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In this paper, we consider the fault Hamiltonicity, and the
fault Hamiltonian connectivity of the (n, k)-star graph
Sn,k. Assume that F � V(Sn,k) � E(Sn,k). For n � k ≥ 2, we
prove that Sn,k � F is Hamiltonian if �F� ≤ n � 3 and Sn,k
� F is Hamiltonian connected if �F� ≤ n � 4. For n � k � 1,
Sn,n�1 is isomorphic to the n-star graph Sn which is
known to be Hamiltonian if and only if n > 2 and Hamil-
tonian connected if and only if n � 2. Moreover, all the
bounds are tight. © 2003 Wiley Periodicals, Inc.
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1. INTRODUCTION

The architecture of an interconnection network is usually
represented by a graph. There are many mutually conflicting
requirements in designing the topology of interconnection
networks. It is almost impossible to design a network which
is optimum from all aspects. One has to design a suitable
network depending on the requirements of its properties.
The Hamiltonian property is one of the major requirements
in designing the topology of a network. Fault tolerance is
also desirable in massive parallel systems.

In this paper, a network is represented as a loopless
undirected graph. For graph definitions and notations, we
follow [2]. G � (V, E) is a graph if V is a finite set and E
is a subset of {(u, v)�(u, v) is an unordered pair of V}. We
say that V is the vertex set and E is the edge set. Two
vertices u and v are adjacent if (u, v) � E. A path is
represented by �v0, v1, v2, . . . , vk�. The length of a path P
is the number of edges in P. We also write the path �v0, v1,
v2, . . . , vk� as �v0, P1, vi, vi�1, . . . , vj, P2, vt, . . . , vk�,
where P1 is the path �v0, v1, . . . , vi� and P2 is the path �vj,
vj�1, . . . , vt�. Hence, it is possible to write a path as �v0,
v1, P, v1, v2, . . . , vk� if the length of P is 0. We use d(u,
v) to denote the distance between u and v, that is, the length

of the shortest path joining u and v. A path is a Hamiltonian
path if its vertices are distinct and span V. A cycle is a path
with at least three vertices such that the first vertex is the
same as the last vertex. A cycle is a Hamiltonian cycle if it
traverses every vertex of G exactly once. A graph is Ham-
iltonian if it has a Hamiltonian cycle.

In [4], the performance of the Hamiltonian property in
faulty networks is discussed. A Hamiltonian graph G is
k-vertex-fault Hamiltonian if G � F remains Hamiltonian
for every F � V(G) with �F� � k. The vertex fault-tolerant
Hamiltonicity �v(G) is defined to be the maximum integer
k such that G is k-vertex-fault Hamiltonian if G is Hamil-
tonian and is undefined otherwise. Obviously, �v(G)
� �(G) � 2, where �(G) � min{deg(v)�v � V(G)} if
�v(G) is defined. Similarly, a Hamiltonian graph G is
k-edge-fault Hamiltonian if G � F remains Hamiltonian
for every F � E(G), with �F� � k. The edge fault-tolerant
Hamiltonicity �e(G) is defined to be the maximum integer
k such that G is k-edge-fault Hamiltonian if G is Hamilto-
nian and is undefined otherwise. Again, �e(G) � �(G)
� 2 if �e(G) is defined. Huang et al. [5] defined a more
general parameter: fault-tolerant Hamiltonicity. A Hamilto-
nian graph G is k-fault Hamiltonian if G � F remains
Hamiltonian for every F � V(G) � E(G) with �F� � k.
The fault-tolerant Hamiltonicity �f(G) is defined to be the
maximum integer k such that G is k-fault Hamiltonian if G
is Hamiltonian and is undefined otehrwise. Clearly, �f(G)
� �(G) � 2 if �f(G) is defined. Huang et al. [5] also
introduced the term fault-tolerant Hamiltonian connected. A
graph G is Hamiltonian connected if there exists a Hamil-
tonian path joining any two vertices of G. All Hamiltonian
connected graphs except the complete graphs K1 and K2 are
Hamiltonian. A graph G is k-fault Hamiltonian connected if
G � F remains Hamiltonian connected for every F � V(G)
� E(G) with �F� � k. The fault-tolerant Hamiltonian
connectivity �f

�(G) is defined to be the maximum integer k
such that G is k-fault Hamiltonian connected if G is Ham-
iltonian connected and is undefined otherwise. It can be
checked that �f

�(G) � �(G) � 3 only if �f
�(G) is defined

and �V(G)� � 4.
In this paper, we consider the fault-tolerant Hamiltonic-
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ity of the (n, k)-star graph. The (n, k)-star graph is an
attractive alternative to the n-star graph [1]. However, the
growth of vertices is n! for an n-star graph. To remedy this
drawback, the (n, k)-star graph was proposed by [3]. The
(n, k)-star graph is a generalization of the n-star graph. It
has two parameters n and k. When k � n � 1, an (n, n
� 1)-star graph is isomorphic to an n-star graph, and when
k � 1, an (n, 1)-star graph is isomorphic to a complete
graph Kn. Then, all the parallel algorithms of the n-star
graphs and the complete graphs Kn can be applied to the (n,
k)-star graphs.

Throughout this paper, we assume that n and k are
positive integers with n � k. We use �n� to denote the set
{1, 2, . . . , n}. The (n, k)-star graph, denoted by Sn,k, is a
graph with the vertex set V(Sn,k) � {u1u2 . . . uk�ui � �n�
and ui � uj for i � j}. Adjacency is defined as follows: A
vertex u1u2 . . . ui . . . uk is adjacent to (1) the vertex
uiu2u3 . . . u1 . . . uk, where 2 � i � k (i.e., we swap ui

with u1), and (2) the vertex xu2u3 . . . uk, where x � �n� �
{ui�1 � i � k}. The (4, 2)-star graph is shown in Figure 1.
The edges of type (1) are referred to as i-edges, and the
edges of type (2) are referred to as 1-edges. By definition,
S(n, k) is an (n � 1)-regular graph with n!/(n � k)!
vertices. Moreover, it is vertex-transitive.

In the following section, we discuss some properties of
complete graphs Kn. In Section 3, we discuss some prop-
erties of the (n, k)-star graphs. In the final section, we prove
that (1) �f(Sn,k) � n � 3 and �f

�(Sn,k) � n � 4 if n � k
� 2; (2) �f(S2,1) is undefined and �f

�(S2,1) � 0; and (3)
�f(Sn,n�1) � 0 and �f

�(Sn,n�1) is undefined if n � 2.

2. SOME PROPERTIES OF COMPLETE GRAPHS

Let G � (V, E) be a graph. We use E� to denote the edge
set of the complement of G. The following theorem was
proved by Ore [7]:

Theorem 1 [7]. Assume that G � (V, E) is a graph with
n � 4 vertices. Then, G is Hamiltonian if �E� � � n � 3 and
is Hamiltonian connected if �E� � � n � 4.

Let G � (V, E) be a graph with n vertices where n � 4
and �E� � � n � 4. By Theorem 1, there is a Hamiltonian
path joining any two different vertices. Actually, there are
two Hamiltonian paths of different types joining any two
different vertices. Therefore, we have a more profound
result.

Theorem 2. Assume that G � (V, E) is a graph with V
� �n�, n � 4, and �E� � � n � 4. Then, there are two
Hamiltonian paths of G joining any two different vertices i
and j in V, say P1 � �i � i1, i2, . . . , in�1, in � j� and P2 � �i
� i�1, i�2, . . . , i�n�1, i�n � j�, such that i2 � i�2 and in�1 � i�n�1.

Proof. We prove this theorem by induction on n. The
theorem is true for n � 4 because G is the complete graph
K4. Assume that the theorem holds for every integer m with
n � m � 4. Let i and j be any two vertices of G. We want
to find two Hamiltonian paths of G joining i and j, say P1

� �i � i1, i2, . . . , in�1, in � j� and P2 � �i � i�1,
i�2, . . . , i�n�1, i�n � j�, such that i2 � i�2 and in�1 � i�n�1.
Let X be a subset of �n�. We use GX to denote the subgraph
of G induced by X and E� X to denote the set {(i, j)�(i, j)
� E� , i, j � X}.

CASE 1. �{ x � �n � 1��(n, x) � E� }� � 0. Hence, �E� �n�1��
� n � 4 and (n, l ) � E for any l � �n � 1�.

