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Abstract 

The Hamiltonian structure for a fundamental model of a tethered satellite system is 
constructed. The model is composed of two point masses connected by a string with 
no restrictions on the motions of the two masses. A certain symmetry with respect 
to the special orthogonal group SO(3) for such a system is observed. The classical 
station-keeping mode for the tethered system is found to be nothing more than the 
relative equilibrium corresponding to the reduction of the system by the symmetry. 
The microgravity forces on the two point masses are responsible for the possible 
configurations of the string at the so-called radial relative equilibrium. A stability 
analysis is performed on the basis of the reduced energy-momentum method. Criteria 
for stability are derived, which could find potential applications in space technology. 

1. Introduction 

A Tethered Satellite System (TSS) basically contains two spacecraft, such as 
a space shuttle and a satellite, connected by a long rod or tether, with the whole 
assembly moving in a central gravitational field. Since the idea of a TSS was in- 
troduced around 1973 [Co, G], problems involving dynamics and control of such 
systems have been investigated by many researchers; cf. IF, KP, VK, PPL, LA, LB], 
and the references therein. A TSS has several potential applications in space tech- 
nologies, for example, scientific experiments, deployment or retrieval of satellites, 
power generation, measurement of aerodynamic forces, etc.; cf. [PA]. 

The dynamical behavior of a TSS is quite complicated. It is essentially a coupled- 
body system moving in a complex environment which includes gravity forces, elec- 
tromagnetic forces, and aerodynamic forces. The operational modes of such a system 
can be roughly divided into three categories: deployment, station-keeping, and re- 
trieval. Stability is one of the primary concerns during the station-keeping mode. 
However, the analysis in the above-mentioned works was mostly based on simplified 
models, such as that of two point masses connected by a massless rigid rod, while 
one point mass, say the space shuttle, is assumed to be rather massive and to be the 
center of mass of the assembly; cf. [LA, F]. Some other models take the mass and 
flexibility of the tether into consideration; cf. [LB, PPL]. But a basic assumption 
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in these models is that the shuttle is restricted to a circular motion, with emphasis 
placed on the problem of control at different modes. There are not many mathemat- 
ically rigorous analyses of more complex or natural models. One such analysis is 
that of B~LETSKY & L~v~ [BL], who used the energy method to prove the stability 
of radial equilibria of the above-mentioned string model and computed some natural 
modes. They also considered the effects of aero- and electro-dynamic forces. On 
the other hand, ANrMAN & WOLFE [AWl discussed the multiple equilibria of elastic 
strings near the singular point of the central force field. Many analytical problems 
in this field remain to be solved. 

The dynamics of a TSS are discussed in this paper in the Hamiltonian frame- 
work; only gravity forces are considered. Since the tether proposed for space appli- 
cations is quite long (roughly 20-100kin in the station-keeping mode), its mass and 
flexibility definitely cannot be assumed to be negligible. Accordingly, it is unnatural 
(or costly) to assume both that the space shuttle is in a circular orbit and that it 
remains unaffected by the motions of the tether and the other satellite. As a result, 
a fundamental and intuitive model is developed here; it is a two-mass system con- 
nected by a massive string with the coupling between each element appropriately 
included. The Hamiltonian structure is also determined. We show that such a system 
admits a natural symmetry corresponding to the SO(3) action. Within this frame- 
work, reduction can be performed and the relative equilibria can be defined. The 
configurations in the station-keeping mode used in engineering circles are actually 
the same as those at the relative equilibria corresponding to this reduction. 

The aforementioned coupling effects enter into the dynamics through the mi- 
crogravity forces which are exerted on the string by the point masses at relative 
equilibria and through their reactions exerted by the point masses on the string. 
(Due to material constraints, the point masses do not move on circular Keplerian 
orbits at relative equilibria, where the centrifugal and gravitational forces are bal- 
anced. The microgravity forces are the differences between these two forces.) Possi- 
ble configurations for such relative equilibria, or steady motions, are proved to exist. 
To perform the stability analysis for the relative equilibria, we adopt the reduced 
energy-momentum method (cf. [SLM, WK]) which respects the symmetry structure. 
However, the associated locked-inertia tensor for the radial case fails to be invert- 
ible. Thus the block-diagonalization technique is not directly applicable here, and 
the complete reduced energy-momentum method must be invoked. Stability condi- 
tions are then derived. The rather complicated nature of the TSS problem is revealed 
by the present analysis. Those conditions on the relative equilibria and the associr 
ated stability criteria obtained in this paper may potentially have some engineering 
applications. 

The physical system under consideration is described in Section 2. Here the equa- 
tions of motion and their Hamiltonian structure are derived. Our problem is conse- 
quently a nonlinear dynamic boundary-value problem. A brief description of simple 
mechanical systems with symmetry and the reduced energy-momentum method is 
provided in Section 3. The intrinsic symmetry structure in our Hamiltonian system 
and the associated reduction process are then discussed in Section 4. Here the rela- 
tive equilibria are defined and the existence of the so-called radial relative equilibria 
is discussed. For such radial relative equilibria, or radial steady motions, the stabil- 
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ity analysis is performed in Section 5 by applying the reduced energy-momentum 
method. Compared to the classical energy method, the reduced energy-momentum 
method indeed leads to weaker stability conditions, which can be obtained by solving 
a Sturm-Liouville problem. Some concluding remarks are given in Section 6. 

