 1. Some classical periodic orbitgs,{, ¢) in the equilateral
where the initial angled is with respect to the horizontal. triangle billiard.
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for the case oh>2m. As it is, the conventional eigenstates
do not manifest the properties of classical periodic orbits O ’7//,
even in the correspondence limit of large quantum numbers =

For the construction of the coherent states associated witl
the periodic orbits, it is mandatory to use the traveling wave
states from the linear combination of the eigenstates in Eqs

(3) and(4):

16
D (X, Y) =P (x,y) +iDE)(x,y)= > FIG. 2. The wave patterns ¢¥ y y(X,y;p,q,¢)|? from Eq. (6)
a“3v3 for N=20 andM =2p(N+ 1) corresponding to the classical trajec-
tories displayed in Fig. 1.
. 27 | | 2
X ex+(m+n)—x sin (m—n)—y
{ 3a V3a terwoven patterns and vortex structures, which cause the
quantum flux to be significantly different from the classical
+ex;{—i(2m—n)2—wx sin nz—wy picture.
3a V3a The character of the classical trajectories implied by the
coherent states can be manifested by using the identity of
. 27 | . 27 sinz=(e?—e "%)/2i to rewrite®, ,(x,y) in Eq.(6). Applying
—exp{—l(Zn—m)gx Sin m‘/ay ] the property of the Dirichlet kernel, the maximum intensity

of the coherent state in E¢6) can be found to localize on
(5) the six lines of equation familiegy/v3a=* (2p+q)x/3a
F pl2m=n, py/v3a*(p+2q)x/3a* ¢/2m=n, (p
The SU2) coherent state for the 2D quantum harmonic os-+q)y/v3a=* (p—q)x/3a=x ¢/27=n with ne Z, which coin-
cillators has been demonstrated to be well localized on theide with the classical trajectories. Therefore, the relative
corresponding classical elliptical trajectof1]. As in the  phase factor between various parts of the coherent state has a
Schwinger representation of the &) algebra[21] and in  causal relationship with the localization on the classical tra-
terms of®,, ,(x,y), the wave functions associated with the jectories. Note that the quantum flux for the complex conju-
periodic orbits f,q,= ¢) in an equilateral triangular quan- gate of the coherent stat&y, \,(x,y;p.q,¢) changes to the
tum billiard are deduced to be opposite direction. Therefore, the coherent statég,
+iWy v, turn out to be the standing waves.
12 _ Strictly speaking, the coherent states in ). are not
(K) exp(=iK ¢) stationary states because the eigenstate components are not
exactly degenerate for the Hamiltoni&h Nevertheless, the
XDy 1) mequ-i)(X,Y)  (6)  asymptotic behavior thakH/(H)—0 asN—x ensures the
coherent states in E@6) to be stationary states in the clas-
with the restriction thaM =2p(N+1), where the indices  Sical limit, where(H) is the expectation value of the Hamil-
andN indicates the order of the coherent states. Equagpn tonian andAH s the dispersion in energy by computing
indicates that the parameteris the relative phase between V(H")—(H)“. On the other hand, experimental results
various Components of the coherent state. Figure 2 dep|c{§.1,12,1] have revealed that the coherent state obtained as a
the wave patterns df\]fNyM(x,y;p,q,(ﬁ”z with N=20 and superposition of a few nearly degenerate eigenstates provides
M=2p(N+1) corresponding to the classical trajectories@ more physical description of a phenomenon than the true
displayed in Fig. 1. On the whole, the distributions of eigenstates in the mesoscopic region. .
| m(X,Y;p,0,¢)|? are in good agreement with the classi-  With the coherent state, the probability current dengity
cal trajectories. Even so, quantum interference effects notIm(W* VW) can be calculated to gain physical aspects of
only lead to the wave localization but also result in the in-the quantum vortices. In separable rectangular billiaB]s
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FIG. 3. (a) The normalized quantum flu§/|j| for several small regions of the coherent states shown in Fay. @) The normalized

quantum fluxJ/|J| for several small regions of the coherent states shown in . @) The normalized quantum flu¥/|J| for several
small regions of the coherent states shown in Fig).2

the tangents to the quantum streamlines generally coincidghow the fine details, Figs(®—3(c) depict the normalized
with the directions of the classical velocities; the vortexquantum f|uxj/|j| for several small regions. Despite the
structures form a regular square lattice. In a nonseparablgell localization of the quantum probability on the classical
billiard, however, the formation of complex vortex structurestrajectories, the quantum probability flows significantly dif-
gives rise to a conspicuous inconsistency between the quafer from the classical velocity fields. In particular, the
tum flux and the classical velocity fields, as shown in Figs.interference-induced quantum vortices play an important role
3(@—3(c) for the wave functions displayed in Fig. 2. To not only in the localization part but also in the low probabil-
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(a) (b) , @ O