Suppose that i � n or j � n. Without loss of generality,
we assume that i � n. Since �E� �n�1�� � n � 4 � (n � 1)
� 3, by Theorem 1, there is a Hamiltonian cycle of G�n�1�,
say �j � a1, a2, a3, . . . an�1, a1 � j�. Then, P1 � �i
� n, a2, a3, . . . , an�1, a1 � j� and P2 � �i � n, an�1,
an�2, . . . , a2, a1 � j� form two Hamiltonian paths of G,
satisfying our requirements. See Figure 2(a) for an example.
For illustrative purpose, we draw P1 and P2 as internal
disjoint paths. Similar situations hold for the remaining
figures.

Now, we consider that i � n and j � n. Suppose that
E� �n�1� � A. Then, G is the complete graph Kn and the
theorem is obviously true. Suppose that E� �n�1� � A. We
can choose any edge e in E� �n�1�. Obviously, G�n�1� � e is
a graph with n � 1 vertices. Moreover, the complement of
G�n�1� � e contains at most (n � 1) � 4 edges. By
induction, there are two Hamiltonian paths of G�n�1� � e
joining i and j, say P�1 � �i � a1

1, a2
1, . . . , an�2

1 , an�1
1 �

j� and P�2 � �i � a1
2, a2

2, . . . , an�2
2 , an�1

2 � j�, such that
a2

1 � a2
2 and an�2

1 � an�2
2 . For l � {1, 2}, we set Pl as

�i � a1
l , a2

l , . . . , at
l, n, at�1

l , . . . , an�2
l , an�1

l � j�, where
t � 2 if (ap

l , ap�1
l ) � e for all 1 � p � n � 1, or t is the

index p such that (ap
l , ap�1

l ) � e. Obviously, P1 and P2

form two Hamiltonian paths of G, satisfying our require-
ments. See Figure 2(b) for an illustration.

CASE 2. �{ x � �n � 1��(n, x) � E� }� � 1. Hence, �E� �n�1��
� n � 5. Suppose that i � n or j � n. Without loss of
generality, we assume that i � n. Since �E� � � n � 4, there
are at least three different vertices r, s, and t, such that {(r,

FIG. 1. (4, 2)-star graph.
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n), (s, n), (t, n)} � E. Without loss of generality, we may
assume that r � j and s � j. By induction, there exist two
Hamiltonian paths P1 and P2 of G�n�1� joining r and j, say
P1 � �a1 � r, a2, . . . , an�1 � j� and P2 � �b1 � r,
b2, . . . , bn�1 � j�, such that a2 � b2 and an�2 � bn�2.
Similarly, there exist two Hamiltonian paths P3 and P4 of
G�n�1� joining s and j, say P3 � �c1 � s, c2, . . . , cn�1

� j� and P4 � �d1 � s, d2, . . . , dn�1 � j�, such that c2

� d2 and cn�2 � dn�2. Without loss of generality, we may
assume that an�2 � cn�2. Obviously, �i, a1 � r, a2, . . . ,
an�1 � j� and �i, c1 � s, c2, . . . , cn�1 � j� form the
desired Hamiltonian paths of G.

Now, we consider that i � n and j � n. Since �E� �n�1��
� n � 5, by induction, there are two Hamiltonian paths of
G�n�1� joining i and j, say P1 � �a1 � i, a2, . . . , an�1

� j� and P2 � �b1 � i, b2, . . . , bn�1 � j�, such that a2

� b2 and an�2 � bn�2.
Suppose that {(i, n), ( j, n)} � E. Without loss of

generality, we assume that (i, n) � E� . Since �E� � � n � 4,
there exists a smallest index p such that (n, ap) � E.
Obviously, 2 � p � n � 3. Set J � {a1, a2, . . . , ap�1}.
Thus, �E� �n��J� � �E� � � �J� � n � 4 � ( p � 1) and
G�n��J is a graph with ��n� � J� � n � p � 1 � n � (n
� 3) � 1 � 4 vertices. By induction, there are two
Hamiltonian paths P3 and P4 of G�n��J joining ap to j, say
P3 � �cp � ap, cp�1, . . . , cn � j� and P4 � �dp � ap,
dp�1, . . . , dn � j�, such that cp�1 � dp�1 and cn�1

� dn�1. See Figure 3(a) for an illustration. Similarly, let q
be the smallest index such that (n, bq) � E. Set J� � {b1,
b2, . . . , bq�1}. Again, 2 � q � n � 3, �E� �n��J�� � �E� �
� �J�� � n � 4 � (q � 1), and G�n��J� is a graph with

FIG. 2. Illustrations for Case 1.

FIG. 3. Illustrations for Case 2.
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n � q � 1 � 4 vertices. By induction, there are two
Hamiltonian paths P5 and P6 of G�n��J� joining bq to j, say
P5 � �eq � bq, eq�1, . . . , en � j� and P6 � �fq � bq,
fq�1, . . . , fn � j�, such that eq�1 � fq�1 and en�1

� fn�1. Without loss of generality, we may assume that
cn�1 � en�1. Then, we set P7 � �a1 � i, a2, . . . , ap

� cp, cp�1, . . . , cn�1, cn � j� and P8 � �b1 � i,
b2, . . . , bq � eq, eq�1, . . . , en�1, en � j�. Obviously, P7

and P8 form the desired Hamiltonian paths of G. See Figure
3(b) for an illustration.

Suppose that {(i, n), ( j, n)} � E. We assume that �{ x
� �n��(n, x) � E� }� � 1. By Theorem 1, there exists a
Hamiltonian cycle of G�n�1��{i}, say C � �j, k, Q1, l, j�.
Since the cycle C can be traversed forward and backward,
we may assume that (k, n) � E. Then, P1 � �i, n, k, Q1,
l, j� forms a Hamiltonian path of G. Similarly, there also
exists a Hamiltonian cycle of G�n�1��{ j}, say �i, k�, Q2, l�,
i� with (k�, n) � E. Then, P2 � �i, l�, Q2, k�, n, j� forms
another Hamiltonian path of G. Thus, P1 and P2 form the
desired Hamiltonian paths of G. See Figure 3(c) for an
illustration.

Assume that �{ x � �n��(n, x) � E� }� � 2. Since �E� � �
n � 4, n � 6 and there exists a vertex k in �n� � {i, j}
such that (k, n) � E. Obviously, �E� �n�1��{i}� � n � 6 and
G�n�1��{i} is a graph with (n � 2) vertices. By Theorem
1, there exists a Hamiltonian path �g1 � k, g2, . . . , gn�2

� j� of G�n�1��{i} joining k to j. Similarly, there exists a
Hamiltonian path �h1 � i, h2, . . . , hn�2 � k� of
G�n�1��{ j} joining i to k. Obviously, �i, n, k � g1, g2, . . . ,
gn�2 � j� and �h1 � i, h2, . . . , hn�2 � k, n, j� form the
desired Hamiltonian paths of G. See Figure 3(d) for an
illustration. ■

Lemma 1. Assume that n � 4. Then, Kn is (n � 3)-fault
Hamiltonian and (n � 4)-fault Hamiltonian connected.

Proof. Let F be any subset of V(Kn) � E(Kn). We use
FV to denote F 	 V(Kn). Then, Kn � F is isomorphic to
Kn�f � F�, where f � �FV� and F� is a subset of edges in
the subgraph of Kn induced by �n� � FV. Obviously, �F��
� �F� � f. Thus, if �F� � n � i, then E� (Kn�f � F�)
� �F�� � �F� � f � (n � f ) � i. Since n � f is the
number of vertices of Kn�f � F�, the lemma follows from
Theorem 1. ■

The following theorem was proved by Hung et al. [6]:

Theorem 3 [6]. Let Kn � (V, E) be the complete graph
with n vertices. Let F � (V � E) be a faulty set with �F� �
n � 2. Then, there exists a vertex set V� 
 V(Kn) � F with
�V�� � n � �F� such that there exists a Hamiltonian path of
Kn � F joining every pair of vertices in V�.