In our analysis, the constitutive law for the string, characterized by a general 
stored-energy density function, is intrinsically nonlinear. However, the Cauchy prob- 
lem for the nonlinear string is difficult and has not yet been solved. A simpler case 
is treated in Appendix I, where semigroup theory is applied to solve the Canchy 
problem for a string with a quadratic stored-energy density. Moreover, the time-map 
analysis discussed in Section 4 is specialized in Appendix II to one particular form 
of the stored-energy density which characterizes the case of linearly elastic strings. 
Methodologies discussed for the (general) nonlinear case can be more easily grasped 
for such linear strings. 

2. Equations of Motion and the Hamiltonian Structure 

The satellite and the shuttle are considered here as point masses and the tether 
is modeled as an elastic string; cf. Figure 1. Let el, e2, e3 be the coordinate axes 
of the inertial frame. Let r denote the vectors from the origin of the inertial flame 
to the points of the tethered system. The equations of motion can be derived from 
the action principle. Let Q = {r : [0,L] --~ IR31r is a smooth embedding} be the 
configuration space, and let s c [0,L] be the reference parameter for the string. 
Consider paths t H r(t, .) in Q, and let ~ = ~r/~?t. The Lagrangian function is 
Y : T( i ,  ) - V ( r ) ,  where the kinetic energy T and the potential energy V are 

L 

0 

ml 

m2 

 oe' 
e~ 

Fig. 1. A tethered satellite system. 
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L L 

J trl Ir] s=L + a W(lrs[)ds. (2) V(r) 
o o 

Here p(s) is the mass density for the string with s E (O,L); ml,m2 are the masses at 
r(O) and r(L), respectively; # is the gravitational constant; the stored-energy density 
of the string W is a smooth function on IR; and rs = ~r/~s. Let W~(A) = dW(A)/dA. 
Then the Euler-Lagrange equations for the action functional f~(r , f , )d t  can be 
written as 

ml i ' (O)_ [r(O)l 3#ml r(O) + W'(lrs(O)l)~(O), (3) 

m2, .(L ) _ Ir(-T  rt  m2 - ' - )  W'(JrAL)I) (L). 

This is a system comprising a quasilinear (strictly or nonstrictly) hyperbolic system 
and two second-order nonlinear differential equations which are coupled through 
boundary conditions. The system should be interpreted in a weak sense, i.e., in 
terms of the principle of virtual work (cf. [AN]). 

The Cauchy problem for (3) with general stored-energy density fimction W is 
challenging; shock waves may appear (cf. [S1, $2], where the strictly hyperbolic 
case with fixed boundary values and no potentials has been discussed). However, 
for the case that the terms involving W in (3) are linear, e.g., W(A) = �89 the 
Cauchy problem can be solved via the semigroup method; cf. Appendix I. 

We now examine the geometry of the phase space, along with the Hamiltonian 
structure of the system under consideration. See [AM] for a general reference and 
[M] for infinite-dimensional geometric settings. An inner product on the tangent 
space TrQ is defined as 

( 6 r l , f r 2 ) r Q  = f p ( f r l , 3 r 2 ) d s  4 - m l ( 3 r l , ~ r 2 )  s=o+m2(c~rl ,~r2)  s L' ( 4 )  
0 = 

where frl, 6r2 E TrQ. To this inner product there corresponds a pairing on T*Q x 
TQ and an inner product on T*Q (generated by a Legendre transformation from the 
computation of Dr fit: ) : 

L 

: =  fo <p, w>d  + <p, w> w> 
s ~ L  ~ 

L 
1 1 , + l  , 

(~I,P2>T*Q := f - / (PI ,  P:> ds+ ~<P, P:> s=0 ~ < P '  P:> :=z" 
0 

With these operations, the Legendre transformation is found to be p = pr for 
s C (0,L) and p(0) = mlt:(0), p(L) = m2t:(L). The associated Harniltonian function 
is then 
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t .)r*Q + V(r). (5) 

To find Hamilton's equation, we construct the symplectic structure on the 
infinite-dimensional space T*Q. This construction can be obtained from the canon- 
ical one in the context of our pairings. In fact, the symplectic form a on T*Q is 
simply 

a(r,p~((6rl, 6p 1 ), (6r2, @2)) = ( ( ( ~ r 2 ,  (~rl)) - -  ((6Pl, ~r2)), 

where @1 and dP2 are in T~.Q. The Hamiltonian vector field corresponding to the 
Hamiltonian H is the vector field XH on T*Q satisfying 

ff(XH, Y )  = dH(Y) for all Y ~ TT*Q. 

Thus Hamilton's equation is d/dt(r,p) = X~r(r,p) interpreted in the sense that 

a(X~,Y)= a -~(r, p) ,Y  foraU Y E TT*Q. (6) 

With this symplectic structure, the Poisson bracket on C~(T*Q, IR) can be defined 
by 

{F, G} = cr(XF,X6) = DrF" DpG - DpF. DrG, 

where F,G E C~(T*Q, IR), and Dr, Dp are the Fr6chet derivatives with respect to 
r and p. The equations of motion can be further written in the Poisson bracket form 
a s  

= {F,H} f o r a l l F  C C~(T*Q, 1R). (7) 

The symmetry of the system and the corresponding reduction can be then discussed 
in terms of the Hamiltonian structure. 