FIG. 4. (@) The wave pattern of the high-order coherent state
[P (X,y:P,0,¢)|* from Eq. (6) with p=q=3, ¢=/2, N=10,
andM =2p(N+1). (b) The corresponding quantum flux.

ity region. From nonseparable to chaotic billiards, quantum
flux and vortex structures are expected to be further irregular,
consistent with the random wave conjecture of B¢2¥|.

So far, forp andq to be relatively prime, the S@) co-
herent state corresponds to a single, nonrepeated orbit. Let
be the highest common factor of the indigesand g. If |
>1, the coherent states are denoted to be high order. The FIG. 5. The wave patterns for the high-order coherent states
wave patterns of high-order coherent states correspond to|®#y w(X,y;p.d,¢)|? from Eg. (6) with p=g=6, N=10, andM
combination ofl primitive periodic orbits that are given by =2p(N+1): (@ ¢=0, a triangular vortex lattice(b) ¢=m, a
(p/l,q/l,¢s/1), where ¢s=¢+2ms, seZ, and —1/2<s kagomevortex lattice;(c) and (d) are the quantum flux vectors for
<(1/12— ¢/27). In the case op=q, the high-order coherent (&) and(b), respectively.
state displays a highly regular pattern. Hereafter we focus on
the high-order coherent states witl=g. Numerical analy-  Although vortex lattice states are well known in supercon-
ses reveal that fop#0 or 7 the high-order coherent state ductor systems, their possibility in mesoscopic quantum bil-
typically exhibits an interlace pattern, as shown in Fige)4 liards is likely to be ubiquitouf8,13]. More interestingly, the
for [ Wy m(X,y;p.4,¢)|* with p=q=3, ¢==/2,N=10, and  difference between the various vortex lattices only depend on
M=2p(N+1). Although the coherent state wifi=q=3, the relative phase factor between various components of the
¢= /2 is well localized on the three classical periodic orbitscoherent state.

(1, 1,4/6), (1, 1,—37/6), and(1, 1, 57/6), its intensity is like In conclusion, the vortex formation associated with the
to be made up of woven threads which pass alternately oveslassical periodic orbits in a nonseparable mesoscopic quan-
and under one another as they loop and knot around ortem billiard has been analytically studied. It is found that
another. As shown in Fig.(4), the corresponding flux vec- quantum interference effects lead to the well localization of
tors J are not straightaway but are swirling about the classithe coherent state on the classical trajectories; however, the
cal trajectories. Since the high-order coherent state has @/antum probability flows may significantly differ from the
regular periodic pattern, only a small region consisting of aclassical velocity fields. On the other hand, the high-order
unit tra]ectory is shown for fine details. It needs to be em.coherent states are found to form the trlangular swirl, and
phasized that the swirling, twisting quantum flux associateckagomevortex lattices. Theoretical results indicate that ma-
with the periodic orbits is fully induced by the confinement hipulating the phase factor of the high-order coherent state
not by the magnetic field. Even so, weak perturbation p|ays &an lead to the transition between various vortex lattices.
vital role for the appearance of the coherent states in mes@ince the phase factor of the coherent states is ClOSG'y related
scopic quantum billiardf23]. to the initial position of the classical trajectories, from an

In addition to the swirl vortex lattice, the high-order co- experimental point of view, it can be changed by controlling
herent states are found to form a triangular vortex lattice wittthe source of the excited wave. For instance, it has been
phase synchronizatiop=0 and to form akagomevortex ~demonstrated that controlling the excitation region in a large
lattice with phase antisynchronizatiop=, as show in Fresnel number laser cavity can bring about various coherent
Figs. 5a) and §b) for Wy w(X,y;p.q,¢) with p=q=6,N  patterns related to different phase factfi24,25.
=10, andM=2p(N+1). The corresponding quantum flux

vectorsJ for a unit trajectory are depicted in Figs(chand
5(d). It can be seen that the quantum flux vectors in the
triangular anckagomevortex lattices are relatively parallel to ~ The authors thank the National Science Council for their
the classical velocity fields. Nevertheless, the main charactefinancial support of this research under Contract No. NSC-
vortex-antivortex pair, is manifest in these vortex lattices.92-2112-M-009-013.
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