3. BASIC PROPERTIES OF THE (N, K)-STAR
GRAPHS

Let u � u1u2 . . . uk be any vertex of the (n, k)-star
graph. We say ui is the ith coordinate of u, denoted as (u)i,

for 1 � i � k. Let v be a neighbor of u. We say that v is an
i-neighbor of u if ui � vi. By the definition of Sn,k, there is
exactly one i-neighbor of u for 2 � i � k and there are (n � k)
1-neighbors of u. We use i(u) to denote the unique i-neighbor
of u if i � 1. Hence, (k(u))k � (u)1. For 1 � i � n, let Sn�1,k�1

i

be the subgraph of Sn,k induced by those vertices u with (u)k

� i. In [3], Chiang and Chen proved that Sn,k can be decom-
posed into n subgraphs Sn�1,k�1

i , 1 � i � n, such that each
subgraph Sn�1,k�1

i is isomorphic to Sn�1,k�1. Thus, the (n,
k)-star graph can be constructed recursively.

Lemma 2. Let n � k � 1 and u and v be two distinct
vertices in Sn�1,k�1

l with d(u, v) � 2 for some 1 � l � n.
Then, (u)1 � (v)1.

Proof. Let u � u1u2 . . . uk. Suppose that d(u, v) � 1.
Since every edge in Sn�1,k�1

l is an i-edge with 1 � i 	 k,
v is either i(u) for some 2 � i 	 k or xu2 . . . uk for some
x � �n� � {uj�1 � j � k}. Obviously, (v)1 is either ui with
2 � i 	 k or x. Hence, (u)1 � (v)1.

Suppose that d(u, v) � 2. Let w � w1w2 . . . wk be the
common neighbor of u and v in Sn�1,k�1

l . Then, u is either
i(w) or x1w2w3 . . . wk for some x1 � �n� � {wr�1 � r
� k}.

Assume that u is i(w). Then, v is either j(w) for some 2
� j � i 	 k or xw2 . . . wk for some x � �n� � {wr�1 � r
� k}. Thus, (u)1 � wi. Moreover, (v)1 � wj or (v)1 � x
with 2 � i � j 	 k. Hence, (u)1 � (v)1.

Assume that u is x1w2 . . . wk for some x1 � �n� �
{wr�1 � r � k}. Then, v is x2w2 . . . wk for some x2 � �n�
� {wr�1 � r � k}, with x1 � x2. Thus, (u)1 � x1 and (v)1

� x2. Hence, (u)1 � (v)1.
Thus, the lemma is proved. ■

For 1 � i � j � n, we use Ei,j to denote the set of edges
between Sn�1,k�1

i and Sn�1,k�1
j . Let (u, v) be any edge in Ei,j.

We assume that u � Sn�1,k�1
i and v � Sn�1,k�1

j . Thus, (u, v)
� Ei,j implies that (v, u) � Ej,i. However, (u, v) � Ej,i if (u, v)
� Ei,j. In [3], it was proved that �Ei,j� � [(n � 2)!]/[(n � k)!].
Thus, �Ei,j� � 1 if k � 2. The following lemma can be easily
obtained from the definition of Sn,k.

Lemma 3. Let (u, v) and (u�, v�) be any two distinct edges
in Ei,j. Then, {u, v} 	 {u�, v�} � A.

Let F be a faulty set of Sn,k. An edge (u, v) is F-fault if
(u, v) � F, u � F, or v � F, and (u, v) is F-fault free if
(u, v) is not F-fault. Let H � (V�, E�) be a subgraph of
Sn,k. We use F(H) to denote the set (V� � E�) 	 F. We
associate Sn,k with the complete graph Kn with vertex set
�n� such that vertex l of Kn is associated with Sn�1,k�1

l for
every 1 � l � n. We define a faulty edge set R(F) of Kn

as (i, j) � R(F) if some edge of Ei, j is F-fault. Obviously,
�R(F)� � �F�. Assume that I is any subset of �n�. We use
Sn�1,k�1

I to denote the subgraph of Sn,k induced by
�i�IV(Sn�1,k�1

i ). Similarly, we use Kn
I to denote the sub-

graph of Kn induced by I.
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Lemma 4. Suppose that k � 2 and (n � k) � 2. Let I 

�n� with �I� � m � 2 and let F � V(Sn,k) � E(Sn,k) with
Sn�1,k�1

i � F being Hamiltonian connected for all i � I. Let
u and v be any two vertices of Sn�1,k�1

I such that (1) (u)k

� (v)k, (2) there exists a Hamiltonian path P � �(u)k � i1,
i2, . . . , im � (v)k� of Kn

I � R(F), and (3) (u)1 � i2 and (v)1

� im�1 if k � 2. Then, there exists a Hamiltonian path of
Sn�1,k�1

I � F joining u to v.

Proof. Let u1 � u and vm � v. Suppose that we can
choose two different vertices ul and vl in Sn�1,k�1

il for every
il � I such that (vl, ul�1) � Eii

,il�1. Since (il, il�1) � R(F),
(vl, ul�1) is F-fault free. Since Sn�1,k�1

il � F is Hamilto-
nian connected, there exists a Hamiltonian path Pl of
Sn�1,k�1

il � F joining ul and vl for all 1 � l � m. Using
the second condition, then �u � u1, P1, v1, u2, P2, v2, . . . ,
um, Pm, vm � v� forms a Hamiltonian path of Sn�1,k�1

I �
F joining u to v. Thus, the lemma is proved as long as such
a choice is achievable.

Suppose that k � 3. Since �Ei, j� � (n � 2) � 3 for any
i and j in I, such a choice is easily achievable. Suppose that
k � 2. We can choose ul and vl in Sn�1,k�1

il for every il � I
as the only edge (vl, ul�1) � Eil,il�1. Since (ul)1 � (vl�1)k

� (vl)1 � (ul�1)k, ul � vl for every 1 	 l 	 m. The
conditions (u)1 � i2 and (v)1 � im�1 imply that u � u1

� v1 and v � vm � um. Hence, the lemma is proved. ■

4. HAMILTONIAN PROPERTIES OF THE (N, K)-
STAR GRAPHS

Lemma 5. S4,2 is 1-fault Hamiltonian and Hamiltonian
connected.

Proof. Let F � { f} � V(S4,2) � E(S4,2). Assume
that f � V(S4,2). Since S4,2 is vertex-transitive, we may
assume that f is the vertex 12. Obviously,

�32, 42, 24, 34, 14, 41, 21, 31, 13, 43, 23, 32�

forms a Hamiltonian cycle of S4,2 � F. Suppose that f is an
edge. By the symmetric property of S4,2, we may assume
that f is either the edge (42, 32) or the edge (12, 21).
Obviously,

�32, 12, 42, 24, 34, 14, 41, 21, 31, 13, 43, 23, 32�

forms a Hamiltonian cycle of S4,2 � F. Hence, S4,2 is
1-fault Hamiltonian.

Let x and y be any two vertices of S4,2. By the symmetric
property of S4,2, we may assume that x is the vertex 12 and
y � {32, 21, 41, 14, 34}. Thus,

�12, 42, 24, 34, 14, 41, 21, 31, 13, 43, 23, 32�,

�12, 42, 32, 23, 13, 43, 34, 24, 14, 41, 31, 21�,

�12, 32, 42, 24, 14, 34, 43, 23, 13, 31, 21, 41�,

�12, 21, 41, 31, 13, 43, 23, 32, 42, 24, 34, 14�, and

�12, 21, 41, 31, 13, 43, 23, 32, 42, 24, 14, 34�

are the corresponding Hamiltonian paths of S4,2. Hence,
S4,2 is Hamiltonian connected. ■

Lemma 6. Suppose that Sn�1,k�1 is (n � 4)-fault Hamil-
tonian and (n � 5)-fault Hamiltonian connected, for some k
� 2, n � 5, and n � k � 2. Then, Sn,k is (n � 3)-fault
Hamiltonian.

Proof. Assume that F is any faulty set of Sn,k with �F�
� n � 3. Without loss of generality, we assume that
�F(Sn�1,k�1

1 )� � �F(Sn�1,k�1
2 )� � . . . � �F(Sn�1,k�1

n )�.
Let F� � F � F(Sn�1,k�1

1 ).

CASE 1. �F(Sn�1,k�1
1 )� � n � 5. By the assumption of this

lemma, Sn�1,k�1
i � F is Hamiltonian connected for every

i � �n�. Since �R(F)� � �F� � n � 3, by Lemma 1, Kn

� R(F) is Hamiltonian. Let C � �t1, t2, . . . , tn, t1� be a
Hamiltonian cycle of Kn � R(F). Thus, all edges in Et1,tn

are F-fault free. We choose any edge (u, v) in Et1,tn. Obvi-
ously, �t1, t2, . . . , tn� is a Hamiltonian path of Kn � R(F),
(u)1 � (v)k � tn, and (v)1 � (u)k � t1. By Lemma 4,
there exists a Hamiltonian path P1 of Sn,k � F joining u to
v. Thus, �u, P1, v, u� forms a Hamiltonian cycle of Sn,k

� F.