3. The Reduced Energy-Momentum Method 

In this section, we review some basic notions about simple mechanical systems 
with symmetry and the reduced energy-momentum method. 

A simple mechanical system with symmetry (cf. [AM]) is a quadruple (Q, K, 
V, G), where Q is the configuration manifold, K is a Riemarmian metric, V is the 
potential function, and G is the symmetry group acting on Q. With this symmetry, 
the dynamics on T*Q can be reduced to a reduced dynamics on T*Q/G by the 
equivalence classes of group orbits. Let n : T*Q ~ T* Q/G be the canonical pro- 
jection. A point Pr E T*Q is a relative equilibrium if ~z(pr) is an equilibrium Of 
the reduced dynamics. A relative equilibrium (Pr)e is relatively stable if n((Pr)e) 
is a stable equilibrium of the reduced dynamics in the sense of Lyapunov. The 
relative stability of relative equilibria can be determined by applying the energy- 
momentum method. For simple mechanical systems with symmetry, we may further 
take advantage of the geometric structure of the system and apply the reduced 
energy-momentum method; cf. [SLM, SPM]. 
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For a simple mechanical system with symmetry, the associated energy function 
H" T*Q --+ IR and the momentum map J"  T*Q --+ ~*, where (r is the Lie algebra 
corresponding to the Lie group G and (r is its dual space, are 

H ( p x )  = �89 Px) q- V(x), 

(J(Px),  ~} ~- ((Px, ~Q(X))), 

respectively, where ( . , . ) ,  ( { . , - ) )  are defined through the Riemannian metric K, 
where ~ E N, and where ~Q is the associated infinitesimal generator of  the group 
action on Q. It can be further verified that both H and (J, ~) are conserved quanti- 
fies along the trajectories of motion. Moreover, because of the symmetry, they are 
invariant under the group action. Thus, if the projected function H~ on T*Q/G, 
defined by 

~q~o~ = H +  (J, 4) ----aH~, (S) 
is positive-definite at relative equilibria, then the relative stability can be determined 
by constructing a Lyapunov function. The reduced energy-momentum method is 
designed to check this condition in a systematic mamaer. This process can actually be 
greatly simplified by respecting the inherent structure of simple mechanical systems 
with symmetry. We first introduce some notation. 

Let the Legendre transformation be denoted by FL : TQ -* T*Q. With the 
embedding ~q~ : Q x N ~ T*Q defined by 

~ ( x , q )  = (x, FL(qQ(X))), 

the induced energy-momentum map can be defined b y / ~  = H~ o Y'. The essence 
of  the reduced energy-momentum method lies in studying the positive-definiteness 
of this induced energy-momentum map on the space Q x N. In fact, corresponding 
to the group action on Q and the adjoint action of G on (q, a symmetry may be 
constructed by a G-action on Q x ~ defined as 

~ : G • 1 6 2  Q • 1 6 2  

(g,(x,q)) ~ (g .x, Adgt/), (9) 

where Ad is the adjoint action. The invariance of the induced energy-momentum 
map under this action can be checked. 

The locked inertia tensor Ilook(x) : (~ --~ N* of a simple mechanical system with 
symmetry can be defined by 

(~, ho~k(X)~7) ~ I~(x)(~Q(x), ~Q(x)) (lO) 

for 4, t /E N. For the Lie group G, the isotropy subgroup associated with kt E N* is 
defined by 

G~ = {g E G :  Ad;# ---- #}, ( l l )  

with the associated Lie algebra 

if ,  = {r/E (q: ad ;#  = 0}. (12) 
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The block-diagonalization technique described in [SLM, WK] cannot be directly 
applied to the system considered in this paper, since the locked-inertia tensor is not 
invertible. Instead, the reduced energy-momentum method must be used in its more 
general form. We now outline the method. 

0. Pick ~ E N .  
I. Find x~ such that DV~(x~) = 0, where V~ is the augmented potential defined by 

r~(x) = V(x) - �89 ~Q(X))rQ. (13) 

2. Compute the premomentum map ff : Q • ~ -+ ~*, 

37(x, ~/) = l~loek(X)/7, 

and let #~ = 3(Xe, ~). 
3. Find the kernel of DJ  at (xe,~), i.e., kerD,7(x~,~) E T(xe,~)(Q • ~). 
4. Compute the isotropy subgroup G~o and the associated tangent space of the group 
orbit T(xe, ~)(G, . (Xe, 3)). 
5. Find the subspace 5" such that 

kerD](x~, ~) = 5 e | T(xe, :)(G,e" (x~, ~)). 

6. Check the positive-definiteness of the second variation of the induced energy- 
momentum map H~ on the space ~ The second variation o f / ~  can be computed 
from the formula 

D2IYI~(Xe, ~)" (~Xl, t]l)" (~X2, ~2) : (?]l,Ilock(Xe)~2} 4- D2V~(xe) �9 6Xl" (~x2. (14) 

The relative equilibrium (Xe, FL(~Q(Xe))) is relatively stable if the associated quadratic 
form on 5 e is positive-definite. 

4. Symmetry and Relative Equilibria 

The canonical action of the rotation group SO(3) on the phase space is con- 
sidered in this section and the reduced dynamics is examined. Let A E SO(3) act 
on Q according to the rule: A. r = Ar for r E Q. This action can be lifted to the 
phase space T*Q by A(r,p) = (At, Ap). The Hamiltonian in (5) is easily seen to be 
invariant under this action. Hence, the theory of mechanical systems with symmetry 
can be applied. In fact, the system under consideration is a simple mechanical sys- 
tem with symmetry (Q,K, V, G), where the Riemannian metric K is defined through 
the inner product in (4), the potential energy V is in (2), and G = SO(3). 

Since, for our case, the symmetry group is the rotation group, the reduced dy- 
namics is the dynamics of (3) reduced to the reduced phase space which 'ignores' 
uniformly rotating motions. The relative equilibrium is the orbit of some phase point 
in uniformly rotating motion, which has been called the steady motion in engineer- 
ing literature. 

Let ~ E 1113 be an arbitrary vector. The augmented potential defined in (13) can 
be computed as 
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~( , ' )  = vo ' )  - �89 x r ,~ x r)TQ. ( iS )  

It has been shown that relative equilibria can be characterized by the critical points 
of  V~ for some 4; cf. [P]. The first variation of V~ is computed next; it leads to the 
following conditions for relative equilibria: 

_-0, 

( ~ m l r _  , r. " "'~ _= 0 ,~--~, W (}r~})]~[ - mirror) s=0 = 0, (16) DV~(re) \ (~13 

( jumz _W,tlr at. m2~r~r)s=Z ----0, ~-~}3 r-b ~l s j ] ~  - 

where r denotes the transpose of a matrix, Here the operator ^ represents the natural 
isomorphism between ]R 3 and the space of 3 x 3 skew-symmetric matrices so(3) 
according to the rule (.) (0 a a.) 

a2 = a3 0 - a l  . (17) 
a3 - a2  al 0 

Conditions (16) can be also obtained by substituting 
^ 

r( t )  = etr 

into (3) and deriving conditions on re, i.e., the relative equilibrium corresponds to 
the orbit of  re rotating about ~ uniformly. This is yet another way of observing 
the nature of relative equilibria. Finding the configurations for relative equilibria 
necessitates solving (16), which is a nonlinear boundary-value problem for ordinary 
differential equations. Some special solutions can be obtained by also assuming that 
the solution is radial, and that ~ = toe3, co > O. Let {hi, b2, b3} be a (body) frame 
which rotates about ~ uniformly. It is then assumed for the radial case that 

re(S) = ~(s)b2, re(O) = ab2, re(L) = bb2, 0 < a < b, (18) 

which are fixed relative to that body frame. For such a specific case, the problem 
of finding relative equilibria reduces to 

W'(~Ds - (]-~3 - co2) P ~ = 0, 

W'(as(O)) = ml ~ (19) 

Wl(O~s(L)) -~ - m2 ( ~  - co21b. 

Solutions of  (19) give rise to the so-called radial relative equilibria. In the following 
discussion we assume that 

p(s) =- a constant. (20) 
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For simplicity, we let 

x = cz, y = O:s, K = p#, z = po92, 

/s ~ m l # ,  "el -~- m l  (D2, /s ~ m2# ,  

Equation (19) can be rewritten as 

where 

272 = m2602. 

Ys ~ y ,  

(W'(y))s  = ~cx - a  - z x ,  

L ( x ,  y) = (0,0), 

s ~ (o, L), (21) 

(22) 

L(x, y )  ;= ( W Z ( y ( 0 ) )  - /~lX(0) - 2  § "ClX(0), WZ(y(L))  § N;2x(L) - 2  --  ~c2x(L)). 

Equation (21) is an integrable system. However, determining whether any of its 
solutions also satisfies the nonlinear boundary condition (22) is not an easy task. 
A phase-plane analysis is attempted here. A first integral for (21) can be found to be 

U(y) + xx -1 § �89 2 -- constant, (23)  

where U(y)  is such that U'(y )  =- y W " ( y ) .  To seek a solution of (21), (22) in the 
first quadrant of the (x, y)-plane, we further assume that 

x > 0, y > 0, W ' ( 1 ) = 0 ,  W" > 0. (24) 

Based on these assumptions, we make the following observations: 

OB1. The two curves C1 : W ~ ( y ) - ~ l x - 2  + zlx = O, C2 : W~(y)+~c2x-2-v2x  = O, 
which contain the boundary values, intersect at (3 ~X/-g~-2 , 1). Note that W t is strictly 
monotonic, so that (W~) -1 (the inverse function) exists. 
OB2. On C1, y is strictly decreasing in x, and on C2, y is strictly increasing in x 
because 

W ' ( Y ) ~ x  -- 2tClX - 3  - " e l  < 0 o n  C1, 

W'(Y)~xx  =- 2 t r  § "c 2 > 0 on C2. 

OB3. On the portion {(x, y)  E Cllx < ~ ~ x / ~ } ,  the vector field is in the ( + , §  

direction (i.e., /~); while on {(x,y) E C21x > 3 ~V/-fi~ }, the vector field is in the 
( + , - )  direction (i.e., "-,~). 

From these observations, it can be verified that a trajectory starting at (x0, y0) E 
C1, along some integral curve, moves to a point (xf ,  y f )  E C2 (see Figure 2). Such 
a trajectory with travel time L is a solution of (21), (22). To justify the existence 
of this solution, one needs to examine the time-map further. Denoting the inverse 
function of U by U -1 and integrating (23) from a point ( p , ( W t ) - l ( t c l p - 2 - ' c l p ) )  
C1 along the integral curve, we obtain the time-map 
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i 
2 

Fig. 2. The phase curve corresponding to the solution. 