CASE 2. �F(Sn�1,k�1
1 )� � n � 4. Thus, �F�� � 1 and

�R(F�)� � 1. By the assumption of this lemma, Sn�1,k�1
1 �

F is Hamiltonian.

Suppose that Sn�1,k�1
i � F is Hamiltonian connected

for every i � 1. Let C be a Hamiltonian cycle of Sn�1,k�1
1

� F. Since the length of C is at least 3, there exists an edge
(u, v) in C such that both (u, k(u)) and (v, k(v)) are F-fault
free. We can write C as �u, P1, v, u�. Since �R(F�)� � 1,
Kn

�n��{1} � R(F�) is Hamiltonian connected. Obviously,
(k(k(u)))k � (u)k � (v)k � 1. By Lemma 4, there is a
Hamiltonian path P2 of Sn�1,k�1

�n��{1} � F� joining k(u) to k(v).
Hence, �u, k(u), P2, k(v), v, P1, u� forms a Hamiltonian
cycle of Sn,k � F.

Suppose that Sn�1,k�1
i � F is not Hamiltonian con-

nected for every i � 1. We claim that n � 5 and
�F(Sn�1,k�1

2 )� � 1. Suppose that n � 6 or (n � 5 and
�F(Sn�1,k�1

2 )� � 0). Since �F�� � 1, Sn�1,k�1
i � F is

Hamiltonian connected by the assumption of this lemma.
We get a contradiction.

Hence, we consider n � 5. Obviously, k � {2, 3}.
Moreover, �F� � 2, �F(S4,k�1

1 )� � �F(S4,k�1
2 )� � 1, and

�F(S4,k�1
{3,4,5})� � 0. Suppose that k � 2. We use brute force

to construct such Hamiltonian cycles for S5,2 � F. (See
Appendix)
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Suppose that k � 3. Since �Ei, j� � 3 for any 1 � i, j
� 5 in S5,3, there is an F-fault-free edge (u, v) in E1,2.
Since S4,2 is 1-fault Hamiltonian, there is a Hamiltonian
cycle C1 � �u, P1, w, u� in S4,2

1 � F and there is a
Hamiltonian cycle C2 � �v, x, P2, x�, v� in S4,2

2 � F. By
Lemma 2, (x)1 � (x�)1. Since cycle C2 can be traversed
backward and forward, we may assume that (w)1 � (x)1.
Since Kn

{3,4,5} is Hamiltonian connected, by Lemma 4, there
exists a Hamiltonian path P3 of S4,2

{3,4,5} joining k(w) and
k(x). Then, �u, P1, w, k(w), P3, k(x), x, P2, x�, v, u� forms
a Hamiltonian cycle of S5,3 � F. See Figure 4(a) for an
illustration.

CASE 3. �F(Sn�1,k�1
1 )� � n � 3. Thus, �F � F(Sn�1,k�1

1 )�
� 0. Choose any element f in F(Sn�1,k�1

1 ). By the assump-
tion of this lemma, there exists a Hamiltonian cycle of
Sn�1,k�1

1 � F � { f}. By deleting f from Sn�1,k�1
1 � F,

we can find a Hamiltonian path of Sn�1,k�1
1 � F joining u

and v such that d(u, v) � 2, no matter whether f is a vertex
or an edge. By Lemma 2, (u)1 � (v)1. Since Kn

�n��{1} is
Hamiltonian connected and (u)k � (v)k � 1, by Lemma 4,
there exists a Hamiltonian path P2 of Sn�1,k�1

�n��{1} joining k(u)
to k(v). Thus, �u, k(u), P2, k(v), v, P1, u� forms a
Hamiltonian cycle of Sn,k � F. See Figure 4(b) for an
illustration.

Hence, the lemma follows: ■

Lemma 7. Sn,2 is (n � 4)-fault Hamiltonian connected for
n � 5.

Proof. By definition, Sn�1,1
i is isomorphic to Kn�1 for

every i � �n�. Moreover, �Ei, j� � 1 for any two i, j � �n�.
Assume that F is any faulty set of Sn,2 with �F� � n � 4.
Without loss of generality, we assume that �F(Sn�1,1

1 )� �
�F(Sn�1,1

2 )� � . . . � �F(Sn�1,1
n )�. Let x and y be any two

arbitrary vertices of Sn,2 � F. We need to construct a
Hamiltonian path of Sn,2 � F joining x and y.

CASE 1. �F(Sn�1,1
1 )� � n � 5. By Lemma 1, Sn�1,1

t �
F(Sn�1,1

t ) is Hamiltonian connected for any t � �n�.

SUBCASE 1.1. (x)k � (y)k. Let F� � F � {(y, k(y))}. Then,
�R(F�)� � n � 3. By Lemma 1, there exists a Hamiltonian
cycle C in Kn � R(F�), say C � �(x)k � a1, a2, . . . , an,
a1�. Thus, the only edge (u, k(u)) in Ea1,a2 and the only
edge (v, k(v)) in Ea1,an are F-fault free.

Suppose that �F(Sn�1,1
a1 )� � 0. Since (y, k(y)) � F�, v

� y. Obviously, �a1, a3, . . . , an� is a Hamiltonian path of
Kn

�n��{a1} � R(F�) and (u)k � (v)k � a1. By Lemma 4,
there exists a Hamiltonian path P1 of Sn�1,1

�n��{a1} joining k(u)
to k(v). Since Sn�1,1

a1 is kn�1, there exist two paths P2 and
P3 covering all vertices in Sn�1,1

a1 such that P2 joins x to u
and P3 joins v to y. Then, �x, P2, u, k(u), P1, k(v), v, P3,
y� forms a Hamiltonian path of Sn,2 � F joining x to y. See
Figure 5(a) for an illustration.

Suppose that �F(Sn�1,1
a1 )� � 1. We create a new graph H

by setting V(H) � V(Sn�1,1
a1 ) � {n} and E(H)

� E(Sn�1,1
a1 ) � {(w, n)�w � V(Sn�1,1

a1 )}. Hence, H is Kn.
Then, we set F
 � F(Sn�1,1

a1 ) � {(w, n)� the only edge in
Ea1,(w)1 is F-fault}. Hence, �F
� � n � 4. By Lemma 1, H
� F
 is Hamiltonian connected. Thus, there exists a Ham-
iltonian path P1 of H � F
 joining x to y. Since n is an
internal vertex of P1, we can write P1 as �x � u1, Q1, us,
n � us�1, us�2, Q2, un � y�. Since �F(Sn�1,1

a1 )� � 1,
�R(F(Sn�1,1

�n��{a1}))� � �F � F(Sn�1,1
a1 )� � n � 5. By

Lemma 1, Kn
�n��{a1} � R(F(Sn�1,1

�n��{a1})) is Hamiltonian
connected. Obviously, (us)k � (us�2)k � a1. By Lemma 4,
there exists a Hamiltonian path P2 of Sn�1,1

�n��{a1} � F joining
k(us) to k(us�2). Then, �x � u1, Q1, us, k(us), P2,
k(us�2), us�2, Q2, un � y� forms a Hamiltonian path of
Sn,2 � F joining x to y. See Figure 5(b) for an illustration.

SUBCASE 1.2. (x)k � (y)k. Since �F� � n � 4, �R(F)� � n
� 4. By Theorem 2, there are two Hamiltonian paths of Kn

� R(F) joining (x)k to (y)k, say P1 � �(x)k � l1, l2, . . . ,

FIG. 4. Illustrations for Lemma 6.
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ln � (y)k� and P2 � �(x)k � l�1, l�2, . . . , l�n � (y)k�, such
that l2 � l�2 and ln�1 � l�n�1. Suppose that ((x)1 � l2 and
(y)1 � ln�1) or ((x)1 � l�2 and (y)1 � l�n�1). By Lemma
4, there is a Hamiltonian path of Sn,2 � F joining x to y.
Thus, we consider that ((x)1 � l2 or (y)1 � ln�1) and ((x)1

� l�2 or (y)1 � l�n�1). Since l2 � l�2 and ln�1 � l�n�1,
without loss of generality, we assume that (x)1 � l2 and
(y)1 � l�n�1.