B(p) 

ss(p) - S p  = g _ l (  c _ ~ _ �89 (25) 
p 

where e = U ( p )  + ~cp -1 + �89 2 and B ( p )  satisfies 

c = u o ( v / ' ) - l ( - ~ 2 B ( p )  -2 + ~2B(p)) + ~:B(p) -1 + �89 2. 

The time-map analysis is complicated even for simple forms of W. Moreover, the 
parameter co varies with respect to the position of the string. Thus, the first integral 
(23) changes for different initial conditions. In Appendix II, numerical computations 
are performed for the specific W which characterizes linearly elastic strings. The 
reference length L of the string can be chosen so that the end point reaches C2; 
hence a solution arises. 

Some interesting problems here require further investigations: 
(i) The existence of solutions for (16). Specifically, a concrete method such as a 

variational method, instead of the degree-theory method, is desired. 
(ii) An analytical result on the time-map (25). 

5. Stability Analysis 

The existence of some radial SO( 3 )-relative equilibria was shown in the previous 
section. We now study their stability properties. The reduced energy-momentum 
method discussed in Section 3 is employed here to explore the stability properties of 
the radial relative equilibria. The momentum map J :  T*Q > so(3)* is canonical: 

s (v r ) (~ )  = ((vr, ~Q(~))), 
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where r E so(3) and its infinitesimal generator on Q is CQ(r) = d/del~=o exp (e~) r = 
x r. Hence the augmented Hamiltonian is 

H~(,', p)  = H(,. ,p) + ' /(Pr)(~) = ,7(, ',p) + {(t',., r x ,')). 

/lock(r) : so(3) ---+ so(3)* is found by the following The locked inertia tensor 
computation: 

{(/lock (i')(/1), ~))so(3) = 

where 

(r~e(r), Ce(")) re 
(~1 x r, r • r)re 

L 

= fp<~ x ,,, r x , .)as + m~ <,7 x ,., r x ~> ~=o 
0 

q- m 2{r I X r, r X r )  s=L 

L 

= + < .=0 + rn2@t/, s=L 
0 

L 
I~176 = f prrrds + mlrr r s=O +m2~'T~ s=L' 

0 

and ~,~/E IR 3. In particular, for the radial equilibria (18), we have (/)(100) 
IOock(re) = pc~2ds + mla 2 + m2b 2 0 0 0 . 

0 0 1 
(26) 

Accordingly, the locked inertia tensor is not invertible at such radial equilibria. The 
degeneracy of the locked inertia tensor comes from the special configuration of the 
tether system at the radial relative equilibria. In fact, the moment of inertia of the 
system with respect to the rotation about the b2-axis is zero at these relative equi- 
libria. We note that this situation is different from that for systems possessing body 
symmetry. In general, the TSS does not have body symmetry, and the techniques 
for further reducing the system corresponding to body symmetry cannot be used. On 
the other hand, due to this degeneracy, the block-diagonalization result in [SLM] 
cannot be directly applied; however, the reduced energy-momentum method outlined 
in Section 3 is still applicable. 

Define 
L 

Ie = f p~Zds + ml a  2 + mzb 2. (27) 
0 
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The momentum mapping at a radial equilibrium can be expressed as (0) 
~ - -  Ie 0 = J ( r e ,  ~),  

(o 

where 07 is the premomentum map (cf. Section 3). We now need to find the kernel 

space of D07 at radial equilibria. It can be verified that for 3r E TrQ and ~ E N, 

L 
D07(r, q)(6r, ~ )  = fp(2~O - O~)&ds + ml [(2~0 - 0~)3r] s=0+ m2[(2~0 - 0t))6r] ,=L 

0 

(i ) + p~r~ds + ml~r~ + mz~r~ &/. (28) 
s~O S=L 

At radial equilibria, we use & = (6r !, 6r2, fr3) and &/ = (&/1,3qz, fq3) to write 
(28) as 

DJ(re, ~)((Sr, ~ )  = - fopO~co3r3ds - mlaooar3(O) - m2bo93r3(L) . 
L 

/eaq3 + 2 f pc~coar2ds + 2mlacobr2(O) + 2m2bco&2(L) 
0 

As a result, the kernel of DJ(re, {) can be expressed as 

ker(D07(re, ~)) = (3r,&/): ~t/1 = 0, mla~r3(O) + mzb3r3(L) + fpc~6r3ds = O, 
o 

(~vl 3 _ 2091e (mlac~r2(O) + m2bar2(L) + fopo~e~r2ds . 

(29) 

Next we need to find the tangent space of the group orbit T(r, ~)(G~. (r, rl)), which 
is a subspace of T(r, ~l)(Q x N). The isotropy subgroup G~ can be found from 

Gu = {B ~ SO(3): Ad*M2 = fi}. 

Since #e = Iecoe3, we have 

G~ = {eq: q is parallel to e3 }. 

Thus we immediately obtain the tangent space 

T(re ,{ ) (Gl~e.  ( re ,  ~ ) )  = { ( f i e  3 • re, 0 )  : fl E IR} = {(-//~el,  0) : fl E IR}. (30) 

Obviously, T(re, r (re, ~)) is a subspace of ker(DJ(re, {)). In light of the sym- 
metry, the augmented Hamiltonian is invariant on the orbit generated by the isotropy 
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subgroup. We therefore need only check the second variation of the augmented 
Hamiltonian on a subspace 5g such that 

ker (DJ(re, 4)) = 5/' | T(r~, ~)(Gl~ e " (re, ~)). 

From (29) and (30), the space Y can be written as 

-~- {(~r,~t/)  ~--- (0,~r2,~r3,0,~t/2,~t/3) " 

L 
rnlag)r3(O) + m2brr3(L ) + f pc~rr3ds = O, 

o 

(~t]3 ~-  mla3r2(O) + m2brr2(L) + fo pO:c~r2ds . (31) 

Although the variation @2 is arbitrary in Y, the degeneracy of the locked inertia 
tensor prohibits it from entering into our considerations regarding stability. 

The last step in the reduced energy-momentum method is to check the positive- 
definiteness of the second variation of H~ on 5 e. The second variation is now 
computed by the formula (cf. (14)) 

D2IYQ(re,~)'(r3rl,3tl)'(Sr2,(5~) = (3~1, Ilock(re)(~> + D2V~(re)'drl "(~r2. (32) 

From (15), the second variation of the augmented potential is 

D 2 V~(re)" 5rl �9 (}r2 

d d 
de1 ~=o V~(re + + ~- ~282 82=0 gl (Srl g2~2) 

= ( ~r@arl,ar2>rQ - <~r ~arl,eSr2)rQ 

L 
f 3#p 3#ml 

--11--~.15~,_~, <re, arl)(re, (~r2>ds -- ~ (re, (~rl >(re, tSr2} 
s~O 

o 
3/zm2 
iF e 15 @e, (~rl) (re, (~r2 > s=L 

L 
+ /  (Wtl(l(re)s') Wl(l(re)s')) 

i(re)s]2 t(re)s P ((re)s,(arl)s)((re)s,(C~rX)s}ds 
o 
L 

+/Wt([(re)s l )  
i(re)s I ((rrl)s,(g)r2)s)ds. (33) 

o 

We now examine the stability properties. By substituting the conditions for radial 
equilibria into (33), we obtain the second variation of Hr on Y: 
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DZlTI~(re,  ~ ) .  (a r ,  8~1) " (&, &/) 

= ire po~ar2ds + mlaar2(O) + rn2barz(L) 

--ml ( ~3 -+- oo2 ) ( ar2( O ) )2 -- m2 ( ~33 -~ c02 ) ( (Sr2(L ) ) 2 

L 

/o (~  +o,~) (<,2,,~ 
o 

L 

o 

L L 

0 0 

The relation of  br and 6t/ on 5 r (cf. (31)) has been used here to express 
(at/, /lock(re)at/) in terms of ar. It is this positive term which makes the reduced 
energy-momentum method yield conditions weaker than those of  the classical energy 
analysis. 

According to the reduced energy-momentum method, conditions on the system's 
parameters can be obtained by requiring the quadratic form (34) to be positive- 
definite. The second variation can be rewritten by performing the integration by 
parts on ar2-terms of the last integral in (34), i.e., 

D2/~r~(re, ~).  (at, at/). (at., at/) 
2 

- -  Ie po~ar2ds + mlaar2(O) + m2bar2(L) 

-(rn2(~-~3 +co2)ar2(L)-W"(~s)(ar2)s(L))ar2(L) 

L 
- / (o(r  + ~)< + (~"(~,)(<)~),) <~, 

0 
L 

-~-m-S-(aF3(O))2--~- ~-~---3~ (al~3(L))2 -{- /pT-~p3(ar3)2d$ 
o 

L L 
+ J  W'(~ " 2d O~s {(ar3)sl2ds. ( 35 )  ~ l t o r l ) s l  s+ f W'(~D 

o o 
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Note that 6rl = 0 on 5C Hence, the terms of  r and 6r3 are left to be studied. 
From the definition of  ( , )rQ, an appropriate Hilbert space is defined for 6r3 (or 
31"2) by: 

Definition 5.1. The Hilbert space BH([O,L]) is the completion of  C([0,L])  under 
the norm I" Ib induced by the inner product 

L 
t ~  

/ p fods  + ml f ( 0 ) 9 ( 0 )  + m2 f (L )q (L)  V f ,  9. (36) ( f  ,9)b 
t g  

o 

Since W'(es)/e~ > 0 (recall that as > 1), the terms including ar3 are clearly 
positive-definite on BH([0, L]). For 3r2, the following Sturm-Liouville problem must 
be solved: 

- + o02 6r2 -- W't(O:s)(fir2)s = 26r2, s E (0,L), 
S 

--(~-~ q- 0) 2,~ ~5r2(0) -- l@lWtt(C~s)(~r2)s(O) = ~c]r2(0), (37) 

-- ~ + o) 2 6r2(L) + --W"(~s)(ar2)s(L) = )~ar2(L), 
m2 

where 2 is the eigenvalue to be found. This type of  Sturm-Liouville problem has 
been previously studied in [Ch] and is known to have real eigenvalues 20 < 
)q < 22 < . .- .  Problem (37) is denoted here by - -  and the 6r2 terms 
in (35) are rewritten as 

( < ~ ) ) 2  
+ (A(ar~), (~Sr2))e. (38) 4(02 O~ , at2 b 

Let ~bo, q~l, qb2,.., be the associated eigenfunctions for 2o, 41, 22,.... Define Vo = 
span {qSo} and set 

c5r2 = aoq~o + ~b, I~lb = b0~bo + qS~, 

where q5 = ~i~lai(oi and 4)~ < V~ (the orthogonal complement o f  V0 in BH([O,L])). 
Then 