Suppose that �F(Sn�1,1
l1 )� � 1 or some edges in

�j��n��{l1}El1, j are F-fault. Since �F� � n � 4 and
�j��n��{l1}El1, j � n � 1, there exists an index i � �n� �
{l1, l2, ln} such that the only edge (u, k(u)) � El1,i is
F-fault free. Since (x)1 � l2 � i, u � x. By Lemma 1, there
exists a Hamiltonian path P6 of Sn�1,1

l1 � F joining x to u.
Let F� � F(Sn�1,1

�n��{l1}). Then, �R(F�)� � n � 5. By
Theorem 2, there exist two Hamiltonian paths of Kn

�n��{l1}
� R(F�) joining i to ln, say P3 � �i � a1, a2, . . . , an�1

� ln� and P4 � �i � b1, b2, . . . , bn�1 � ln�, such that
a2 � b2 and an�2 � bn�2. Without loss of generality, we
may assume that (y)1 � an�2. Obviously, (u)k � l1. By
Lemma 4, there exists a Hamiltonian path P5 of Sn�1,1

�n��{l1} �
F� joining k(u) to y. Then, �x, P6, u, k(u), P5, y� forms a
Hamiltonian path of Sn,2 � F joining x to y. See Figure 6(a)
for an illustration.

Suppose that �F(Sn�1,1
l1 )� � 0 and all edges in

�j��n��{l1}El1, j are F-fault free. Let u be the only vertex of

Sn�1,1
l1 such that (u, k(u)) � El1,ln. Since (y)1 � ln�1

� (u)k � l1 and (x)1 � l2 � (u)1 � ln, k(u) � y and u
� x. By Lemma 1, there exists a Hamiltonian path P7 of
Sn�1,1

ln � F joining k(u) to y. Let F� � F(Sn�1,1
�n��{l1,ln}).

Since �F� � n � 4, �R(F�)� � n � 4. Thus, Kn
�n��{l1,ln}

� R(F�) has a Hamiltonian path, say �c1, c2, . . . , cn�2�.
Since all edges in �j��n��{l1}El1, j are F-fault free, the only
edge (v, k(v)) in El1,c1 and the only edge (w, k(w)) in
El1,cn�2 are F-fault free. Obviously, (k(k(v)))k � (v)k � l1

and (k(k(w)))k � (w)k � l1. By Lemma 4, there exists a
Hamiltonian path P8 of Sn�1,1

�n��{l1,ln} � F� joining k(v) to
k(w). Since k(v) and k(w) are the endpoints of the path P8,
at least one of v and w is not x. Without loss of generality,
we assume that v � x. Since Sn�1,1

l1 is Kn�1, there exist two
disjoint paths P9 and P10 covering all vertices of Sn�1,1

l1

such that P9 joins x to w and P10 joins u to v. Note that it
is possible that x is w. Hence, �x, P9, w, k(w), P8, k(v), v,
P10, u, k(u), P7, y� forms a Hamiltonian path of Sn,2 � F
joining x to y. See Figure 6(b) for an illustration.

CASE 2. �F(Sn�1,1
1 )� � n � 4. Thus, Sn�1,1

1 � F is
Hamiltonian and �F � F(Sn�1,1

1 )� � 0.

SUBCASE 2.1. (x)k � (y)k � 1. Choose any element f in
F(Sn�1,1

1 ). By Lemma 1, there exists a Hamiltonian path P
of Sn�1,1

1 � F(Sn�1,1
1 ) � f joining x and y. By deleting f,

we can find two paths P1 and P2 covering all vertices of

FIG. 5. Illustrations for Subcase 1.1.

FIG. 6. Illustrations for Subcase 1.2.
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Sn�1,1
1 � F such that P1 joins x to u, and P2 joins v to y.

Since Sn�1,1
1 is Kn�1, d(u, v) � 1. By Lemma 2, (u)1

� (v)1. Obviously, Kn
�n��{1} is Hamiltonian connected and

(u)k � (v)k � 1. From Lemma 4, there is a Hamiltonian
path P3 of Sn�1,1

�n��{1} joining k(u) to k(v). Thus, �x, P1, u,
k(u), P3, k(v), v, P2, y� forms a Hamiltonian path of Sn,2

� F joining x to y. See Figure 7(a) for an illustration.

SUBCASE 2.2. (x)k � 1 and (y)k � 1. Let C be a Hamilto-
nian cycle of Sn�1,1

1 � F. Write C as �x, u, P1, v, x�. By
Lemma 2, (u)1 � (v)1. Since the cycle C can be traversed
forward and backward, we may assume that (u)1 � i
� (y)k. Since �F � F(Sn�1,1

1 )� � 0 and n � 5, there exists
an l � �n� � {(x)k, i, (y)k} such that the only edge (w,
k(w)) in E( y)k,l satisfies w � y. Obviously, Kn

�n��{(x)k,(y)k}
is Hamiltonian connected, (u)k � (x)k, and (w)k � (y)k.
From Lemma 4, there exists a Hamiltonian path P2 of
Sn�1,1

�n��{(x)k,(y)k} joining k(u) to k(w). By Lemma 1, there
exists a Hamiltonian path P3 of Sn�1,1

(y)k joining w to y. Thus,
�x, v, P1, u, k(u), P2, k(w), w, P3, y� forms a Hamiltonian
path of Sn,2 � F joining x to y. See Figure 7(b) for an
illustration.

SUBCASE 2.3. (x)k � (y)k � 1. By Lemma 1, there exists a
Hamiltonian cycle C of Sn�1,1

1 � F.

Assume that the only edge (u, k(u)) in E(x)k,1 is F-fault
free. Write C as �k(u), v, P2, v�, k(u)�. By Lemma 2, (v)1

� (v�)1. Since n � 5, we can choose a vertex w in Sn�1,1
(x)k

such that (v)1 � (w)1, w � u, and w � y. Since Sn�1,1
(x)k is

Kn�1, a Hamiltonian path of Sn�1,1
(x)k can be written as �x, w,

P4, y� if x � u and �x, u, w, P4, y� if x � u. Thus, such
a Hamiltonian path can be expressed as �x, P3, u, w, P4, y�.
Obviously, Kn

�n��{1,(x)k} is Hamiltonian connected, (v)k

� 1, and (w)k � (x)k. By Lemma 4, there exists a Ham-
iltonian path P5 of Sn�1,1

�n��{1,(x)k} joining k(v) to k(w). Thus,
�x, P3, u, k(u), v�, P2, v, k(v), P5, k(w), w, P4, y� forms
a Hamiltonian path of Sn,2 � F joining x to y. See Figure
8(a) for an illustration.

Assume that the only edge (u, k(u)) in E(x)k,1 is F-fault.
Since ��j��n��{1}E1, j� � n � 1 and �F� � n � 4, there
are at least three F-fault free edges in �j��n��{1}E1, j.
Thus, there exists an index r � �n� � {(x)k, 1} such that
the only edge (v, k(v)) in E(x)k,r and the only edge (w, k(w))
in E1,r are F-fault free. Thus, k(w) � k(v). By Lemma 1,
there exists a Hamiltonian path P1 of Sn�1,1

r joining k(v) to
k(w) and there exists a Hamiltonian path P2 of Sn�1,1

(x)k

joining x to y. We write P2 as �x, v, z, P4, y� and write C
as �w, t, P2, t�, w�. Since Sn�1,1

1 is Kn�1, d(t, t�) � 1. By
Lemma 2, (t)1 � (t�)1. Since the cycle C can be traversed
forward and backward, we may assume that (t)1 � (z)1.

FIG. 7. Illustrations for Subcases 2.1 and 2.2.

FIG. 8. Illustrations for Subcase 2.3.
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Obviously, Kn
�n��{(x)k,1,r} is Hamiltonian connected, (t)k

� 1, and (z)k � (x)k. By Lemma 4, there exists a Hamil-
tonian path P5 of S�n��{(x)k,1,r} joining k(t) to k(z). Then,
�x, v, k(v), P1, k(w), w, t�, P2, t, k(t), P5, k(z), z, P4, y�
forms a Hamiltonian path of Sn,2 � F joining x to y. See
Figure 8(b) for an illustration.