/) 4092 O~ ,6r2 b = 4o02(a0bo + (q~, q~)b) 2 

= 4o02(aobo + I(~[bKa) 2, 

where K~ = I(b~lbcosO, and cosO = (~,@b/l~[b"  ]t~lb. 01"1 the other hand, if we 
assume that 21 > O, then 

- -  + 

i=0 
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Hence (38) is greater than or equal to 

40)2 )~1 ' 

& b 0  + - -  Ir 
4o02 

which is positive-definite if 

20 > max _4o02b , -b2,~l 

4oo a 

(39) 

Since K~ =< 1, a sufficient condition for this inequality is 

-4o02b~21 
20 > 

4o92 + 21 

Consequently, we have the following stability result. 

Theorem 5.2. Let 20 and 21 be the first and second eigenvalues of  (37), respec- 
tively. If21 > 0 and 2o > -4o02b22~/(4o02 + 21), then the radal relative equilib- 
rium obtained in Section 4 is formally relatively stable. 

Remarks. 1. Since the global smooth solution may not exist, this formal stability 
result is rigorous only in the time interval where the solution is smooth. 
2. The stability obviously holds when W ' ( ~ )  is so large that 2o > 0. This means 
that the radial relative equilibrium is relatively stable if the string is stiff enough. 
3. In contrast to the analysis by the classical energy method, the method adopted 
here requires weaker conditions to conclude stability. It can be checked that the 
first term of (38) (which is always positive) does not appear in the classical energy 
analysis (cf. [L], where the classical analysis was applied to prove the stability of 
a radial equilibrium in a uniformly rotating frame). 

6. Conclusions 

We have studied the equations of motion for a fundamental model of the teth- 
ered satellite system. The Cauchy problem was briefly discussed and the Hamiltonian 
structure for such a system was constructed. The system was found to have an in- 
trinsic symmetry with respect to the group SO(3). Via this symmetry, reduction 
was performed and the associated relative equilibria were defined. Some relative 
equilibria were obtained by finding the critical points of the augmented potential 
function, which consequently led to a nonlinear boundary-value problem. The re- 
duced energy-momentum method was applied to some particular radial equilibria 
in order to prove their relative stability. The method was found to produce weaker 
conditions than those obtained via the classical energy method. We proved that if 
the string is stiff enough, there is stability. The results of this paper on the relative 
equilibria configuration and its associated stability properties may be applied towards 
the design and control of tethered satellite systems. 
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Appendix I. The Cauchy Problem 

In this Appendix, we study the Cauchy problem for (3) with 

W(A) = 1A2. (40) 

The hyperbolic system becomes 

#P p~" = r~ - ~ r ,  s ~ (0,L) ,  

mlF(0) -- #m~ r(0~ + rs(0), (41) 
I r (O)13  " , 

m2Y(L) -- #mz v(L) - rs(L), 
Jr(L)? 

which is semilinear. To explore the Cauchy problem for the semilinear case, we 
assume for simplicity that p(s) = 1. The operator o is defined by 

o r :  (02 - ~ 0 , )  s=0 r, (42) 

1 6 

which is the linear part of the problem (41). We first show that the inhomogeneous 
problem <>r = f  with initial conditions r(0,s) = r0(s), r~(0,s) = ra(s), s 6 [0,L], 
can be uniquely solved. Semigroup theory is then applied to give a local solution 
of the nonlinear problem. Since the operator <> is decoupled for each component of 
r, we only need to study the scalar case, that is, 

02r-  ~2~r = f(s , t ) ,  s E (O,L), 

(02 - -~1ds) s=o(r) = f ,(t) = f (O,t), (43) 

( a ~ +  ~2ds ) s=L(r)= f 2 ( t ) : f ( L , t ) ,  

with initial conditions r(0, s) = ro(s), rt(O, s)  = r 1 (s). 
The function spaces BH k are now constructed for problem (43). An inner prod- 

uct on the space of functions having continuous derivatives, Ck([0,L]), is defined by 

k L k* k* 
( f  , g)bk =- ~ f f (Og(i)ds + m l ~  f (i)(o)g(i)(O) -}- m 2 ~  f (i)(L)g(i)(L), 

i=0 0 i=0 i=0 

where f ,  g E Ck([0,L]) and k*=  0 if k = 0, k*=  k -  1 if k = 1, 2 . . . . .  Its associated 
norm is 

II f Hbk ~ ( ( f ,  f)bk) 1/2. 
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The completion of Ck([0,L]) with respect to this norm is denoted by BHk([O,L]). 
Define the operator d "  D ( d )  --+ BH~ where D ( d )  = BH2([O,L]), by 

02 f ( s ) ,  s E (O,L), 

d f ( s )  = ~ s f ( O ) ,  s = O, 

- ~ Q , f ( L ) ,  s =L .  