SUBCASE 2.4. (x)k, (y)k, and 1 are distinct. By Theorem 3,
there exists a vertex set V� of Sn�1,1

1 with �V�� � 3 such that
there exists a Hamiltonian path of Sn�1,1

1 � F joining every
pair of vertices in V�. We define F* � {(1, l )�(u, v)
� E1,l and u � V�}. Since �V�� � 3, �F*� � n � 4. By
Theorem 2, there are two Hamiltonian paths of Kn � F*
joining (x)k to (y)k, say P1 � �(x)k � l1, l2, . . . , ln

� (y)k� and P2 � �(x)k � l�1, l�2, . . . , l�n � (y)k�, such
that l2 � l�2 and ln�1 � l�n�1.

Suppose that ((x)1 � l2 and (y)1 � ln�1) or ((x)1 � l�2
and (y)1 � l�n�1). Without loss of generality, we assume
that (x)1 � l2 and (y)1 � ln�1. Obviously, we can choose
the only F-fault-free edge (vlt, ult�1) in Elt,lt�1 for any 1 � t
� n � 1. Since 1 is an internal vertex of P1, we assume
that 1 � li. Since k(uli) � vli�1 and k(vli) � uli�1, uli � vli.
Since uli and vli are in V� and uli � vli, there exists a
Hamiltonian path Pli

of Sn�1,1
li � F joining uli to vli. Since

k(ulr) � vlr�1 and k(vlr) � ulr�1, ulr � vlr. Since Sn�1,1
lr is

Kn�1 for any lr � �n� � {1} and ulr � vlr, there exists a
Hamiltonian path Plr

of Sn�1,1
lr joining ulr to vlr. Then, �x �

ul1, Pl1
, vl1, ul2, Pl2

, vl2, . . . , uln, Pln
, vln � y� forms a

Hamiltonian path of Sn,2 � F joining x to y. See Figure 9(a)
for an illustration.

Thus, we consider that ((x)1 � l2 or (y)1 � ln�1) and
((x)1 � l�2 or (y)1 � l�n�1). Since l2 � l�2 and ln�1 � l�n�1,
without loss of generality, we assume that (x)1 � l�2 and
(y)1 � ln�1.

Suppose that there exists an index t such that 1 � t 	 n
� 2, 1 � lt, and 1 � lt�1. Since �F � F(Sn�1,1

1 )� � 0,
the only edge (p, k(p)) in Eln,lt and the only edge (q, k(q))
in Eln,lt�1 are F-fault free. Obviously, P3 � �l1, . . . , lt, ln,
lt�1, . . . , ln�1� is also a Hamiltonian path of Kn � R(F*).
We rewrite P3 as �a1, a2, . . . , an�. We set x � ua1 and
k(y) � van. Then, we choose the only edge in Ear,ar�1 as

(var, uar�1) for any 1 � r � n. Since k(var) � uar�1 and
k(uar) � var�1, var � uar. Let i be the index such that ai

� 1. Obviously, uai and vai are in V� and there exists a
Hamiltonian path Pai

of Sn�1,1
1 � F joining uai to vai. Since

Sn�1,1
r is Kn�1 for any r � �n�, there exists a Hamiltonian

path Par
of Sn�1,1

ar � {y} joining uar to var for any ar � �n�
� {1}. Then, P4 � �x � ua1, Pa1

, va1, ua2, Pa2
, va2, . . . ,

uan, Pan
, van � k(y)� forms a Hamiltonian path of Sn,2 � F

� {y} joining x to k(y). Then, �x, P4, k(y), y� forms a
Hamiltonian path of Sn,2 � F joining x to y. See Figure 9(b)
for an illustration.

Suppose that there is no index t such that 1 � t 	 n
� 2, 1 � lt, and 1 � lt�1. We claim that n � 5 and l2

� 1. Let p be the index such that lp � 1. Suppose that n
� 6. We can choose t to be 1 if p � 3 and choose t to be
3 otherwise. Suppose that n � 5 and l2 � 1. We can choose
t to be 1. Obviously, 1 � lt and 1 � lt�1. We get a
contradiction.

Thus, we only consider the case that n � 5 and l2 � 1.
Since (x)1 � l�2 � l�5 � l5 and (y)1 � l4 � l1, the only
edge (u, k(u)) � El1,l5 satisfies u � x and k(u) � y. By
Lemma 1, there exists a Hamiltonian path P7 of Sn�1,1

l5

joining k(u) to y. Since �F � F(Sn�1,1
1 )� � 0, the only edge

(w, k(w)) in El1,l4 is F-fault free. Since (l1, l2) � P1, the
only edge (v, vl2) in El1,l2 is F-fault free. Since Sn�1,1

l1 is
Kn�1, there exist two paths P5 and P6 covering all vertices
in Sn�1,1

l1 such that P5 joins x to w and P6 joins v to u. Since
�l2, l3, l4� is a subpath of P1, the only edge (ul2, vl3) in El2,l3

and the only edge (ul3, vl4) in El3,l4 are F-fault free. Since vl2

and ul2 are in V�, by Lemma 3, there exists a Hamiltonian
path P2 of Sn�1,1

l2 � F joining ul2 to vl2. By Lemma 1, there
exists a Hamiltonian path Pl3

of Sn�1,1
l3 joining ul3 to vl3 and

a Hamiltonian path Pl4
of Sn�1,1

l2 joining k(w) to vl4. Then,
�x, P5, w, k(w), Pl4

, vl4, ul3, Pl3
, vl3, ul2, Pl2

, vl2, v, P6,
u, k(u), P7, y� forms a Hamiltonian path of S5,2 � F
joining x to y.

Thus, the lemma is proved. ■

Lemma 8. Suppose that Sn�1,k�1 is (n � 4)-fault Hamil-
tonian and (n � 5)-fault Hamiltonian connected, for some k
� 3 and n � k � 2. Then, Sn,k is (n � 4)-fault Hamiltonian
connected.

FIG. 9. Illustrations for Subcase 2.4.
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Proof. Since k � 3, n � 5, and (n � k) � 2, �Er,s�
� [(n � 2)!]/[(n � k)!] � (n � 2) for all 1 � r � s
� n. By Lemma 3, all edges in Er,s are independent.
Assume that F is any faulty set of Sn,k with �F� � n � 4.
Without loss of generality, we assume that �F(Sn�1,k�1

1 )� �
�F(Sn�1,k�1

2 )� � . . . � �F(Sn�1,k�1
n )�. Let x and y be any

two arbitrary vertices of Sn,k � F. We want to construct a
Hamiltonian path of Sn,k � F joining x and y.

CASE 1. �F(Sn�1,k�1
1 )� � n � 5. By the assumption of this

lemma, Sn�1,k�1
t � F(Sn�1,k�1

t ) is Hamiltonian connected
for any t � �n�.

SUBCASE 1.1. (x)k � (y)k. Since �R(F)� � n � 4, by
Lemma 1, Kn � R(F) is Hamiltonian connected. By
Lemma 4, there exists a Hamiltonian path of Sn,k � F
joining x and y.

SUBCASE 1.2. (x)k � (y)k. By the assumption of this lemma,
there exists a Hamiltonian path P1 of Sn�1,k�1

(x)k �
F(Sn�1,k�1

(x)k ) joining x to y. We claim that there exists an
edge (u, v) of P1 such that (u, k(u)) in E(x)k,(u)1 and (v,
k(v)) in E(x)k,(v)1 are F-fault free. Let F� denote the set of
F-fault edges in �j��n��{(x)k}

E(x)k, j. Suppose that no such
edge exists. Then, �F�� � �P1�/ 2. Thus, �F� �
F(Sn�1,k�1

(x)k )� � [(n�1)!]/[2(n � k)!] � �F� when n � 5
and k � 3. We get a contradiction.

Thus, we can write P1 as �x, P2, u, v, P3, y�. Since d(u,
v) � 1, (u)1 � (v)1. Let �(u)1 � l1, l2, . . . , ln�1 � (v)1�
be any Hamiltonian path of Kn

�n��{(x)k}. We set k(u) � vl1

and k(v) � uln�1. Since �Er,s� � �F� � 2 for any r, s � �n�,
we can choose any F-fault-free edges (uli, vli�1) in Eli,li�1 for
all 1 � i � n � 1. By the assumption of this lemma, there
exists a Hamiltonian path Pli

of Sn�1,k�1
li � F joining vli to

uli. Then, P4 � �vl1, Pl1
, ul1, vl2, . . . , Pln�1

, uln�1� forms a
Hamiltonian path of Sn�1,k�1

�n��{(x)k} � F joining k(u) to k(v).
Thus, �x, P2, u, k(u), P4, k(v), v, P3, y� forms a Hamil-
tonian path of Sn,k � F joining x to y. See Figure 10 for an
illustration.