Let 

(0,) 
J =  ar 0 ' 

which is defined on D(~r = BH2([O,L])xBHa([O,L]). The equation ~?2r-dr  = f 
can be written in the form 

r r 0 

We proceed to show that the operator ~ generates a strongly continuous semigroup 
on the Hilbert space H = BHI([O,L]) x BH~ where the norm on H is 
[[ f I[ 2 = IJ f I[~i + [I f ][~0. This is similar to the standard wave equation (el. [Pz]) 
and the following similar properties can be obtained: 

1. If  2 > 0 and f E BHk([O,L]), k>O, then u - 2sCu = f is uniquely solvable in 
BHk+2([O,L]). 

2. For G = (91,g2) E C~([O,L]) • C~176 and 2*01 the equation (ul,u2) - 
2 ( u b u 2 ) ~ T  = G is uniquely solvable in BHk([O,L])• BHk-l([O,L]),for all k > 2 ,  
and 

1 II(Ul,U2)]]i-i~(1-2])~])11(91,92)[IH, 0 < I)~[ < 5. 

3. The operator ~ is the generator of a strongly continuous semigroup S(t)  on H ,  
which satisfies 

IIS(t)]l ~ e  2t. 

Remark. In fact, the eigenvalue problem 

d 2 
ds 2 (To = ,~o, s C (O,L), 

1 d s=0 - - - - 1  d s=r ml ds ~o = 2(p(0), m2 ds (p = 2cp(L) (44) 

can be explicitly solved. The eigenvalues 2 can be found by solving 

cos v/2 L = 2 - sinx/2 L, 
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and the associated eigenfunction is simply a linear combination of sin~/~s and 
cosv~s. Let ~0i denote the eigenfunction associated with the eigenvalue 2i. Sub- 
stituting r(s , t )= ~ z i ( t ) q ) i ( s )  in (43), we obtain the weighting function ~i(t) by 
solving 

d 2 L 
dt---~'ci 4- •iz i : f f ( s ,  t)fpi(s) ds 4- ml fl(t)cpi(O) + m2 f2(t)rpi(L), (45) 

o 

with initial conditions. This process produces the unique solution (hence the kernel) 
for (43). 

We can now rewrite (41) in an integral form and can apply the typical fixed-point 
argument to obtain local existence of the solution if the initial condition satisfies 
Ir0l > M > 0. Note that our potential is singular at r = 0; hence, the global 
existence of finite-speed motion cannot be guaranteed. However, the solution exists 
as long as the motion is bounded away from zero. For a general density p, the 
same argument follows by properly modifying the eigenstructures. The result is 
summarized in 

Proposition A1. The Cauchy problem for (41), with smooth initial data r(0,s)  
=~0 for all s E [0,L] and rt(0,s), has a unique smooth solution as Ion# as the 
solution is bounded away from O. 

Appendix II. Linearly Elastic String 

We now consider the case of a linearly elastic string, which can be characterized 
by the stored-energy density function 

W(Ir~l) = �89 I - 1) a, 

where E denotes the modulus of elasticity of the string and A is the area of the cross 
section. The condition for radial relative equilibria can now be written as (cf. (19)) 

E A ~ x -  (T~p -oo2) pc~ = O, s E (O,L), 

EA(O~s(O) - l ) = ml ( [@13 - co2) a, (46) 

EA(~s(L) - l ) = - m2 (T-~p - co2) b, 

with the continuity conditions eft0) = a and c~(L) = b. The time-map method dis- 
cussed in Section 4 can be used to prove the existence of radial relative equilibria 
for linearly elastic strings. In particular, the first integral is 

1 2 �89 2 + tcx -1 + gzx = constant c, 

and the time-map becomes 

(47) 
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240.00 

200.00 

160.00 
g~ 
G) 

120.00 

8 
80.00 

40.00 

0.00 
6350.00 

I ~ , , , , d l l l l ~ E , l * ~ k l l ~ b J l l l l ~ '  

6400.00 6450.00 6500.00 
p (kin) 

Fig. 3. Some solutions from time-map analysis. The angular rate is co = 1.18936 x 10 -3 and 
m I = 103 , m 2 = 105 , p =  10, E A =  100. 

B(p) 

SB(p) - Sp = - - -  . (48) 

~e~V/C ~-�89 2 p - - x  

For a tether with constants ml, m2, p, and a linearly elastic string o f  reference length 
@(p), constants E, A, we can prove that there is a radial relative equilibrium moving 
in the gravitational field with angular rate co with one end of  the string on an orbit 
o f  radius p and the other on an orbit of  radius B(p), by performing the following 
procedure: 
(1) For a given co, select an appropriate p in the neighborhood of  ~;p-/(~2. 

(2) Compute 

(3) Solve 

l I m l ( ~  3 ) ] 2 /s ~ 2 c=~EA 1+~--~ _(o2 p + _ +  p 2 v P  �9 

for z = B(p). 

1 flm2: 3 5 

2 
tr 1 2 

+ - + : z z  = c  
z Z 
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(4) Compute S,(p) from the time-map formula, assuming Sp = O. 
Some numerical solutions are provided in Figure 3. For the stability of these 

radial relative equilibria, the Sturm-Liouville problem (37) becomes 

- p  @ (.0 2 (~r2 -- EA(6r2)ss = 26r2, 

- m l  ~ -  + co 2 6 r 2 ( 0 ) -  EA(6r2),(O) = 2~r2(0), (49) 

--m2 ~ + 0.) 2 ~r2(L ) + EA(c~r2),(L) = 26r2(L), 

where 2 is the eigenvalue to be obtained. The strategy of designing a stable radial 
tether therefore lies in finding a suitable EA such that the conditions in Theorem 

5.2 are satisfied. 
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