CASE 2. �F(Sn�1,k�1
1 )� � n � 4. In this case, all faults are

in Sn�1,k�1
1 .

SUBCASE 2.1. (x)k � (y)k � 1. Choose any element f in
F(Sn�1,k�1

1 ). By the assumption of this lemma, we can find
a Hamiltonian path P of Sn�1,k�1

1 � F(Sn�1,k�1
1 ) � f

joining x to y. By deleting f, we can find two vertices u and
v with d(u, v) � 2 such that (1) there are two paths P1 and
P2 covering all the vertices of Sn�1,k�1

1 � F, (2) P1 joins
x to u, and (3) P2 joins v to y. By Lemma 2, (u)1 � (v)1.
Then, there exists a Hamiltonian path of Kn

�n��{1} joining
(u)1 to (v)1. By Lemma 4, there is a Hamiltonian path P3

joining k(u) and k(v) in Sn�1,k�1
�n��{1} . Thus, �x, P1, u, k(u),

P3, k(v), v, P2, y� forms a Hamiltonian path of Sn,k � F
joining x to y. See Figure 11(a) for an illustration.

SUBCASE 2.2. (x)k � 1 and (y)k � 1. Let C be a Hamilto-
nian cycle of Sn�1,k�1

1 � F(Sn�1,k�1
1 ). Write C as �x, u,

P1, v, x�. Thus, d(u, v) � 2. By Lemma 2, (u)1 � (v)1.
Since the cycle C can be traversed forward and backward,
we may assume that (u)1 � (y)k. Since �F � F(Sn�1,k�1

1 )�
� 0 and �Er,s� � (n � 2) for any 1 � r 	 s � n, there
exists an F-fault-free edge (w, k(w)) in E(y)k,l for some l
� �n� � {(x)k, (u)1, (y)k} such that w � y. Obviously,
there exists a Hamiltonian path of Kn

�n��{(x)k,(y)k} joining
(u)1 to (w)1, (k(k(u)))k � (u)k � (x)k, and (w)k � (y)k.
By Lemma 4, there exists a Hamiltonian path P2 of
Sn�1,k�1

�n��{(x)k,(y)k} joining k(u) to k(w). By the assumption of
this lemma, there exists a Hamiltonian path P3 of Sn�1,k�1

(y)k

FIG. 10. Illustration for Subcase 1.2.

FIG. 11. Illustrations for Subcases 2.1 and 2.2.
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joining w to y. Then, �x, v, P1, u, k(u), P2, k(w), w, P3,
y� forms a Hamiltonian path of Sn,k � F joining x to y. See
Figure 11(b) for an illustration.

SUBCASE 2.3. (x)k � (y)k � 1. By the assumption of this
lemma, there exists a Hamiltonian path P1 of Sn�1,k�1

(x)k

joining x to y and there exists a Hamiltonian cycle C of
Sn�1,k�1

1 � F(Sn�1,k�1
1 ). Since �E(x)k,1� � �F� � 2, there

exists an F-fault-free edge (u, k(u)) � E(x)k,1 with x � u.
Thus, we can write C as �k(u), v, P2, v�, k(u)� and write
P1 as �x, P3, u, w, P4, y�. Since d(v, v�) � 2, (v)1 � (v�)1.
Without loss of generality, we assume that (v)1 � (w)1.
Obviously, there exists a Hamiltonian path of Kn

�n��{1,(x)k}
joining (u)1 to (w)1. By Lemma 4, there exists a Hamilto-
nian path P5 of Sn�1,k�1

�n��{1,(x)k} joining k(v) to k(w). Thus, �x,
P3, u, k(u), v�, P2, v, k(v), P5, k(w), w, P4, y� forms a
Hamiltonian path of Sn,k � F joining x to y. See Figure
12(a) for an illustration.

SUBCASE 2.4. (x)k, (y)k, and 1 are distinct. Since �E(x)k,1� �
(n � 2), there exists an F-fault-free edge (u, k(u)) in E(x)k,1

and u � x. By the assumption of this lemma, there exists a
Hamiltonian path P3 of Sn�1,k�1

(x)k joining x to u and there is
a Hamiltonian cycle C in Sn�1,k�1

1 � F. We can write C as
�k(u), v, P1, w, k(u)�. Since d(v, w) � 2, (v)1 � (w)1.
Without loss of generality, we assume that (v)1 � (y)k.
Then, there exists a Hamiltonian path of Kn

�n��{(x)k,1} join-
ing (v)1 to (y)k. By Lemma 4, there exists a Hamiltonian
path P2 of S�n��{(x)k,1} joining k(v) to y. Then, �x, P3, u,
k(u), w, P1, v, k(v), P2, y� forms a Hamiltonian path of
Sn,k � F joining x to y. See Figure 12(b) for an illustration.

Thus, the lemma is proved. ■

Theorem 4. Let n and k be two positive integers with n
� k � 1. Then,

(1) �f(Sn,k) � n � 3 and �f
�(Sn,k) � n � 4 if n � k � 2;

(2) �f(S2,1) is undefined and �f
�(S2,1) � 0; and

(3) �f(Sn,n�1) � 0 and �f
�(Sn,n�1) is undefined if n � 2.

Proof. We first consider the case k � n � 1. It is
proved in [3] that Sn,n�1 is isomorphic to the n-star graph

Sn. In [1], it is proved that Sn is bipartite for every n and Sn

is Hamiltonian if and only if n � 2. The graph S2 is K2

which is Hamiltonian connected. It is known that the num-
ber of vertices in both partite sets of any bipartite Hamilto-
nian graph are the same. For these reasons, any bipartite
Hamiltonian graph is not Hamiltonian connected. Thus,
�f(Sn,n�1) � 0 and �f

�(Sn,n�1) is undefined if n � 2.
Moreover, �f(S2,1) is undefined and �f

�(S2,1) � 0.
Now, we consider the case n � k � 1. By Lemma 1, the

theorem is true for Sn,1. According to Lemma 5, the theo-
rem is true for S4,2. Based on the Lemmas 6 and 7, the
theorem is true for Sn,2 with n � 5. By Lemmas 6 and 8,
the theorem is true for all Sn,k with n � 5, k � 3, and (n
� k) � 2. Hence, the theorem is proved. ■
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APPENDIX

Fact 1. S5,2 � F is Hamiltonian for any F 
 V(S5,2) �
E(S5,2) with �F� � 2 and �F(S4,1

1 )� � �F(S4,1
2 )� � 1 (see Fig. A.1).

FIG. A.1. S5,2.

FIG. 12. Illustrations for Subcases 2.3 and 2.4.
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Proof. Assume that F consists of two vertices. Then, we have the following 16 cases, namely: (1) {21, 12}, (2) {21,
32}, (3) {21, 42}, (4) {21, 52}, (5) {31, 12}, (6) {31, 32}, (7) {31, 42}, (8) {31, 52}, (9) {41, 12}, (10) {41, 32}, (11) {41,
42}, (12) {41, 52}, (13) {51, 12}, (14) {51, 32}, (15) {51, 42}, and (16) {51, 52}. The corresponding Hamiltonian cycles
of S5,2 � F are listed below:

(1) �31, 13, 23, 32, 42, 52, 25, 15, 45, 35, 53, 43, 34, 24, 54, 14, 41, 51, 31�
(2) �31, 13, 23, 43, 53, 35, 15, 45, 25, 52, 12, 42, 24, 34, 54, 14, 41, 51, 31�
(3) �31, 13, 23, 32, 12, 52, 25, 15, 45, 35, 53, 43, 34, 24, 54, 14, 41, 51, 31�
(4) �31, 13, 23, 32, 12, 42, 24, 14, 54, 34, 43, 53, 35, 25, 45, 15, 51, 41, 31�
(5) �21, 41, 14, 24, 42, 32, 52, 25, 35, 53, 13, 23, 43, 34, 54, 45, 15, 51, 21�
(6) �21, 12, 42, 52, 25, 15, 45, 35, 53, 13, 23, 43, 34, 24, 54, 14, 41, 51, 21�
(7) �21, 12, 32, 52, 25, 15, 45, 35, 53, 13, 23, 43, 34, 24, 54, 14, 41, 51, 21�
(8) �21, 12, 32, 42, 24, 14, 54, 34, 43, 13, 23, 53, 35, 25, 45, 15, 51, 41, 21�
(9) �21, 31, 13, 23, 32, 42, 52, 25, 35, 53, 43, 34, 14, 24, 54, 45, 15, 51, 21�

(10) �21, 12, 42, 52, 25, 15, 35, 45, 54, 14, 24, 34, 43, 23, 53, 13, 31, 51, 21�
(11) �21, 12, 32, 52, 25, 15, 35, 45, 54, 14, 24, 34, 43, 23, 53, 13, 31, 51, 21�
(12) �21, 12, 32, 42, 24, 14, 34, 54, 45, 15, 25, 35, 53, 23, 43, 13, 31, 51, 21�
(13) �21, 31, 13, 23, 32, 42, 52, 25, 15, 45, 35, 53, 43, 34, 24, 54, 14, 41, 21�
(14) �21, 12, 42, 52, 25, 15, 35, 45, 54, 14, 24, 34, 43, 23, 53, 13, 31, 41, 21�
(15) �21, 12, 32, 52, 25, 15, 35, 45, 54, 14, 24, 34, 43, 23, 53, 13, 31, 41, 21�
(16) �21, 12, 32, 42, 24, 14, 34, 54, 45, 15, 25, 35, 53, 23, 43, 13, 31, 41, 21�

Assume that F consists of two edges, Then, we have 36 cases. We divide these 36 cases into four classes, namely:

(1) {(21, 31), (12, 32)}, {(21, 31), (42, 52)}, {(21, 41), (12, 32)}, {(21, 41), (42, 52)},
{(31, 51), (12, 32)}, {(31, 51), (42, 52)}, {(41, 51), (12, 32)}, {(41, 51), (42, 52)}.

(2) {(21, 31), (12, 42)}, {(21, 31), (12, 52)}, {(21, 31), (32, 42)}, {(21, 31), (32, 52)},
{(21, 41), (12, 42)}, {(21, 41), (12, 52)}, {(21, 41), (32, 42)}, {(21, 41), (32, 52)},
{(31, 51), (12, 42)}, {(31, 51), (12, 52)}, {(31, 51), (32, 42)}, {(31, 51), (32, 52)},
{(41, 51), (12, 42)}, {(41, 51), (12, 52)}, {(41, 51), (32, 42)}, {(41, 51), (32, 52)}.

(3) {(21, 51), (12, 32)}, {(21, 51), (42, 52)}, {(31, 41), (12, 32)}, {(31, 41), (42, 52)}.
(4) {(21, 51), (12, 42)}, {(21, 51), (12, 52)}, {(21, 51), (32, 42)}, {(21, 51), (32, 52)},

{(31, 41), (12, 42)}, {(31, 41), (12, 52)}, {(31, 41), (32, 42)}, {(31, 41), (32, 52)}.

The corresponding Hamiltonian cycles of S5,2 � F are listed below:

(1) �21, 12, 42, 24, 14, 41, 31, 13, 23, 32, 52, 25, 35, 53, 43, 34, 54, 45, 15, 51, 21�
(2) �21, 12, 32, 23, 13, 31, 41, 14, 24, 42, 52, 25, 35, 53, 43, 34, 54, 45, 15, 51, 21�
(3) �21, 12, 42, 24, 14, 41, 51, 15, 25, 52, 32, 23, 43, 34, 54, 45, 35, 53, 13, 31, 21�
(4) �21, 12, 32, 23, 13, 31, 51, 15, 25, 52, 42, 24, 34, 43, 53, 35, 45, 54, 14, 41, 21�

Assume that F consists of one vertex and one edge. Then, we have 48 cases. We divide these 48 cases into 18 classes,
namely:

(1) {21, (12, 32)}, {21, (42, 52)}.
(2) {21, (12, 42)}.
(3) {21, (12, 52)}, {21, (32, 42)}, {21, (32, 52)}.
(4) {31, (12, 32)}, {31, (42, 52)}.
(5) {31, (12, 42)}, {31, (12, 52)}, {31, (32, 42)}, {31, (32, 52)}.
(6) {41, (12, 32)}, {41, (42, 52)}.
(7) {41, (12, 42)}, {41, (12, 52)}, {41, (32, 42)}, {41, (32, 52)}.
(8) {51, (12, 32)}, {51, (42, 52)}.
(9) {51, (12, 42)}, {51, (12, 52)}, {51, (32, 42)}, {51, (32, 52)}.

(10) {12, (21, 31)}, {12, (41, 51)}.
(11) {12, (21, 41)}, {12, (31, 41)}, {12, (31, 51)}.
(12) {12, (21, 51)}.
(13) {32, (21, 31)}, {32, (21, 51)}, {32, (31, 41)}, {32, (41, 51)}.
(14) {32, (21, 41)}, {32, (31, 51)}.
(15) {42, (21, 31)}, {42, (21, 51)}, {42, (31, 41)}, {42, (41, 51)}.
(16) {42, (21, 41)}, {42, (31, 51)}.
(17) {52, (21, 31)}, {52, (21, 41)}, {52, (31, 51)}, {52, (41, 51)}.
(18) {52, (21, 51)}, {52, (31, 41)}.
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The corresponding Hamiltonian cycles of S5,2 � F are listed below:

(1) �31, 13, 23, 32, 42, 12, 52, 25, 15, 45, 35, 53, 43, 34, 24, 54, 14, 41, 51, 31�
(2) �31, 13, 23, 32, 12, 52, 42, 24, 14, 54, 34, 43, 53, 35, 25, 45, 15, 51, 41, 31�
(3) �31, 13, 23, 32, 12, 42, 52, 25, 15, 45, 35, 53, 43, 34, 24, 54, 14, 41, 51, 31�
(4) �21, 12, 42, 24, 14, 34, 54, 45, 25, 52, 32, 23, 13, 43, 53, 35, 15, 51, 41, 21�
(5) �21, 12, 32, 23, 13, 43, 53, 35, 15, 45, 25, 52, 42, 24, 34, 54, 14, 41, 51, 21�
(6) �21, 12, 42, 24, 14, 34, 54, 45, 15, 35, 25, 52, 32, 23, 43, 53, 13, 31, 51, 21�
(7) �21, 12, 32, 23, 13, 43, 53, 35, 25, 52, 42, 24, 14, 34, 54, 45, 15, 51, 31, 21�
(8) �21, 12, 42, 24, 14, 34, 54, 45, 15, 35, 25, 52, 32, 23, 43, 53, 13, 31, 41, 21�
(9) �21, 12, 32, 23, 13, 43, 53, 35, 15, 45, 25, 52, 42, 24, 34, 54, 14, 41, 31, 21�

(10) �21, 41, 14, 24, 42, 32, 52, 25, 15, 35, 45, 54, 34, 43, 23, 53, 13, 31, 51, 21�
(11) �21, 31, 13, 23, 32, 42, 52, 25, 15, 45, 35, 53, 43, 34, 24, 54, 14, 41, 51, 21�
(12) �21, 31, 13, 23, 32, 42, 52, 25, 35, 53, 43, 34, 14, 24, 54, 45, 15, 51, 41, 21�
(13) �21, 12, 42, 52, 25, 15, 51, 31, 13, 23, 43, 53, 35, 45, 54, 24, 34, 14, 41, 21�
(14) �21, 12, 42, 52, 25, 15, 51, 41, 14, 24, 34, 54, 45, 35, 53, 23, 43, 13, 31, 21�
(15) �21, 12, 32, 52, 25, 15, 51, 31, 13, 23, 43, 53, 35, 45, 54, 24, 34, 14, 41, 21�
(16) �21, 12, 32, 52, 25, 15, 51, 41, 14, 24, 34, 54, 45, 35, 53, 23, 43, 13, 31, 21�
(17) �21, 12, 32, 42, 24, 14, 41, 31, 13, 23, 53, 43, 34, 54, 45, 25, 35, 15, 51, 21�
(18) �21, 12, 32, 42, 24, 14, 41, 51, 15, 25, 35, 45, 54, 34, 43, 23, 53, 13, 31, 21�

Hence, S5,2 � F is Hamiltonian when �F� � 2 and �F(S4,1
1 )� � �F(S4,1

2 )� � 1. ■
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